首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Myxobacteria belonging to the genus Sorangium are known to produce a variety of biologically active secondary metabolites. Chivosazol is a macrocyclic antibiotic active against yeast, filamentous fungi and especially against mammalian cells. The compound specifically destroys the actin skeleton of eucaryotic cells and does not show activity against bacteria. Chivosazol contains an oxazole ring and a glycosidically bound 6-deoxyglucose (except for chivosazol F). In this paper we describe the biosynthetic gene cluster that directs chivosazol biosynthesis in the model strain Sorangium cellulosum So ce56. This biosynthetic gene cluster spans 92 kbp on the chromosome and contains four polyketide synthase genes and one hybrid polyketide synthase/nonribosomal peptide synthetase gene. An additional gene encoding a protein with similarity to different methyltransferases and presumably involved in post-polyketide modification was identified downstream of the core biosynthetic gene cluster. The chivosazol biosynthetic gene locus belongs to the recently identified and rapidly growing class of trans-acyltransferase polyketide synthases, which do not contain acyltransferase domains integrated into the multimodular megasynthetases.  相似文献   

2.
The anti-fungal leupyrrins are secondary metabolites produced by several strains of the myxobacterium Sorangium cellulosum. These intriguing compounds incorporate an atypically substituted γ-butyrolactone ring, as well as pyrrole and oxazolinone functionalities, which are located within an unusual asymmetrical macrodiolide. Previous feeding studies revealed that this novel structure arises from the homologation of four distinct structural units, nonribosomally-derived peptide, polyketide, isoprenoid and a dicarboxylic acid, coupled with modification of the various building blocks. Here we have attempted to reconcile the biosynthetic pathway proposed on the basis of the feeding studies with the underlying enzymatic machinery in the S. cellulosum strain So ce690. Gene products can be assigned to many of the suggested steps, but inspection of the gene set provokes the reconsideration of several key transformations. We support our analysis by the reconstitution in vitro of the biosynthesis of the pyrrole carboxylic starter unit along with gene inactivation. In addition, this study reveals that a significant proportion of the genes for leupyrrin biosynthesis are located outside the core cluster, a 'split' organization which is increasingly characteristic of the myxobacteria. Finally, we report the generation of four novel deshydroxy leupyrrin analogues by genetic engineering of the pathway.  相似文献   

3.
4.
Sesquiterpenes are particularly interesting as flavorings and fragrances or as pharmaceuticals. Regio- or stereoselective functionalizations of terpenes are one of the main goals of synthetic organic chemistry, which are possible through radical reactions but are not selective enough to introduce the desired chiral alcohol function into those compounds. Cytochrome P450 monooxygenases are versatile biocatalysts and are capable of performing selective oxidations of organic molecules. We were able to demonstrate that CYP109D1 from Sorangium cellulosum So ce56 functions as a biocatalyst for the highly regioselective hydroxylation of norisoprenoids, α- and β-ionone, which are important aroma compounds of floral scents. The substrates α- and β-ionone were regioselectively hydroxylated to 3-hydroxy-α-ionone and 4-hydroxy-β-ionone, respectively, which was confirmed by 1H NMR and 13C NMR. The results of docking α- and β-ionone into a homology model of CYP109D1 gave a rational explanation for the regio-selectivity of the hydroxylation. Kinetic studies revealed that α- and β-ionone can be hydroxylated with nearly identical V max and K m values. This is the first comprehensive investigation of the regioselective hydroxylation of norisoprenoids by CYP109D1.  相似文献   

5.
The gram-negative myxobacterium Sorangium cellulosum So ce56 bears the largest bacterial genome published so far, coding for nearly 10,000 genes. Careful analysis of this genome data revealed that part of the genes coding for the very well conserved biosynthesis of lipopolysaccharides (LPS) are missing in this microbe. Biochemical analysis gave no evidence for the presence of LPS in the membranes of So ce56. By analyzing the lipid composition of its outer membrane sphingolipids were identified as the major lipid class, together with ornithine-containing lipids (OL) and ether lipids. A detailed analysis of these lipids resulted in the identification of more than 50 structural variants within these three classes, which possessed several interesting properties regarding to LPS replacement, mediators in myxobacterial differentiation, as well as potential bioactive properties. The sphingolipids with the basic structure C9-methyl-C(20)-sphingosine possessed as an unusual trait C9-methylation, which is common to fungi but highly uncommon to bacteria. Such sphingolipids have not been found in bacteria before, and they may have a function in myxobacterial development. The OL, also identified in myxobacteria for the first time, contained acyloxyacyl groups, which are also characteristic for LPS and might replace those in certain functions. Finally, the ether lipids may serve as biomarkers in myxobacterial development.  相似文献   

