首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of 14C-carboxyl-labelled luciferin as a substrate for the firefly luciferase catalyzed reaction produces 14CO2 as a product. We have studied this reaction in the presence of 17O2 and H18OH, using an excess of luciferin over luciferase. The initial collection of CO2 contained close to one oxygen from 17O2 for each molecule of 14CO2 derived from luciferin, which is consistent with a cyclic peroxide mechanism. About half of the 14CO2 remained bound to the enzyme and was collected after acidification of the medium. This CO2 contained less than 0.1 of an atom of oxygen from 17O2 for each molecule of 14CO2 derived from luciferin. Exchange of medium CO2-HCO3 su? with water was not sufficiently great to account for the loss of any 17O previously incorporated. The most likely explanation appears to be a preferential exchange of oxygens of enzyme-bound CO2 with water oxygens. Such exchange, and dilution of CO2 from luciferin by medium CO2, may explain previous results in which little incorporation of atmospheric oxygen was noted.  相似文献   

2.
Mass spectral analyses of the CO2 liberated in the Cypridina luciferin-luciferase and firefly luciferin-luciferase reactions run in the presence of 17O2 and H218O show that the product is predominantly C18O16O (mass 46) and not C17O16O (mass 45). Incorporation of 18O into medium CO2 by exchange does not account for the observed results. These experiments provide evidence that the Cypridina and firefly bioluminescence reactions proceed via a linear peroxide mechanism rather than the dioxetane mechanism and suggest that a common mechanism may underly many bioluminescence reactions.  相似文献   

3.
Double label experiments were performed employing 13CO and either H218O or 18O2 in the presence of a CO utilizing bacterium. CO2 generated was trapped and me ratios 4745 showed that the second oxygen atom in the oxidation of CO to CO2 by this bacterium comes neither from O2 nor H2O.  相似文献   

4.
Bioluminescent oxidation of Cypridina luciferin yields CO2 besides oxyluciferin and light. The exchange of oxygen between the CO2 and H2O of the solvent becomes significant when less than approximately 1 μmol of luciferin is reacted in 4 ml of buffer solution, and the exchanged oxygen in CO2 markedly increases by decreasing the amount of luciferin. Such an exchange is to be expected in any such system which produces CO2 in aqueous solution, and must be taken into account in interpreting the results of experiments.  相似文献   

5.
Incorporation of 18O into CO2 was measured under various buffer conditions when the bioluminescent oxidation of Cypridina luciferin, catalyzed by luciferase, was carried out either in H216O medium with 18O2 gas, or in H218O medium with 16O2 gas. The results indicate that (1) the exchange of oxygen between CO2 and solvent H2O is significantly influenced by the kind of buffer as well as by pH, (2) the exchange of oxygen between solvent H2O and CO2 produced from luciferin in a neutral buffer can be reasonably well estimated from the exchange that takes place when the same amount of CO2 gas is introduced into the same buffer by the presently employed method, and (3) in the Cypridina bioluminescent reaction, one of two oxygens of O2 is quantitatively incorporated into the product CO2 prior to the exchange of oxygen between CO2 and solvent H2O.  相似文献   

6.
[4-14C]Cholesterol was incubated with an adrenocortical preparation in the presence of 16O2 and 18O2 devoid of significant 16O18O. Isolated (20R,22R)-20,22-dihydroxycholesterol was converted to a trimethylsilyl derivative and analyzed by gas chromatography - mass spectrometry to determine the isotope distribution of the oxygen atoms at C-20 and C-22. The ions of me 289, 291, and 293 (comprising the C8 C-20 to C-27 side-chain and containing, respectively, 16O2, 16O18O, and 18O2) exhibited a binomial distribution indicating that the oxygen atoms of the vicinal glycol were drawn at random from the atomic pool of the oxygen molecules. If both side-chain hydroxyl groups had originated from the atoms of the same oxygen molecule, the ion of me 291 would have been absent.  相似文献   

