首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of the epidermal growth factor (EGF) receptor by EGF, its ligand, results in receptor internalization and down-regulation, which requires receptor kinase activity, phosphorylation, and ubiquitination. In contrast, we have found here in human HaCaT keratinocytes that exposure to UVA induces EGF receptor internalization and down-regulation without receptor phosphorylation and ubiquitination. The presence of the receptor kinase activity inhibitor AG1478 increased UVA-induced receptor down-regulation, whereas it inhibited EGF-induced receptor down-regulation. These observations demonstrate that, in contrast to EGF, receptor kinase activity is not required for receptor down-regulation by UVA. Concurrent with receptor down-regulation, caspases were activated by UVA exposure. The presence of caspase inhibitors blocked receptor down-regulation in a pattern similar to poly(ADP)-ribose polymerase cleavage. Much more receptor down-regulation was observed after UVA exposure in apoptotic detached cells in which caspase is activated completely. These results indicate that UVA-induced receptor down-regulation is dependent on caspase activation. Similar to UVA, both UVB and UVC induced receptor down-regulation, in which receptor kinase activity is not required, whereas caspase activation is involved. Inhibition of EGF receptor down-regulation increased receptor activation and activation of its downstream survival signaling ERK and AKT after UVA exposure. Preventing the activation of each of these pathways enhanced apoptosis induced by UVA. These findings suggest that EGF receptor down-regulation by UVA may play an important role in the execution of the cell suicide program by attenuating its anti-apoptotic function and thereby preventing cell transformation and tumorigenesis in vivo.  相似文献   

2.
UVA exposure plays an important role in the etiology of skin cancer. The family of p90-kDa ribosomal S6 kinases (p90(RSK)/MAPKAP-K1) are activated via phosphorylation. In this study, results show that UVA-induced phosphorylation of p90(RSK) at Ser(381) through ERKs and JNKs, but not p38 kinase pathways. We provide evidence that UVA-induced p90(RSK) phosphorylation and kinase activity were time- and dose-dependent. Both PD98059 and a dominant negative mutant of ERK2 blocked ERKs and p90(RSK) Ser(381) phosphorylation, as well as p90(RSK) activity. A dominant negative mutant of p38 kinase blocked UVA-induced phosphorylation of p38 kinase, but had no effect on UVA-induced Ser(381) phosphorylation of p90(RSK) or kinase activity. UVA-induced p90(RSK) phosphorylation and kinase activity were markedly attenuated in JnK1(-/-) and JnK2(-/-) cells. A dominant negative mutant of JNK1 inhibited UVA-induced JNKs and p90(RSK) phosphorylation and kinase activity, but had no effect on ERKs phosphorylation. PD169316, a novel inhibitor of JNKs and p38 kinase, inhibited phosphorylation of p90(RSK), JNKs, and p38 kinase, but not ERKs. However, SB202190, a selective inhibitor of p38 kinase, had no effect on p90(RSK) or JNKs phosphorylation. Significantly, ERKs and JNKs, but not p38 kinase, immunoprecipitated with p90(RSK) when stimulated by UVA and p90(RSK) was a substrate for ERK2 and JNK2, but not p38 kinase. These data indicate clearly that p90(RSK) Ser(381) may be phosphorylated by activation of JNKs or ERKs, but not p38 kinase.  相似文献   