6.
Myxobacteria increasingly gain attention as a source of bioactive natural products. The genus Sorangium produces almost half of the secondary metabolites isolated from these microorganisms. Nevertheless, genetic systems for Sorangium strains are poorly developed, which makes the identification of the genes directing natural product biosynthesis difficult. Using biparental and triparental mating, we have developed methodologies for DNA transfer from Escherichia coli via conjugation for the genome sequencing model strain So ce56 and the secondary metabolite multiproducing strain So ce12. The conjugation protocol developed for strain So ce56 is not applicable to other Sorangium strains. Crucial points for the conjugation are the ratio of E. coli and Sorangium cellulosum cells, the choice of liquid or solid medium, the time used for the conjugation process and antibiotic selection in liquid medium prior to the plating of cells. A mariner-based transposon containing a hygromycin resistance gene was generated and used as the selectable marker for S. cellulosum. The transposon randomly integrates into the chromosome of both strains. As a proof of principle, S. cellulosum So ce12 transposon mutants were screened using an overlay assay to target the chivosazole biosynthetic gene cluster.  相似文献   

7.
Many terpenes and terpenoid compounds are known as bioactive substances with desirable fragrance and medicinal activities. Modification of such compounds to yield new derivatives with desired properties is particularly attractive. Cytochrome P450 monooxygenases are potential enzymes for these reactions due to their capability of performing different reactions on a variety of substrates. We report here the characterization of CYP264B1 from Sorangium cellulosum So ce56 as a novel sesquiterpene hydroxylase. CYP264B1 was able to convert various sesquiterpenes including nootkatone and norisoprenoids (α-ionone and β-ionone). Nootkatone, an important grapefruit aromatic sesquiterpenoid, was hydroxylated mainly at position C-13. The product has been shown to have the highest antiproliferative activity compared with other nootkatone derivatives. In addition, CYP264B1 was found to hydroxylate α- and β-ionone, important aroma compounds of floral scents, regioselectively at position C-3. The products, 3-hydroxy-β-ionone and 13-hydroxy-nootkatone, were confirmed by (1)H and (13)C NMR. The kinetics of the product formation was analyzed by high-performance liquid chromatography, and the K ( m ) and k (cat) values were calculated. The results of docking α-/β-ionone and nootkatone into a homology model of CYP264B1 revealed insights into the structural basis of these selective hydroxylations.  相似文献   

8.
During a screening program intended to identify genes encoding enzymes typical for secondary metabolism in Sorangium cellulosum So ce90, an aromatic amino acid decarboxylase gene (ddc) was detected. Expression of ddc in Escherichia coli and subsequent enzyme assays with cell-free extracts confirmed the proposed function derived from amino acid sequence comparisons. In contrast to other aromatic amino acid decarboxylases of eukaryotic origin, the S. cellulosum Ddc converted only L-dihydroxy phenylalanine. This is the first report of a gene encoding an L-dihydroxy phenylalanine decarboxylase in bacteria.  相似文献   

9.
The exploitation of cytochromes P450 for novel biotechnological application and for the investigation of their physiological function is of great scientific interest in this post genomic era, where an extraordinary biodiversity of P450 genes has been derived from all forms of life. The study of P450s in the myxobacterium Sorangium cellulosum strain So ce56, the producer of novel secondary metabolites of pharmaceutical interest is the research topic, in which we were engaged since the beginning of its genome sequencing project. We herein disclosed the cytochrome P450 complements (CYPomes) of spore-forming myxobacterial species, Stigmatella aurantiaca DW4/3-1, Haliangium ochraceum DSM 14365 and Myxococcus xanthus DK1622, and their potential pharmaceutical significance has been discussed.  相似文献   