7.
17ONMR measurements of labeled Pro-Leu-Gly-NH2 were carried out at different pH levels and in mixed solvents of water/acetonitrile. Complementary studies of the amide protons were carried out in acetonitrile-d3. Only the prolyl C = 17O group was sensitive to the pH level. Protonation of the amine group resulted in an upfield chemical shift of 18 ppm. The chemical shifts of each of the three oxygen sites was sensitive to the ratio water: acetonitrile. Solvent composition dependence of the chemical shift and linewidth suggests that the prolyl C = 17O is involved in intramolecular hydrogen bond formation when Pro-Leu-Gly-NH2 is dissolved in acetonitrile, while in water there is no intramolecular H bond.  相似文献   

8.
The oxidation-reduction potential of the Cypridina luciferin-oxyluciferin system determined by a method of "bracketing" lies somewhere between that of anthraquinone 2-6-di Na sulfonate (Eo '' at pH of 7.7 = –.22) which reduces luciferin, and quinhydrone (Eo '' at pH of 7.7 = +.24), which oxidizes luciferin. Systems having an Eo '' value between –.22 and +.24 volt neither reduce oxyluciferin nor oxidize luciferin. If the luciferin-oxyluciferin system were truly reversible considerable reduction and oxidation should occur between –.22 and +.24. The system appears to be an irreversible one, with both "apparent oxidation" and "apparent reduction potentials" in Conant''s sense. Hydrosulfites, sulfides, CrCl2, TiCl3, and nascent hydrogen reduce oxyluciferin readily in absence of oxygen but without luminescence. Luminescence only appears in water solution if luciferin is oxidized by dissolved oxygen in presence of luciferase. Rapid oxidation of luciferin by oxygen without luciferase or oxidation by K3Fe(CN)6 in presence of luciferase but without oxygen never gives luminescence.  相似文献   

9.
Superoxide dismutase and catalase were not detected in M. pneumoniae and several other species of Mycoplasma some of which consume oxygen and secrete H2O2. M. pneumoniae in suspension formed O2? in the presence of NADH and flavins and extracts of M. pneumoniae formed O2? in the presence of either NADH or NADPH. The lack of superoxide dismutase in M. pneumoniae could not be attributed to superoxide dismutase in the complex medium in which the organisms were grown because organisms grown in medium in which the superoxide dismutase had been inactivated by heat still contained undetectable amounts. Mycoplasmas appear to be an exception to the rule that organisms which consume O2 synthesize superoxide dismutase.  相似文献   

10.
The mechanism of microsomal oxidative deamination of alicyclic primary amines: cyclopentylamine, cyclohexylamine, cycloheptylamine, 1- and 2-aminoindan, 1- and 2-aminotetralin, was studied under an atmosphere of 18O2 or in a medium containing H218O. The oxygen-18 contents of the products determined by gas-liquid chromatography/mass spectrometry revealed that almost all (75–100 atom%) of the oxygen of oximes was derived from molecular oxygen, whereas a part (4–25 atom% ) of the oxygen of ketones. The studies on the hydrolysis of oximes and the oxygen exchange reaction of ketones proved that the latter proceeded at a considerable rate (t12 = 9.5–336 min) and the former made a minor contribution, to explain why the major portion (75–96 atom%) of the oxygen in ketones was derived from water. The results support the mechanism that microsomal deamination proceeds mainly through a carbinolamine intermediate, which is initially hydroxylated at the α carbon to the amino group, partially equilibrating with the imine, and then rearranges to form a ketone and ammonia.  相似文献   

11.
A study of the oxygen consumed per lumen of luminescence during oxidation of Cypridina luciferin in presence of luciferase, gives 11.4 x 10–5 gm. oxygen per lumen or 88 molecules per quantum of λ = 0.48µ, the maximum in the Cypridina luminescence spectrum. For reasons given in the text, the actual value is probably somewhat less than this, perhaps of the order of 6.48 x 10–5 gm. per lumen or 50 molecules of oxygen and 100 molecules of luciferin per quantum. It is quite certain that more than 1 molecule per quantum must react. On the basis of a reaction of the type: luciferin + 1/2 O2 = oxyluciferin + H2O + 54 Cal., it is calculated that the total efficiency of the luminescent process, energy in luminescence/heat of reaction, is about 1 per cent; and that a luciferin solution containing 4 per cent of dried Cypridina material should rise in temperature about 0.001°C. during luminescence, and contain luciferin in approximately 0.00002 molecular concentration.  相似文献   