3.
Exposure to the sun's UV radiation appears to be the most important environmental factor involved in the development of skin cancer. UVA is the major portion of UV radiation in sunlight and is considered to be a human carcinogen. In this study, we have investigated the delayed and sustained activation of ERK MAPK by UVA exposure. In parallel, a delayed Ras activation with a similar time course was observed after UVA exposure. The activated Ras was found to be localized in endomembranes such as the Golgi apparatus instead of plasma membranes. Expression of dominant negative Ras (N17Ras) abolished ERK activation by UVA. The presence of AG1478, an epidermal growth factor (EGF) receptor (EGFR) kinase inhibitor, had no effect on ERK or Ras activation, indicating that EGFR kinase activity is not involved in ERK activation by UVA. In contrast, protein kinase C (PKC) depletion by chronic 12-O-tetradecanoylphorbol-13-acetate treatment nearly abolished UVA-induced ERK and Ras activation. The presence of the Ca(2+)-dependent-PKC inhibitor Go6976 had a similar effect. These findings suggest that ERK activation by UVA is mediated by PKC in a Ras-dependent pathway. In addition, a gradual increase in intracellular calcium level after UVA exposure was detected by flow cytometry. The presence of the PLC inhibitor U73122 or the calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N, N',N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) blocked both ERK and Ras activation, suggesting that both PLC and calcium are required for ERK activation. Our findings demonstrated that, different from UVC and UVB, UVA-induced delayed and sustained ERK activation is EGFR kinase activity-independent, but PLC/calcium/PKC-mediated. The delayed and sustained ERK activation provides a survival signal to human HaCaT keratinocytes, which may serve as an important mechanism for cell transformation and potential skin carcinogenesis in vivo caused by UVA exposure.  相似文献   

4.
5.
Chronic UVA irradiation has been reported to induce photoaging and photocarcinogenesis. UVA is a potent inducer of reactive oxygen species (ROS), which can induce various biological processes, including apoptosis. Polypeptide from Chlamys farreri (PCF) is a novel marine active material isolated from the gonochoric Chinese scallop C. farreri. In our previous studies, PCF was found to be an effective antioxidant inhibiting UVA-induced ROS production and a potential inhibitory agent for UVA-induced apoptosis in the human keratinocyte cell line HaCaT. The intracellular mechanisms of how PCF protects HaCaT cells from UVA-induced apoptosis are not understood. Thus, we here investigate the effect of PCF on UVA-induced intracellular signaling of apoptosis. Pretreatment with the ROS scavenger N-acetylcysteine (NAC), the p38 MAPK inhibitor SB203580 or the caspase-3 inhibitor Ac-DEVD-CHO was found to effectively prevent UVA-induced apoptosis, indicating that ROS, p38 MAPK and caspase-3 play important roles in apoptosis. H2O2-induced apoptosis was attenuated by PCF, suggesting that PCF plays its anti-apoptotic role through its antioxidant activity. In addition, PCF treatment inhibited UVA-induced p38 MAPK activation and caspase-3 activation, as assayed by Western blot analysis and flow cytometry, respectively. Our results suggest that PCF attenuates UVA-induced apoptosis through a reduction of ROS generation and diminished p38 MAPK and caspase-3 activation.  相似文献   

6.
Zhang Y  Dong Z  Bode AM  Ma WY  Chen N  Dong Z 《DNA and cell biology》2001,20(12):769-779
Most of the signal pathways involved in ultraviolet (UV)-induced skin carcinogenesis are thought to originate at plasma membrane receptors. However, UVA-induced signal transduction to downstream ribosomal protein S6 kinases, p70(S6K) and p90(RSK), is not well understood. In this report, we show that UVA stimulation of the epidermal growth factor receptor (EGFR) may lead to activation of p70(S6K)/p90(RSK) through phosphatidyl isositol (PI)-3 kinase and extracellular receptor-activated kinases (ERKs). Evidence is provided that phosphorylation and activation of p70(S6K)/p90(RSK) induced by UVA were prevented in Egfr(-/-) cells and were also markedly inhibited by the EGFR-specific tyrosine kinase inhibitors AG1478 and PD153035. Furthermore, EGFR tyrosine kinase inhibitors and EGFR deficiency significantly suppressed activation of PI-3 kinase and ERKs in regulating activation of p90(RSK)/p70(S6K) but had no effect on activation of c-Jun NH(2)-terminal kinases (JNKs) and p38 kinase in response to UVA. Thus, our results suggest that UVA-induced EGFR signaling may be required for activation of p90(RSK)/p70(S6K), PI-3 kinase, and ERKs but not JNKs or p38 kinase.  相似文献   

