首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

2.
P M Iuvone 《Life sciences》1986,38(4):331-342
The regulation of serotonin N-acetyltransferase (NAT) activity and cyclic AMP accumulation in the retina of the African clawed frog (Xenopus laevis) was studied using an in vitro eye cup preparation. Retinal NAT, a key enzyme in the synthesis of melatonin, is expressed as a circadian rhythm with peak activity at night. The increase of NAT activity at night appears to be mediated by cyclic AMP and is suppressed by light. Dopamine inhibits the nocturnal increase of retinal NAT activity; approximately 80% inhibition was observed with 1 microM dopamine. Dopamine at 1 microM did not stimulate retinal cyclic AMP accumulation. The effect of dopamine on NAT activity was antagonized by the D2-selective receptor antagonists spiperone and metoclopramide, but not by the putative D1 selective antagonist SCH 23390. The nocturnal rise in NAT activity was inhibited by LY 171555, a putative D2 selective agonist, but not by SKF 38393, a putative D1 selective agonist. LY 171555 also decreased cyclic AMP accumulation in eye cups incubated under similar conditions. Dopamine inhibited the stimulation of NAT activity in light by 3-isobutylmethylxanthine, but not that by dibutyryl cyclic AMP, suggesting that dopamine acts by decreasing cyclic AMP formation in the NAT-containing cells. Thus, the effects of dopamine on NAT activity may be mediated by a receptor with the pharmacological and biochemical characteristics of a D2 receptor.  相似文献   

3.
Dopamine stimulated human neuroblastoma SK-N-MC cells to accumulated cyclic AMP. The D1 agonist SKF (R)-38393 also stimulated cyclic AMP production whereas the response to dopamine was inhibited by the D1 antagonist SCH (R)-23390. Membranes from SK-N-MC cells bound the D1 ligand [125I]SCH 23982 with a Kd of 2.1 nM and a Bmax of 102 fmol/mg protein. Binding was displaced by dopamine, SKF 38393, and SCH 23390. Up to 40% of the receptors were in an agonist high affinity, guanine nucleotide-sensitive state, compared to only 6% in rat striatum. A D1 photoaffinity probe labeled a 72 kDa protein in both SK-N-MC and rat striatal membranes. Thus, SK-N-MC human neuroblastoma cells contain D1 dopamine receptors which are similar to those found in mammalian striatum, but which are more tightly coupled to adenylate cyclase. SK-N-MC cells may be a useful model to investigate the properties and regulation of D1 dopamine receptors.  相似文献   

4.
Preincubation of D384 cells, derived from the human astrocytoma cell line G-CCM, with dopamine resulted in a time-dependent attenuation of cyclic AMP responsiveness to subsequent dopamine stimulation. This effect was agonist specific because the prostaglandin E1 (PGE1) stimulation of cyclic AMP of similarly treated cells remained unchanged. The attenuation by dopamine was concentration dependent with a maximum observed at 100 microM. A comparison of dopamine concentration-response curves of control and dopamine-preincubated cells revealed no change in the Ka apparent value, but a marked attenuation of the maximal response. Preincubation of cells with dopamine in the presence of D1 but not D2 selective antagonists partially prevented the observed attenuation. Attenuations in dopamine responsiveness were also obtained when D384 cells were preincubated with D1 but not D2 receptor agonists. The level of attenuation attained related to agonist efficiency in stimulating cyclic AMP: SKF38393 less than 3,4-dihydroxynomifensine less than fenoldopam less than 2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronaphthalene = dopamine. However, increasing the efficiency of 3,4-dihydroxynomifensine stimulation of cyclic AMP, using the synergistic effect of adding a low concentration of forskolin, produced no further change in the attenuation of the subsequent response to dopamine. Thus, the D1 dopamine receptors expressed by D384 cells undergo homologous desensitization. Uncoupling of the D1 dopamine receptor appears to be independent of cyclic AMP formation, analogous to a mechanism proposed for the beta-adrenergic receptor.  相似文献   