10.
11.
Ligon J  Hill S  Beck J  Zirkle R  Molnár I  Zawodny J  Money S  Schupp T 《Gene》2002,285(1-2):257-267
A genomic DNA region of over 80 kb that contains the complete biosynthetic gene cluster for the synthesis of the antifungal polyketide metabolite soraphen A was cloned from Sorangium cellulosum So ce26. The nucleotide sequence of the soraphen A gene region, including 67,523 bp was determined. Examination of this sequence led to the identification of two adjacent type I polyketide synthase (PKS) genes that encode the soraphen synthase. One of the soraphen A PKS genes includes three biosynthetic modules and the second contains five additional modules for a total of eight. The predicted substrate specificities of the acyltransferase (AT) domains, as well as the reductive loop domains identified within each module, are consistent with expectations from the structure of soraphen A. Genes were identified in the regions flanking the two soraphen synthase genes that are proposed to have roles in the biosynthesis of soraphen A. Downstream of the soraphen PKS genes is an O-methyltransferase (OMT) gene. Upstream of the soraphen PKS genes there is a gene encoding a reductase and a group of genes that are postulated to have roles in the synthesis of methoxymalonyl-acyl carrier protein (ACP). This unusual extender unit is proposed to be incorporated in two positions of the soraphen polyketide chain. One of the genes in this group contains distinct domains for an AT, an ACP, and an OMT.  相似文献   

12.
13.
Myxobacteria, especially members of the genus Sorangium, are known for their biotechnological potential as producers of pharmaceutically valuable secondary metabolites. The biosynthesis of several of those myxobacterial compounds includes cytochrome P450 activity. Although class I cytochrome P450 enzymes occur wide-spread in bacteria and rely on ferredoxins and ferredoxin reductases as essential electron mediators, the study of these proteins is often neglected. Therefore, we decided to search in the Sorangium cellulosum So ce56 genome for putative interaction partners of cytochromes P450. In this work we report the investigation of eight myxobacterial ferredoxins and two ferredoxin reductases with respect to their activity in cytochrome P450 systems. Intriguingly, we found not only one, but two ferredoxins whose ability to sustain an endogenous So ce56 cytochrome P450 was demonstrated by CYP260A1-dependent conversion of nootkatone. Moreover, we could demonstrate that the two ferredoxins were able to receive electrons from both ferredoxin reductases. These findings indicate that S. cellulosum can alternate between different electron transport pathways to sustain cytochrome P450 activity.The cytochrome P450 (CYP)2 enzymes constitute a superfamily of external monooxygenases. The catalytic versatility of the family members explains their involvement in such diverse biological processes as biosynthesis of steroid hormones, carbon source assimilation, and metabolism of xenobiotics. In addition, cytochrome P450 enzymes have been reported to be involved in the biosynthesis of many pharmaceutically interesting secondary metabolites from a variety of microorganisms (14). Cytochromes P450 are usually dependent on an external electron donor. With respect to their electron transport system they can be divided into several classes, with class I (the mitochondrial/bacterial cytochrome P450 systems) being the predominant form in prokaryotes (5). In this system the electrons required for the enzymatic reaction originate from NAD(P)H and are delivered to the cytochrome P450 via a ferredoxin reductase and a ferredoxin. In a number of examples, the heterologous reconstitution of the electron transfer chain has been shown to be ineffective, if possible at all (5). Thus, it is desirable to identify the natural redox partners, especially if genomic sequence information is available. However, even then the identification of the correct interaction partners remains challenging because the encoding genes are frequently located at genomic loci distant to the cytochrome P450 genes (6, 7). Interestingly, members of both the [2Fe-2S] and the non-[2Fe-2S] ferredoxins have been reported to sustain cytochrome P450 catalyzed reactions. The latter group is further subdivided into mono- and dicluster ferredoxins (i.e. the [3Fe-4S] or [4Fe-4S] and the [3Fe-4S] + [4Fe-4S] or [4Fe-4S] + [4Fe-4S] ferredoxins). Remarkably, cytochrome P450 systems depending on non-[2Fe-2S] ferredoxins have been found exclusively in bacteria to date (8, 9).To fulfill the role as electron mediator, the ferredoxin component of any given cytochrome P450 system has to be reduced. This reduction is achieved by a ferredoxin reductase, which in turn takes up electrons from NAD(P)H. The ferredoxin reductase is often the least characterized constituent of the cytochrome P450 system because these flavoproteins may be unstable (i.e. easily lose their cofactor) and usually show a relatively low level of expression (10).Sorangium cellulosum So ce56 is a genome-sequenced myxobacterial model strain. Because of their biotechnological potential as producers of secondary metabolites, the myxobacteria attract attention from both the academic community and the pharmaceutical industry. To date, more than 100 new basic structures and some 500 derivatives have been reported (11), with almost half of the newly discovered natural products being isolated from the genus Sorangium (11, 12). The potent anti-cancer agent epothilone, for example, was discovered from S. cellulosum So ce90 (13, 14). Epothilone is one of so far seven known myxobacterial compounds, the biosynthesis of which involves cytochromes P450 (15). Besides the epothilones, these are the antifungal leupyrrins (16) and the cytotoxic spirangienes (17) (also from S. cellulosum), the antibiotic myxovirescin from Myxococcus (18), the electron transport inhibitor stigmatellin (19) and the antibiotic aurafuron (20) from Stigmatella aurantiaca, and the antifungal ajudazols from Chondromyces crocatus (21).The recently genome-sequenced myxobacterium S. cellulosum So ce56 (12) shows great potential for biotechnological applications, as judged on the basis of its capacity for the production of secondary metabolites. Three biologically active compounds have been described so far, namely the fungicidal chivosazoles, the macrolide antibiotic etnangien, and the iron chelator myxochelin (12). Moreover, the bioinformatic analysis of the So ce56 genome has revealed numerous biosynthetic gene clusters of yet unknown function (11, 12). With a size of more than 13 Mbp, the genome of S. cellulosum So ce56 is to date the largest sequenced prokaryotic genome (12). It has been shown to harbor 21 cytochrome P450 genes. In light of the significance of S. cellulosum as a viable source of bioactive secondary metabolites (14) and the role of cytochromes P450 in the synthesis of natural products (2), it is of great interest to elucidate the function of these enzymes.Therefore, the investigation of the S. cellulosum So ce56 cytochrome P450 systems opens a fascinating field not only with regard to basic research but also to exploit the biotechnological potential of this model strain. To achieve this goal it is important to provide a functional electron transport chain. Thus, the main objective of this work was to identify a myxobacterial ferredoxin/ferredoxin reductase couple able to support reactions catalyzed by S. cellulosum So ce56 cytochromes P450.  相似文献   