7.
Ultraviolet A (UVA) radiation represents more than 90% of the UV spectrum reaching Earth's surface. Exposure to UV light, especially the UVA part, induces the formation of photoexcited states of cellular photosensitizers with subsequent generation of reactive oxygen species (ROS) leading to damages to membrane lipids, proteins and nucleic acids. Although UVA, unlike UVC and UVB, is poorly absorbed by DNA, it inhibits cell cycle progression, especially during S-phase. In the present study, we examined the role of the DNA damage checkpoint response in UVA-induced inhibition of DNA replication. We provide evidence that UVA delays S-phase in a dose dependent manner and that UVA-irradiated S-phase cells accumulate in G2/M. We show that upon UVA irradiation ATM-, ATR- and p38-dependent signalling pathways are activated, and that Chk1 phosphorylation is ATR/Hus1 dependent while Chk2 phosphorylation is ATM dependent. To assess for a role of these pathways in UVA-induced inhibition of DNA replication, we investigated (i) cell cycle progression of BrdU labelled S-phase cells by flow cytometry and (ii) incorporation of [methyl-(3)H]thymidine, as a marker of DNA replication, in ATM, ATR and p38 proficient and deficient cells. We demonstrate that none of these pathways is required to delay DNA replication in response to UVA, thus ruling out a role of the canonical S-phase checkpoint response in this process. On the contrary, scavenging of UVA-induced reactive oxygen species (ROS) by the antioxidant N-acetyl-l-cystein or depletion of vitamins during UVA exposure significantly restores DNA synthesis. We propose that inhibition of DNA replication is due to impaired replication fork progression, rather as a consequence of UVA-induced oxidative damage to protein than to DNA.  相似文献   

8.
Induction of Fas expression by DNA-damaging agents is dependent on the expression of functional p53, and has been suggested to play an important role in apoptosis induction. JNK (c-Jun N-terminal kinase), which is capable of phosphorylating p53, is also involved in apoptotic signaling induced by various apoptotic stimuli. Here, we report that although Fas induction is closely linked to the expression of wild type p53, it is not correlated with JNK activation induced by apoptotic stimuli. JNK activation does not necessarily lead to Fas expression, even in cells containing wild type p53. In addition, Fas expression can be induced without significant JNK activation. Furthermore, induction of Fas expression is not sufficient for apoptosis induction; however, it may sensitize cells to Fas-ligation induced apoptosis.  相似文献   

9.
Biton S  Ashkenazi A 《Cell》2011,145(1):92-103
Upon DNA damage, ataxia telangiectasia mutated (ATM) kinase triggers multiple events to promote cell survival and facilitate repair. If damage is excessive, ATM stimulates cytokine secretion to alert neighboring cells and apoptosis to eliminate the afflicted cell. ATM augments cell survival by activating nuclear factor (NF)-κB; however, how ATM induces cytokine production and apoptosis remains elusive. Here we uncover a p53-independent mechanism that transmits ATM-driven cytokine and caspase signals upon strong genotoxic damage. Extensive DNA lesions stimulated two sequential NF-κB activation phases, requiring ATM and NEMO/IKK-γ: The first phase induced TNF-α-TNFR1 feedforward signaling, promoting the second phase and driving RIP1 phosphorylation. In turn, RIP1 kinase triggered JNK3/MAPK10-dependent interleukin-8 secretion and FADD-mediated proapoptotic caspase-8 activation. Thus, in the context of excessive DNA damage, ATM employs NEMO and RIP1 kinase through autocrine TNF-α signaling to switch on cytokine production and caspase activation. These results shed light on cell-fate regulation by ATM.  相似文献   