5.
This study examined the effects of dopamine D1 and D2 receptor agonists and antagonists on the spontaneous and calcium-dependent, K+-induced release of gamma-[3H]aminobutyric acid [( 3H]GABA) accumulated by slices of rat substantia nigra. SKF 38393 (D1 agonist) and dopamine (dual D1/D2 agonist) were without effect on [3H]GABA efflux by themselves (1-40 microM), or in the presence of the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX) (0.5 mM), but potentiated evoked release in the presence of forskolin (0.5 microM), an adenylate cyclase activator. These increases in release were prevented by the D1 antagonist SCH 23390 (0.5 microM), but not by the D2 antagonist metoclopramide (0.5 microM). Higher concentrations of forskolin (10-40 microM) augmented stimulus-evoked [3H]GABA release directly, whereas dibutyryl cyclic AMP (100-200 microM) depressed it. Apomorphine, noradrenaline, and 5-hydroxytryptamine (1-40 microM) had no effect. The D2 stimulants lisuride, RU 24213, LY 171555, and bromocriptine dose-dependently inhibited depolarisation-induced but not basal [3H]GABA outflow. These inhibitory responses were not modified by the additional presence of SKF 38393 (10 microM) or SCH 23390 (1 microM), or by injection of 6-hydroxydopamine into the medial forebrain bundle 42 days earlier, but were attenuated by metoclopramide (0.5 microM). Higher amounts (10 microM) of SCH 23390, metoclopramide, or other D2 antagonists (loxapine, haloperidol) reduced evoked GABA release by themselves, probably by nonspecific mechanisms. These results suggest D1 and D2 receptors may have opposing effects on nigral GABA output and could explain the variable effects of mixed D1/D2 dopaminomimetics in earlier release and electrophysiological experiments.  相似文献   

6.
Identification of D1-like dopamine receptors on human blood platelets   总被引:1,自引:0,他引:1  
Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study we report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D1 dopamine receptor antagonist (3H) SCH 23390. (3H) SCH 23390 appeared to label a single class of binding sites with a Bmax of 18.6 +/- 1.6 fmol/mg protein and a KD of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (3H) SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D1 receptors, e.g. those in striatum, the D1 receptor sites on platelets appeared not to be coupled to the adenylate cyclase system, hence the term "D1-like". The D1 agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D1-like receptors.  相似文献   

7.
In the study reported here we have reached two conclusions. First, the cat adrenal medulla chromaffin cell possesses a dopamine D1 receptor that seems to be coupled to an adenylyl cyclase. Second, this receptor regulates the muscarinic-mediated catecholamine release response through a negative feed-back loop which uses cyclic AMP as a second messenger. These conclusions are supported by the following findings: (i) SKF38393 (a selective D1 receptor agonist), but not quinpirole (a selective D2 agonist), inhibits the methacholine-mediated catecholamine release responses in a concentration-dependent manner (IC50 of around 1-2 microM). (ii) SCH23390 (a selective D1 antagonist), but not sulpiride (a selective D2 antagonist), reversed by 70% the inhibitory effects of SKF38393. (iii) Dibutyril cyclic AMP (500 microM) inhibited by 80% the secretory effects of methacholine.  相似文献   

8.
Dopamine is the main catecholamine found in the chick retina whereas norepinephrine is only found in trace amounts. We compared the effectiveness of dopamine and norepinephrine in promoting cyclic AMP accumulation in retinas at embryonic day 13 (E13) and from post-hatched chicken (P15). Dopamine (EC(50)=10microM) and norepinephrine (EC(50)=30microM), but not the beta(1)-adrenergic agonist isoproterenol, stimulated over seven-fold the production of cyclic AMP in E13 retina. The cyclic AMP accumulation induced by both catecholamines in embryonic tissue was entirely blocked by 2microM SCH23390, a D(1) receptor antagonist, but not by alprenolol (beta-adrenoceptor antagonist). In P15 retinas, 100microM isoproterenol stimulated five-fold the accumulation of cAMP. This effect was blocked by propanolol (10microM), but not by 2microM SCH23390. Embryonic and adult retina display beta(1) adrenergic receptor mRNA as detected by RT-PCR, but the beta(1) adrenergic receptor protein was detected only in post-hatched tissue. We conclude that norepinephrine cross-reacts with D(1) dopaminergic receptor with affinity similar to that of dopamine in the embryonic retina. In the mature retina, however, D(1) receptors become restricted to activation by dopamine. Moreover, as opposed to the embryonic tissue, norepinephrine seems to stimulate cAMP accumulation via beta(1)-like adrenergic receptors in the mature tissue.  相似文献   