14.
In this study, Sorangium cellulosum So ce56 was phenotypically and genotypically analysed in order to evaluate whether this strain can be used in a comprehensive genome project as a representative of the secondary metabolite-producing myxobacteria. In contrast to many other strains of S. cellulosum, strain So ce56 was found to have various advantageous features, including fast and homogeneous growth in submerged cultures and the ability to complete its morphological differentiation cycle on agar, even when the inoculant originates from a liquid culture. Two groups of secondary metabolites isolated from the culture broth were identified, the polyketides etnangien and chivosazole. The presence of polyketide synthase-encoding genes in the genome of strain So ce56 was demonstrated via PCR. The phenotypic classification was confirmed by comparison of 16S rDNA sequences which showed that S. cellulosum So ce56 clusters within a separate lineage together with S. cellulosum ATCC 25531 and the epothilone producer S. cellulosum So ce90. The genome of S. cellulosum So ce56 belongs to the largest bacterial genomes described so far. It is estimated to be 12.2 Mb in size, by pulsed-field gel electrophoresis. In order to demonstrate that S. cellulosum So ce56 is a convenient strain for molecular biological studies, a genetic manipulation system was developed. Using triparental mating, polyketide synthase-encoding genes were inactivated, leading to chivosazole-negative mutants.  相似文献   

15.
S Jaoua  S Neff  T Schupp 《Plasmid》1992,28(2):157-165
Recombinant vectors derived from the broad-host-range mobilizable plasmid pSUP2021 were constructed and transferred by IncP-mediated conjugation from Escherichia coli to Sorangium cellulosum, where they were integrated into the chromosome by homologous recombination and maintained stably. This appears to be the first system of gene transfer to S. cellulosum.  相似文献   