10.
Ultraviolet light A (UVA) plays an important role in the etiology of human skin cancer, and UVA-induced signal transduction has a critical role in UVA-induced skin carcinogenesis. The upstream signaling pathways leading to p70(S6K) phosphorylation and activation are not well understood. Here, we observed that UVA induces phosphorylation and activation of p70(S6K). Further, UVA-stimulated p70(S6K) activity and phosphorylation at Thr(389) were blocked by wortmannin, rapamycin, PD98059, SB202190, and dominant negative mutants of phosphatidylinositol (PI) 3-kinase p85 subunit (DNM-Deltap85), ERK2 (DNM-ERK2), p38 kinase (DNM-p38), and JNK1 (DNM-JNK1) and were absent in Jnk1-/- or Jnk2-/- knockout cells. The p70(S6K) phosphorylation at Ser(411) and Thr(421)/Ser(424) was inhibited by rapamycin, PD98059, or DNM-ERK2 but not by wortmannin, SB202190, DNM-Deltap85, or DNM-p38. However, Ser(411), but not Thr(421)/Ser(424) phosphorylation, was suppressed in DNM-JNK1 and abrogated in Jnk1-/- or Jnk2-/- cells. In vitro assays indicated that Ser(411) on immunoprecipitated p70(S6K) proteins is phosphorylated by active JNKs and ERKs, but not p38 kinase, and Thr(421)/Ser(424) is phosphorylated by ERK1, but not ERK2, JNKs, or p38 kinase. Moreover, p70(S6K) co-immunoprecipitated with PI 3-kinase and possibly PDK1. The complex possibly possessed a partial basal level of phosphorylation, but not at MAPK sites, which was available for its activation by MAPKs in vitro. Thus, these results suggest that activation of MAPKs, like PI 3-kinase/mTOR, may be involved in UVA-induced phosphorylation and activation of p70(S6K).  相似文献   

11.
12.
p53 plays an important role in response to ionizing radiation by regulating cell cycle progression and triggering apoptosis. These activities are controlled, in part, by the phosphorylation of p53 by the protein kinase ATM. Recent evidence indicates that the monofunctional DNA alkylating agent N-methyl-N'-nitro-N- nitrosoguanidine (MNNG) also triggers up-regulation and phosphorylation of p53; however, the mechanism(s) responsible for this are unknown. We observed that in MNNG-treated normal human fibroblasts, up-regulation and phosphorylation of p53 was sensitive to the ATM kinase inhibitor wortmannin. ATM-deficient fibroblasts exhibited a delay in p53 up-regulation indicating a role for ATM in triggering the MNNG-induced response. Likewise, a mismatch repair (MMR)-deficient colorectal tumor line failed to show rapid up-regulation of p53. However, unlike ATM-deficient cells, these MMR-deficient cells displayed rapid phosphorylation of the p53 residue serine 15 after MNNG. In vitro kinase assays indicate that ATM is rapidly activated in both normal and MMR-deficient cells in response to MNNG. Using a number of morphological and biochemical approaches, we failed to observe MNNG-induced apoptosis in normal human fibroblasts, suggesting that apoptosis-induced DNA strand breaks are not required for the activation of ATM in response to MNNG. Comet assays indicated that strand breaks accumulated, and p53 up-regulation/phosphorylation occurred quite rapidly (within 30 min) after MNNG treatment, suggesting that DNA strand breaks that arise during the repair process activate ATM. These findings indicate that ATM activation is not limited to the ionizing radiation-induced response and potentially plays an important role in response to DNA alkylation.  相似文献   

13.
Involvement of the acid sphingomyelinase pathway in uva-induced apoptosis   总被引:7,自引:0,他引:7  
The sphingomyelin-ceramide pathway is an evolutionarily conserved ubiquitous signal transduction system that regulates many cell functions including apoptosis. Sphingomyelin (SM) is hydrolyzed to ceramide by different sphingomyelinases. Ceramide serves as a second messenger in mediating cellular effects of cytokines and stress. In this study, we find that acid sphingomyelinase (SMase) activity was induced by UVA in normal JY lymphoblasts but was not detectable in MS1418 lymphoblasts from Niemann-Pick type D patients who have an inherited deficiency of acid SMase. We also provide evidence that UVA can induce apoptosis by activating acid SMase in normal JY cells. In contrast, UVA-induced apoptosis was inhibited in MS1418 cells. Exogenous SMase and its product, ceramide (10-40 micrometer), induced apoptosis in JY and MS1418 cells, but the substrate of SMase, SM (20-80 micrometer), induced apoptosis only in JY cells. These results suggest that UVA-induced apoptosis by SM is dependent on acid SMase activity. We also provide evidence that induction of apoptosis by UVA may occur through activation of JNKs via the acid SMase pathway.  相似文献   