9.
Clones have been isolated from the human astrocytoma cell line G-CCM. Homogenates of clone D384 contain an adenylate cyclase that is stimulated by 3,4-dihydroxyphenylethylamine (dopamine), noradrenaline, and isoprenaline with Ka apparent values of 4, 56, and 2.7 microM, respectively. The Ka apparent value for dopamine was increased by the D-1 antagonist cis-flupenthixol, 25 and 100 nM, to 23 and 190 microM, respectively, but was unaffected by propranolol (1 microM). Noradrenaline stimulation of adenylate cyclase was only partially inhibited by either propranolol (10 microM) or cis-flupenthixol (1 microM). Propranolol (10 microM), but not cis-flupenthixol (1 microM), prevented stimulation by isoprenaline. The stimulation of adenylate cyclase by dopamine and noradrenaline remained unchanged in the presence of phentolamine (1 microM) and sulpiride (1 microM). These results suggest that clone D384 contains both D-1 dopaminergic and beta-adrenergic receptors coupled to adenylate cyclase. Dopamine stimulates D384 adenylate cyclase through D-1 receptors, isoprenaline via beta-receptors, and noradrenaline through both receptors.  相似文献   

10.
D1-selective dopamine receptor agonists inhibit secretagogue-stimulated catecholamine secretion from bovine adrenal chromaffin cells. The purpose of the studies reported here was to use the radiolabeled D1-selective dopamine receptor antagonist, SCH23390, to characterize putative D1-like dopamine receptors responsible for this effect. Characterization of SCH23390 binding sites demonstrated an unusual pharmacological profile inconsistent with classical D1-like receptors. [125I]SCH23390 bound to adrenal medullary membranes was competed for by non-radioactive iodo-SCH23390 (Kd = 490 ± 50 nM), but not by (+)butaclamol. Other classical D1 antagonists had little, if any, effect. Competition with dopamine receptor agonists demonstrated a relative rank order of potency profile characteristic of D1-like dopamine receptors, however, Kis were higher than those found in other tissues. The Kis for competition of [125I]SCH23390 binding by C1-APB and SKF38393 (16 and 118 M, respectively) are nearly identical to the IC50s previously observed for inhibition of secretion (9 and 100 M, respectively). Combined these data suggest that adrenal medullary membranes contain a novel SCH23390 binding site involved in the inhibition of secretion by D1-selective agonists.  相似文献   

11.
G L Orr  J W Gole  H J Notman  R G Downer 《Life sciences》1987,41(25):2705-2715
Dopamine increases cyclic AMP production in crude membrane preparations of cockroach brain with plateaus in cyclic AMP production occurring between 1-10 microM and at 10 mM. Maximal production of cyclic AMP is 2.25 fold greater than that of control values. Octopamine also increases cyclic AMP production with a Ka of 1.4 microM and maximal production 3.5 fold greater than that of control. 5-Hydroxytryptamine does not increase cyclic AMP production. The effects of octopamine and dopamine are fully additive. The vertebrate dopamine agonists ADTN and epinine stimulate the dopamine-sensitive adenylate cyclase (AC) with Ka values of 4.5 and 0.6 microM respectively and with maximal effectiveness 1.7 fold greater than that of control. The selective D2-dopamine agonist LY-171555 stimulates cyclic AMP production to a similar extent with a Ka of 50 microM. Other dopamine agonists (apomorphine, SKF-82526, SKF-38393) have no stimulatory effects. The octopamine-sensitive AC is inhibited by a variety of antagonists known to affect octopamine and dopamine receptors, with the following order of potency: mianserin greater than phentolamine greater than cyproheptadine greater than piflutixol greater than cis-flupentixol greater than SCH-23390 greater than (+)-butaclamol greater than SKF-83566 greater than SCH-23388 greater than sulpiride greater than spiperone greater than haloperidol. The dopamine-sensitive AC is inhibited by the same compounds with the following order of potency: piflutixol greater than cis-flupentixol greater than (+)-butaclamol greater than spiperone greater than or equal to SCH-23390 greater than cyproheptadine greater than SKF-83566 greater than SCH 23388 greater than mianserin greater than phentolamine greater than sulpiride greater than haloperidol. With the exception of mianserin, 3H-piflutixol is displaced from brain membranes by dopamine antagonists with an order of potency similar to that observed for the inhibition of dopamine-sensitive AC. The results indicate that the octopamine- and dopamine-sensitive AC in cockroach brain can be distinguished pharmacologically and the dopamine receptors coupled to AC have pharmacological characteristics distinct from vertebrate D1- and D2-dopamine receptors.  相似文献   

