首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mosaicism 45,X/46,XY,terrea(Y,Y)(pterpter)/47,XYY was observed in an 8-month-old child with male pseudohermaphroditism. The presence of a 47,XYY population points to a post-zygotic origin of the rearrangement. The loss of Yp material is in favor of localization of masculinization factor(s) to the proximal segment of Yq. Twenty-two relevant observations reported in the literature previously are discussed.  相似文献   

2.
Summary A phenotypically normal 32-year-old male with azoospermia was found to have a 45,X karyotype with presence of excess euchromatic material on 14p. The parents' karyotypes are normal. This observation is interpreted as a Y/14 translocation with loss of the heterochromatic Y chromosome material.  相似文献   

3.
The loci for steroid sulfatase (STS), the deficiency of which causes X-linked ichthyosis, the cell surface antigen 12E7 (MIC2X), and the blood group antigen Xg (Xg) have been mapped to Xp22.3. These loci are of particular interest since they do not appear to undergo X-chromosome inactivation. In an attempt to establish the relative order of STS and MIC2X, fibroblasts from carriers of four different X/Y translocations and an X/10 translocation were obtained and fused with mouse cell lines deficient in hypoxanthine phosphoribosyltransferase. The breakpoints on the X chromosome in these five translocations are in Xp22. Several independent clones from each fusion were isolated in HAT medium. The clones were examined cytogenetically, and in each case at least two independent clones were identified that have an active X/Y or X/10 translocation chromosome in the absence of other X or Y material. These clones were then tested for STS and 12E7 expression. In two of the X/Y translocations, the markers, STS and 12E7, were both absent. In the X/10 and a third X/Y translocation, both markers were retained. In each of three clones containing the fourth X/Y translocation, STS activity was retained but 12E7 antigenicity was lost. Assuming that this is a simple translocation and does not represent a more complex rearrangement, these results suggest that MIC2X is distal to STS.  相似文献   

4.
Summary By in situ hybridization, Y-specific DNA sequences were localized on Xp22.3-Xpter of one of the two X chromosomes in all of eleven XX males studied. In nine of the cases the presence of the Y-specific DNA did not affect random X inactivation in fibroblasts. Fibroblasts of the other two cases showed a preferential inactivation of the Y DNA-carrying X chromosome. In only one of these two exceptions blood lymphocytes could also be studied, and here, random inactivation of the Y DNA-carrying X chromosome occurred. Furthermore, the gene dosage of steroid sulfatase (STS) was examined by Southern blot analysis. In ten of the cases including the one showing random X-inactivation in lymphocytes but not in fibroblasts, a double dosage of the STS gene is present. The remaining case with non-random inactivation shows a single STS gene dosage. This case was reported previously to have STS enzyme activity in the male range. It is assumed that, as a consequence of an unequal X-Y interchange, a deletion of X-specific DNA sequences may result in the preferential inactivation of the Y DNA-carrying X chromosome.  相似文献   

5.
The effect of chromosome condensation on the frequency of expression of the fragile X chromosome was examined. Chromosome decondensation substances were tested for their ability to elicit expression or improve frequencies of expression of the fragile X chromosome in five patients. The substances tested included the AT specific DNA ligands ethidium bromide, Hoechst 33258, and netropsin, and the GC specific substances actinomycin D and olivomycin. Under culture conditions appropriate for eliciting fragile X expression none of the decondensation compounds studied significantly altered frequencies of expression, nor did any of the substances elicit fragile X expression under conditions that normally suppress fragile X expression. The fragile X was found to be more frequently evident in less condensed chromosome preparations from fibroblasts. The implications of these findings with respect to the nature of fragile sites are discussed.  相似文献   

6.
Therian X and Y sex chromosomes arose from a pair of autosomes. Y chromosomes consist of a pseudoautosomal region that crosses over with the X chromosome and a male‐specific Y‐chromosomal region that does not. The X chromosome can be structured into “evolutionary strata”. Divergence of X‐chromosomal genes from their gametologs is similar within a stratum, but differs among strata, likely caused by a different onset of suppression of crossing over between gametologs. After stratum formation, exchange of information between gametologs has long been believed absent; however, recent studies have shown limited exchange, likely through gene conversion. Herein we investigate exchange of genetic information between gametologs in old strata that formed before the split of Laurasiatheria (cattle) from Euarchontoglires (primates and rodents) with a new phylogenetic approach. A prerequisite for our test is an overall preradiative topology, that is, all X‐chromosomal gametologs are more similar among themselves than to Y‐chromosomal sequences. Screening multiple sequence alignments of the coding sequences of genes from cattle, mice, and humans identified four genes, DDX3X/Y, RBMX/Y, USP9X/Y, and UTX/Y, exhibiting a preradiation topology. Applying our test, we detected exchange of genetic information between all four X and Y gametologs after stratum formation.  相似文献   