14.
Activation of the p75 neurotrophin receptor leads to a variety of effects within the nervous system, including neuronal apoptosis. Both c-Jun N-terminal kinase (JNK) and the tumor suppressor p53 have been reported to be critical for this receptor to induce cell death; however, the mechanisms by which p75 activates these pathways is undetermined. Here we report that the neurotrophin receptor interacting factor (NRIF) is necessary for p75-dependent JNK activation and apoptosis. Upon nerve growth factor withdrawal, nrif-/- sympathetic neurons underwent apoptosis, whereas p75-mediated death was completely abrogated. The lack of cell death correlated with a lack of JNK activation in the nrif-/- neurons, suggesting that NRIF is a selective mediator for p75-dependent JNK activation and apoptosis. Moreover, we document that NRIF expression is sufficient to induce cell death through a mechanism that requires p53. Taken together, these results establish NRIF as an essential component of the p75 apoptotic pathway.  相似文献   

15.
Deregulation of the Rb-E2F pathway occurs in many cancers and results in aberrant cell proliferation as well as an increased propensity to undergo apoptosis. In most cases, apoptosis in response to Rb inactivation involves the activation of p53 but the molecular details of the signaling pathway connecting Rb loss to p53 are poorly understood. Here we demonstrate that the E1A oncoprotein, which binds and inhibits Rb family members, induces the accumulation and phosphorylation of p53 through the DNA damage-responsive ATM kinase. As a result, E1A-induced apoptosis is significantly impaired in cells lacking ATM. In contrast, inactivation of ARF, which is widely believed to activate p53 in response to oncogenic stress, has no effect on p53 induction and only a modest effect on apoptosis in response to E1A. Both E2F1 and E2F3 contribute to ATM-dependent phosphorylation of p53 and apoptosis in cells expressing E1A. However, deregulated E2F3 activity is implicated in the DNA damage caused by E1A while E2F1 stimulates ATM- and NBS1-dependent p53 phosphorylation and apoptosis through a mechanism that does not involve DNA damage.  相似文献   

16.
Ionizing radiation (IR) induces DNA breakage to activate cell cycle checkpoints, DNA repair, premature senescence or cell death. A master regulator of cellular responses to IR is the ATM kinase, which phosphorylates a number of downstream effectors, including p53, to inhibit cell cycle progression or to induce apoptosis. ATM phosphorylates p53 directly at Ser15 (Ser18 of mouse p53) and indirectly through other kinases. In this study, we examined the role of ATM and p53 Ser18 phosphorylation in IR-induced retinal apoptosis of neonatal mice. Whole-body irradiation with 2 Gy IR induces apoptosis of postmitotic and proliferating cells in the neonatal retinas. This apoptotic response requires ATM, exhibits p53-haploid insufficiency and is defective in mice with the p53S18A allele. At a higher dose of 14 Gy, retinal apoptosis still requires ATM and p53 but can proceed without Ser18 phosphorylation. These results suggest that ATM activates the apoptotic function of p53 in vivo through alternative pathways depending on IR dose.  相似文献   