12.
A study has been made on the effect of dopamine on salivary gland secretion rates from isolated locust salivary glands. Application of dopamine induced a concentration-dependent secretion with an IC(50) of approximately 0.3 microM. We investigated the pharmacological profile of this receptor using dopaminergic agonists and antagonists. The effects of dopamine could be mimicked by the selective D1 agonist SKF82958, but not by the D2 agonist TNPA-HCl. The receptor also showed selectively towards certain D1 agonists. SKF82958 was more potent at inducing secretion than SKF81297. We found that dopamine-induced salivary secretions were blocked by the selective D1 antagonist SCH23390, whereas the D2 antagonist sulpiride was relatively ineffective. The cAMP analogue 8-Bromo cAMP also increased secretion rates from isolated salivary glands. These data and the rank order of potency of the agonists and antagonists in this screen suggest that this receptor is a D1-type receptor.  相似文献   

13.
Dopamine receptor activation regulates cyclic AMP levels and is critically involved in modulating neurotransmission in the striatum. Others have shown that alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)-type glutamate receptor-mediated current is potentiated by cyclic AMP-dependent protein kinase (PKA) activation. We made whole-cell patch clamp recordings from cultured striatal neurons and tested whether D1-type dopamine receptor activation affected AMPA receptor-mediated currents. After a 5-min exposure to the D1 agonist SKF 81297 (1 microM), kainate-evoked current amplitude was enhanced in approximately 75% of cells to 121+/-2.5% of that recorded prior to addition of drug. This response was inhibited by the D1 antagonist SCH 23390 and mimicked by activators of PKA. Moreover, by western blot analysis using an antibody specific for the phosphorylated PKA site Ser845 of GluR1, we observed a marked increase in phosphorylated GluR1 following a 10-min exposure of striatal neurons to 1 microM SKF 81297. Our data demonstrate that activation of D1-type dopamine receptors on striatal neurons promotes phosphorylation of AMPA receptors by PKA as well as potentiation of current amplitude. These results elucidate one mechanism by which dopamine can modulate neurotransmission in the striatum.  相似文献   

14.
SCH 39166 is a novel benzonaphthazepine, which has been characterized as a potent and selective D1 antagonist. Recently, its D1 selective benzazepine predecessor, SCH 23390, has been shown to bind to 5-HT1C binding sites in the choroid plexus. Therefore, the present studies were undertaken to determine if SCH 39166 has any measurable affinity for 5-HT1C binding sites. Our results indicate that SCH 39166 exhibited poor affinity for the 5-HT1C receptor, with a Ki of 1327 nM. In contrast, SCH 23390 inhibited [3H]-mesulergine binding to 5-HT1C receptors with a Ki of 30 nM. The non-selective 5-HT antagonist, methysergide, inhibited binding with a Ki of 2.4 nM. Finally, studies with the stereoisomers of SCH 39166 and SCH 23390 demonstrated that stereoselectivity at the 5-HT1C site is significantly less than for the D1 site.  相似文献   

15.
The effect of dopamine on the salivary gland acinar cells of the locust was examined using conventional intracellular recording techniques. Application of dopamine induced a reversible, dose-dependent hyperpolarization of the acinar cells, with an EC(50) of 0.1 &mgr;M dopamine. We investigated the pharmacology of the dopamine receptor mediating hyperpolarization of the acinar cells using a range of dopaminergic agonists and antagonists. The effect of dopamine could be mimicked by the selective D(1) receptor agonist SKF82958, whilst the D(2) receptor agonists PPHT-HCl and TNPA-HBr were far less potent at inducing hyperpolarization. The receptor also showed selectivity to certain synthetic D(1)-like agonists. SKF82958 was much more effective at inducing a hyperpolarization than SKF81297. The dopamine-induced hyperpolarization of locust acinar cells could be blocked using the selective D(1) receptor antagonist SCH23390 whilst the D(2) receptor antagonists sulpiride and spiperone were inactive. The rank order of potency of several dopaminergic agonists and antagonists was obtained and suggests that the dopamine receptor mediating the hyperpolarization in locust salivary gland acinar cells is similar to a mammalian D(1) receptor. Stimulation of the salivary nerve mimicked the effect of dopamine on the acinar cells, inducing a rapid reversible hyperpolarization. This neurally-evoked hyperpolarization of the locust acinar cells was suppressed using 1.0 &mgr;M SCH23390, whilst 10 &mgr;M sulpiride was inactive. This demonstrated that both exogenously applied dopamine and endogenously released dopamine are probably acting on the same receptor.  相似文献   