12.
Oxygen-18 exchange out of [18O]Pi catalyzed by Mg2+-activated unadenylated glutamine synthetase from E.coli was followed by 31P-NMR in the presence of the other substrates, ADP and L-glutamine. The pattern of the 16O18O in the species P18O4, P18O316O1, P18O216O2, P18O116O3, P16O4 during the exchange followed a binomial distribution consistent with indiscriminate removal of any of the four oxygens of Pi. The rate constant for 16O18O exchange was 410±40 min?1 while the rate constant for net reaction (ATP formation) was 62±4 min?1. Thus exchange proceeds ~7 times faster than net reaction, a finding in accord with that of Stokes and Boyer (J.Biol.Chem. (1976) 251, 5558) for the Mn2+-activated adenylylated glutamine synthetase. A model for the overall catalytic events first derived from rapid kinetic fluorescence experiments (Rhee and Chock, Proc. Natl. Acad. Sci. USA, (1976) 73, 476) was successfully used to fit the oxygen exchange data in this paper.  相似文献   

13.
Rats were exposed to air containing 18O2 at atmospheric pressure. In vivo incorporation of 18O in brain homovanillic acid (HVA) was determined by gas chromatography-mass spectrometry. One 18O atom was incorporated into each molecule of HVA indicating that tyrosine is the predominant precursor of brain dopamine and that the oxygen in the 3-position is of atmospheric origin. Intraperitoneal administration of 18O-enriched water did not alter the 18O content of brain HVA Mass fragmentography (2) was used to measure the increase in 18O and the decrease in 16O in HVA from rat brain over several hours of exposure to an 18O enriched atmosphere. These experiments demonstrate the possibility to pulse label brain dopamine and its metabolites by in vivo inhalation of stable oxygen isotopes. The procedure should be useful for quantitative determinations of the turnover of brain dopamine in animals and man.  相似文献   

14.
Mitochondria isolated from mung bean hypocotyls, possessing a significant level of cyanide and antimycin A — resistant respiration via an alternate pathway, were assayed for hydrogen peroxide production by yeast cytochrome c peroxidase compound II formation. Rates of antimycin A — insensitive hydrogen peroxide production of 0.7–3 nmol/mg/min were observed which were too low to account for the observed oxygen consumption via the alternate pathway. However, further investigations revealed the presence of significant levels of catalase, peroxidase and hydrogen donor to peroxidase, even in gradient purified mitochondria and these could easily utilize any hydrogen peroxide produced by the alternate pathway. Similar experiments performed upon submitochondrial particles demonstrated a rate of H2O2 production which could easily account for the net electron flux through the alternate pathway. From these results, we postulate that the alternate pathway reduces oxygen only partially to hydrogen peroxide, and that the peroxidase and catalase activities of the mitochondria prevent its accumulation.  相似文献   

15.
The rate of reaction of ferro- and ferricytochrome c (C(II) and C(III)) with ferri- and ferrocyanide and of C(III) with O2? and CO2? was determined in H2O and in 2H2O in the temperature range 5–35 °C. No isotope effect was evident in any of the reductions of C(III); the apparent energy of activation was identical in H2O and 2H2O. An isotope effect with kH2Ok2H2O = 1.25 to 1.85, depending on pH for instance was observed in the oxidation of C(II), in the slow phase of oxidation which involves conformational changes. An interpretation (supported by evidence from previous work) involving water molecules in the close vicinity of the reaction site on the protein is discussed.  相似文献   