17.
We demonstrated that enhancement of X-ray-induced apoptosis/rapid cell death by wortmannin accompanied by increased activation of JNK/SAPK in human leukemia MOLT-4 cells. Rapid cell death/apoptosis was determined either by the dye exclusion test or by the appearance of Annexin V-positive cells and cleaved PARP fragments. Enhancement was observed only at higher concentrations of wortmannin, i.e. 1 microM or more. At these high concentrations, both DNA-PK and ATM were inhibited. X-ray-induced phosphorylation of Ser 15 of p53/TP53, accumulation of both p53/TP53 and p21/WAF1/CDKN1A, and phosphorylation of XRCC4 were all suppressed. The enhancement of apoptosis/rapid cell death by wortmannin was prevented by addition of caspase inhibitors, Z-VAD-FMK or Ac-DEVD-CHO, or by transfection and overexpression of mouse Bcl2, which is known as an anti-apoptosis protein. The requirement for a high concentration of wortmannin, i.e. 1 microM or more, indicates that inhibition of both DNA-PK and ATM was necessary for the enhanced apoptosis/rapid cell death. Phosphorylation of AKT/PKB was completely suppressed at a much lower concentration, i.e. 0.1 microM wortmannin, where no enhancement of X-ray-induced apoptosis/rapid cell death was observed. On the other hand, X-ray-induced phosphorylation of JNK and its kinase activity as well as apoptosis/rapid cell death were all significantly enhanced only at high concentrations of wortmannin, i.e. 1 microM or more. Furthermore, the extent of enhancement of both JNK phosphorylation and of apoptosis/rapid cell death by wortmannin was less in Rh1a cells, which are ceramide- and radiation-resistant variant cells compared to the parental MOLT-4 cells. Therefore, activation of the JNK pathway was considered important for the enhancement of X-ray-induced apoptosis/rapid cell death of MOLT-4 cells by wortmannin, because of the requirement for a higher concentration of wortmannin than that required for inhibition of AKT phosphorylation. The suppression of the AKT-dependent pathway by wortmannin may have some underlying role in activating the JNK pathway toward the enhancement of cell death in the current system.  相似文献   

18.
Despite extensive study, the mechanisms of cell fate choice upon p53 activation remain poorly understood. Using genome-wide shRNA screening, we recently identified the ATM kinase as synthetic lethal with Nutlin-3, an MDM2 inhibitor that leads to non-genotoxic p53 activation. Here, we demonstrate that while this synthetic lethal interaction relies upon components of both the intrinsic and extrinsic apoptotic pathways (e.g., BAX and BID), it is not due to significant ATM effects on the expression of p53 target genes. Instead, loss of ATM activity results in increased mitochondria and reactive oxygen species that drive apoptosis. Finally, we provide evidence that pharmacologic inhibition of ATM blocks autophagy in direct opposition to p53, which activates this process, and that inhibition of autophagy is sufficient to elicit an apoptotic response when combined with Nutlin-3.  相似文献   

19.
Despite extensive study, the mechanisms of cell fate choice upon p53 activation remain poorly understood. Using genome-wide shRNA screening, we recently identified the ATM kinase as synthetic lethal with Nutlin-3, an MDM2 inhibitor that leads to non-genotoxic p53 activation. Here, we demonstrate that while this synthetic lethal interaction relies upon components of both the intrinsic and extrinsic apoptotic pathways (e.g., BAX and BID), it is not due to significant ATM effects on the expression of p53 target genes. Instead, loss of ATM activity results in increased mitochondria and reactive oxygen species that drive apoptosis. Finally, we provide evidence that pharmacologic inhibition of ATM blocks autophagy in direct opposition to p53, which activates this process, and that inhibition of autophagy is sufficient to elicit an apoptotic response when combined with Nutlin-3.  相似文献   

20.
Polypeptide from Chlamys farreri (PCF), a novel marine active material isolated from gonochoric Chinese scallop C. farreri, has potential antioxidant activity and protective effect against ultraviolet (UV) irradiation. The aim was to investigate whether PCF protects HaCaT cells from apoptosis induced by UVA and explore related molecular mechanisms. The results showed that PCF significantly prevented UVA-induced apoptosis of HaCaT cells. PCF not only strongly reduced the intracellular reactive oxygen species (ROS) production, but also diminished expression of acid sphingomyelinase (ASMase) and phosphorylated JNK in HaCaT cells radiated by UVA in a dose-dependent manner. Pre-treatment with ROS scavenger NAC, ASMase inhibitor Desipramine or JNK inhibitor SP600125 was found to effectively prohibit UVA-induced apoptosis and Desipramine markedly blocked phosphorylation of JNK. So it is concluded that PCF obviously protects HaCaT cells from apoptosis induced by UVA and protective effects may attribute to decreasing intracellular ROS level and blocking ASMase/JNK apoptotic signalling pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号