16.
Dopamine D(1)-like receptors play a key role in dopaminergic signaling. In addition to G(s/olf)/adenylyl cyclase (AC)-coupled D(1) receptors, the presence of D(1)-like receptors coupled to G(q)/phospholipase C (PLC) has been proposed. Benzazepine D(1) receptor agonists are known to differentially activate G(s/olf)/AC and G(q)/PLC signaling. By utilizing SKF83959 and SKF83822, we investigated the D(1)-like receptor signaling cascades, which regulate DARPP-32 phosphorylation at Thr34 (the PKA-site) in mouse neostriatal slices. Treatment with SKF83959 or SKF83822 increased DARPP-32 phosphorylation. The SKF83959- and SKF83822-induced increase in DARPP-32 phosphorylation was largely, but partially, antagonized by a D(1) receptor antagonist, SCH23390, and the residual SCH23390-insensitive increase was abolished by an adenosine A(2A) receptor antagonist. In addition, the SKF83959-induced, SCH23390-sensitive increase in DARPP-32 phosphorylation was enhanced by a PLC inhibitor. Analysis in slices from D(1)R/D(2)R-DARPP-32 mice revealed that both D(1) receptor agonists regulate DARPP-32 phosphorylation in striatonigral, but not in striatopallidal, neurons. Thus, dopamine D(1)-like receptors are coupled to three signaling cascades in striatonigral neurons: (i) SCH23390-sensitive G(s/olf)/AC/PKA, (ii) adenosine A(2A) receptor-dependent G(s/olf)/AC/PKA, and (iii) G(q)/PLC signaling. Interestingly, G(q)/PLC signaling interacts with SCH23390-sensitive G(s/olf)/AC/PKA signaling, resulting in its inhibition. Three signaling cascades activated by D(1)-like receptors likely play a distinct role in dopaminergic regulation of psychomotor functions.  相似文献   

17.
The compound [9-3H]SCH23390 [R-(+)-8-chloro-2,3,4,5-tetrahydro-3-methyl-5-phenyl-1H-3-benzazepine-7- ol] was synthesized, and the binding of this purportedly selective antagonist of D1 3,4-dihydroxyphenylethylamine (dopamine) receptors was characterized. The regional distribution of high-affinity, specific [3H]SCH23390 binding sites in the rat brain correlated well with levels of endogenous dopamine. Receptor densities were greatest in corpus striatum, nucleus accumbens, and olfactory tubercle; intermediate levels were found in several limbic and cortical areas, whereas few sites were detectable in cerebellum, brainstem, and ol-factory bulb. Specific binding in caudate-putamen was found to be both temperature- and pH-dependent, with optima at 25-30 degrees C and pH 7.8-8.0. Scatchard or Woolf analyses of binding in caudate-putamen suggest that most of the sites are either of a single class or of classes with similar characteristics (KD = 0.7 +/- 0.1 nM; Bmax = 347 +/- 35 fmol/mg of protein). Both dopamine and cis-flupenthixol altered the slope but not the intercept of lines generated by Scatchard analysis, suggesting a competitive mode of inhibition of [3H]SCH23390 binding. Competition for binding by dopamine or the D1 agonist SKF38393 was inhibited by guanine nucleotides, whereas GTP had little effect on the competition for binding by the antagonist cis-flupenthixol. The competition for [3H]SCH23390 binding sites by dopamine was much more sensitive to GTP than was competition for [3H]spiperone binding. These data support the hypotheses that [3H]SCH23390 binds to recognition sites that differ from those previously described using other radiolabeled dopamine antagonists and that these sites have the characteristics expected of dopamine receptors.  相似文献   