16.
Mesophyll cells were isolated from fully-expanded leaves of Digitaria sanguinalis (L.) Scop. by a combined maceration-filtration technique. In the presence of pyruvate, photosynthetic 14CO2 uptake in the isolated cells was not inhibited by atomospheric levels of oxygen. In contrast, superatmospheric levels of oxygen substantially inhibited the light-dependent fixation of 14CO2. These oxygen effects are similar to those observed with intact C4 leaves and suggest that the lack of inhibition of C4 photosynthesis by atmospheric levels of oxygen results from the relative oxygen-insensitivity of the phosphopyruvate carboxylase-CO2 pump in the mesophyll.  相似文献   

17.
Solid dipyridine hemes which are unreactive toward oxygen lose both pyridine ligands upon heating under vacuum to give a solid which takes up O2, reversibly, one O2 per heme. Replacement of 16O2 by 18O2 reduces only infrared bands near 1660 and 1590 cm?1, frequencies near the vibrational band for gaseous O2. No FeO bands are detected. EPR spectra reveal a free radical and ferric iron; Mössbauer, NMR and infrared spectra support an iron(III) oxidation state. Limited molecular weight data indicate a dimer. Possibly two dioxygen molecules are held sandwich fashion between two porphyrins via donor-acceptor interactions, which are facilitated by electron transfer from iron(II) into the porphyrin forming a π-anion. Such O2 bonding is not found in oxy Hb and Mb or in oxyhemerythrin but may occur with cytochrome c oxidase and other oxygen utilizing (or producing) heme and other proteins.  相似文献   

18.
A. Telfer  J. Barber 《BBA》1978,501(1):94-102
1. Ionophore A23187 induces uncoupling of potassium ferricyanide-dependent O2 evolution by envelope-free chloroplasts and oxaloacetate-dependent O2 evolution by intact chloroplasts. The half maximal concentration (C12) for stimulation of oxygen evolution in both cases is approximately 4 μM · 100 μg chlorophyll · ml?1.2. Ionophore A23187 also induces inhibition of CO2 and 3-phosphoglycerate-dependent O2 evolution by intact chloroplasts in the presence of 3 mM MgCl2. The half maximal concentrations (C12) for inhibition of O2 evolution are 3 μM and 5 μM respectively · 100 μg?1 chlorophyll · ml?1.3. A very high concentration of ionophore A23187 (10 μM · 20 μg?1 chlorophyll · ml?1) plus 0.1 mM EDTA lowers the fluorescence yield of intact chloroplasts suspended in a cation-free medium in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea, indicating loss of divalent cation from the diffuse double layers of the thylakoid membranes.4. These results are discussed in relation to ionophore A23187-induced divalent cation/proton exchange at both the thylakoid and the envelope membranes of intact chloroplasts.  相似文献   

19.
The possible involvement of singlet oxygen (1O2) in the degradation of lignin by Phanerochaetechrysosporium was examined. Ligninolytic cultures and photochemically generated 1O2 gave the same oxidation products from the lignin substructure model compound 1,2-bis(3-methoxy-4-alkoxyphenyl)propan-1,3-diol. Fluorescence and near UV absorbance of the specific 1O2 trapping agent anthracene-9,10-bisethanesulfonic acid (AES) disappeared in ligninolytic cultures, indicating that 1O2 was produced. AES strongly inhibited oxidation of 14C-lignin, but not 14C-glucose, to 14CO2 in cultures, and also strongly suppressed oxidation of the model compound. These results indicate the 1O2 plays an integral role in lignin biodegradation.  相似文献   

20.
Addition of ribose-5-phosphate to intact spinach chloroplasts in the absence of added Pi resulted in a conversion of part of the Benson-Calvin cycle into a linear sequence so that triose phosphate accumulated during CO2 fixation stoichiometrically with the O2 evolved (triose phosphate / O2 ratio was 2.0). The fortunate consequence of this effect is that the ATP2e ratio may be calculated from the 3-phosphoglycerate and triose phosphate accumulated and the O2 evolved. In this way the ATP2e ratio was shown to be 2.0, with cyclic or pseudocyclic phosphorylation contributing less than 9% to the total phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号