16.
A novel pyrroloquinoline quinone dependent glucose dehydrogenase like enzyme (PQQ GDH) was isolated from Sorangium cellulosum So ce56. The putative coding region was cloned, over expressed in E. coli and the resulting enzyme was characterized. The recombinant protein has a relative molecular mass of 63 kDa and shows 43% homology to PQQ GDH-B from Acinetobacter calcoaceticus. In the presence of PQQ and CaCl2 the enzyme has dehydrogenase activity with the substrate glucose as well as with other mono- and disaccharides. The thermal stability and its pH activity profile mark the enzyme as a potential glucose biosensor enzyme. In order to decrease the activity on maltose, which is unwanted for a potential application in biosensors, the protein was rationally modified at three specified positions. The best variant showed a 59% reduction in activity on maltose compared to the wild type enzyme. The catalytic efficiency (k cat/K M) was reduced fivefold but the specific activity still amounted to 63% of the wild type activity.  相似文献   

17.

Background

Analysis of the complete genomes from the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum identified the highest number of eukaryotic-like protein kinases (ELKs) compared to all other genomes analyzed. High numbers of protein phosphatases (PPs) could therefore be anticipated, as reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes.

Methodology

Here we report an intensive analysis of the phosphatomes of M. xanthus and S. cellulosum in which we constructed phylogenetic trees to position these sequences relative to PPs from other prokaryotic organisms.

Principal Findings

Predominant observations were: (i) M. xanthus and S. cellulosum possess predominantly Ser/Thr PPs; (ii) S. cellulosum encodes the highest number of PP2c-type phosphatases so far reported for a prokaryotic organism; (iii) in contrast to M. xanthus only S. cellulosum encodes high numbers of SpoIIE-like PPs; (iv) there is a significant lack of synteny among M. xanthus and S. cellulosum, and (v) the degree of co-organization between kinase and phosphatase genes is extremely low in these myxobacterial genomes.

Conclusions

We conclude that there has been a greater expansion of ELKs than PPs in multicellular myxobacteria.  相似文献   

18.
Myxobacterial strains producing polyketides (PKs) assumed to be biosynthesized by a type I polyketide synthase (PKS) were analysed. Myxobacteria also produce a variety of polypeptides (PP) and PKs with incorporated amino acids ('mixed PK-PP'). In order to be able to identify the biosynthetic gene clusters for these metabolites a PCR based approach has been developed to clone ketosynthase (KS) domains of PKS genes from these organisms. Conserved regions of peptide synthetases of the non-ribosomal type (NRPS) were also amplified via PCR. KS fragments from Stigmatella aurantiaca Sg a15 were used for chromosomal gene inactivation experiments resulting in a series of mutants including such that were unable to produce stigmatellins and myxalamids. A NRPS fragment and PKS fragments from Sorangium cellulosum So ce90 were used to identify cosmids hybridizing with both types of probes from a genomic library. Both a NRPS and a PKS fragment were cloned and sequenced from a relatively short restriction fragment of one of these cosmids. The method described here should be very useful to clone and identify PKS, NRPS and mixed PKS-NRPS from myxobacteria in general and thereby open opportunities to use the biochemical diversity of these bacteria for genetic engineering and combinatorial biosynthesis.  相似文献   

19.
20.
A 40-kb region of DNA from Sorangium cellulosum So ce26, which contains polyketide synthase (PKS) genes for synthesis of the antifungal macrolide antibiotic soraphen A, was cloned. These genes were detected by homology to Streptomyces violaceoruber genes encoding components of granaticin PKS, thus extending this powerful technique for the identification of bacterial PKS genes, which has so far been applied only to actinomycetes, to the gram-negative myxobacteria. Functional analysis by gene disruption has indicated that about 32 kb of contiguous DNA of the cloned region contains genes involved in soraphen A biosynthesis. The nucleotide sequence of a 6.4-kb DNA fragment, derived from the region with homology to granaticin PKS genes, was determined. Analysis of this sequence has revealed the presence of a single large open reading frame beginning and ending outside the 6.4-kb fragment. The deduced amino acid sequence indicates the presence of a domain with a high level of similarity to beta-ketoacyl synthases that are involved in polyketide synthesis. Other domains with high levels of similarity to regions of known polyketide biosynthetic functions were identified, including those for acyl transferase, acyl carrier protein, ketoreductase, and dehydratase. We present data which indicate that soraphen A biosynthesis is catalyzed by large, multifunctional enzymes analogous to other bacterial PKSs of type I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号