18.
Intact human neuroepithelioma SK-N-MC cells bound the beta-adrenergic antagonist (-)-[3H]-CGP 12177 with a KD of 0.13 nM and a Bmax of 17,500 sites/cell. When the cells were exposed to beta-adrenergic agonists, they accumulated cyclic AMP in the following order of potency: isoproterenol much greater than norepinephrine greater than epinephrine, which is indicative of a beta 1-subtype receptor. Membranes prepared from the cells bound (-)-3-[125I]iodocyanopindolol with a KD of 11.5 pM. Inhibition of agonist-stimulated cyclic AMP production and competition binding experiments indicated that the beta 1-selective antagonists CGP 20712A and ICI 89,406 were much more potent than the beta 2-selective antagonist ICI 118,551. Analysis of the displacement curves indicated that the cells contained only beta 1-adrenergic receptors. Northern blot analysis of SK-N-MC mRNA using cDNA probes for the beta 1- and beta 2-adrenergic receptors revealed the presence of a very strong beta 1-adrenergic receptor mRNA signal, while under the same conditions no beta 2-adrenergic receptor mRNA was observed. Thus, SK-N-MC cells appear to express a pure population of beta 1-adrenergic receptors. When the cells were exposed to isoproterenol, there was no observable desensitization during the first hour. After longer exposure, desensitization slowly occurred and the receptors slowly down-regulated to 50% of control levels by 24 h. Other agents that elevate cyclic AMP levels, such as forskolin, cholera toxin, and cyclic AMP analogues, caused no or little substantial receptor loss.  相似文献   

19.
3-methyl-6-chloro-7,8-hydroxy-1-(3-methylphenyl)-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF83959), a selective agonist for the putative phosphatidylinositol (PI)-linked dopamine receptor (DAR), has been shown to possess potent anti-Parkinson disease effects but produces less dyskinesia and motor fluctuation that are frequently observed in Parkinson disease drug therapies. The present study was designed to detect the neuroprotection of SKF83959 and its potential mechanism for the effect in cultured rat cortical cells. The presence of SKF83959 with a dose range of 0.1-30 micromol/L improved H2O2-reduced cell viability in a dose-dependent manner. The anti-apoptotic action of SKF83959 was partially abolished by pre-application of the D1 antagonist SCH23390 (30 micromol/L) and the PI 3-kinase (PI 3-K) inhibitor LY294002 but not by the MEK1/2 inhibitor PD98059 (30 micromol/L). Moreover, SKF83959 treatment significantly inhibited H2O2-activated glycogen synthase kinase-3beta (GSK-3beta) which was associated with the drug's neuroprotective effect, but this inhibition was attenuated by SCH23390 and a selective PI 3-K inhibitor. Moreover, the application of either SKF83959 or a pharmacological inhibitor of GSK-3beta attenuated the inhibition by H2O2 on the expression of inducible NO synthase and production of NO. This indicates that D1-like receptor, presumably PI-linked D1 receptor, -mediated alteration of PI 3-K/Akt/GSK-3beta pathway is involved in the neuroprotection by SKF83959. In addition, SKF83959 also effectively decreased the level of the lipid peroxidation and increased the activity of GSH-peroxidase altered by H2O2. These results suggest that SKF83959 exerts its neuroprotective effect through both receptor-dependent and independent mechanisms: Inhibition of GSK-3beta and consequently increasing the expression of inducible NO synthase via putative PI-linked DAR; and its anti-oxidative activity which is independent of DAR.  相似文献   

20.
Gao X  Xin BM  Zhu CB  Wu GC  Xu SF 《生理学报》1998,50(1):43-48
在大鼠电刺激甩测痛模型上,应用鞘内注射(it)多巴胺(DA)受体选择性激动剂与拮抗剂,分析大鼠脊髓DA受体亚型D1和D2在痛及针刺镇痛(AA)中的作用。结果显示,在正常清醒大鼠,it D2受体选择性激动剂,Y171555(LY)或D1/D2受体激动剂阿朴吗啡(APO)有镇痛作用(呈剂量依赖式增加),并加强AA,而it D1受体选择性激动剂SKF38393(SKF)对痛及AA均无影响;it D1受体  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号