7.
Zluvova J  Janousek B  Negrutiu I  Vyskot B 《Genetics》2005,170(3):1431-1434
Here we compare gene orders on the Silene latifolia sex chromosomes. On the basis of the deletion mapping results (11 markers and 23 independent Y chromosome deletion lines used), we conclude that a part of the Y chromosome (covering a region corresponding to at least 23.9 cM on the X chromosome) has been inverted. The gradient in silent-site divergence suggests that this inversion took place after the recombination arrest in this region. Because recombination arrest events followed by Y chromosome rearrangements also have been found in the human Y chromosome, this process seems to be a general evolutionary pathway.  相似文献   

8.
The chromosome set of human spermatozoa was studied by intracytoplasmic injection into mouse oocytes. A total of 85 metaphase plates of male pronuclei of a patient with chromosome constitution 46,X,r(Y)/45,X and 108 metaphase plates of patients with normal sperm parameters (control group) were examined. The ratio between X- and Y-bearing chromosomes in the 46,X,r(Y)/45,X patient and in the control group did not differ from 1:1. A significant increase in the rates of diploidy, hypoploidy, hyperploidy of sex chromosomes, and chromosome structure rearrangements in spermatozoa of the patient in comparison with spermatozoa in the control group was recorded.  相似文献   

9.
Otake H  Hayashi Y  Hamaguchi S  Sakaizumi M 《Genetics》2008,179(4):2157-2162
The medaka, Oryzias latipes, has an XX/XY sex-determination system, and a Y-linked DM-domain gene, DMY, is the sex-determining gene in this species. Since DMY appears to have arisen from a duplicated copy of the autosomal DMRT1 gene approximately 10 million years ago, the medaka Y chromosome is considered to be one of the youngest male-determining chromosomes in vertebrates. In the screening process of sex-reversal mutants from wild populations, we found a population that contained a number of XY females. PCR, direct sequencing, and RT-PCR analyses revealed two different null DMY mutations in this population. One mutation caused loss of expression during the sex-determining period, while the other comprised a large deletion in putative functional domains. YY females with the mutant-type DMY genes on their Y chromosomes were fully fertile, indicating that the X and Y chromosomes were functionally the same except for the male-determining function. In addition, we investigated the frequencies of the sex chromosome types in this population over four successive generations. The Y chromosomes bearing the mutant-type DMY genes were detected every year with no significant differences in their frequencies. These results demonstrate that aberrant Y chromosomes behaving as X chromosomes have been maintained in this population.  相似文献   

10.
Fluorescence in situ hybridization with the use of the equine X whole chromosome painting probe was carried out on chromosome spreads originating from three mares with poor reproductive performance (infertility, miscarriage or stillbirth). The numbers of analysed spreads were high (105, 300 and 480) and in all three mares a low frequency of mosaicism was identified. The mares had the following karyotypes: 64,XX/63,X/65,XXX (93.6%/5.7%/0.7%), 64,XX/63,X (98.9%/1.1%) and 64,XX/63,X (94.3%/5.7%). The incidence and importance of the low percentage X chromosome mosaicism are discussed.  相似文献   

11.
Summary A 45,X complement was found in lymphocyte and fibroblast cultures of a male infant with severe growth and mental retardation and mild dysmorphism. Lymphocyte DNA from this patient was found to contain Yp chromosome sequences. In situ hybridization (ISH) with the 50f2 probe led to a clear assignment of euchromatic material on the short arm of chromosome 1. This observation and others from the literature argue in favour of the conclusion that all 45.X males are probably either the result of undetected mosaicism or are carriers of Y translocated material.  相似文献   

12.
A male mouse with irregular white spotting, typical of piebald, s, arose during an experiment designed to search for mutations induced in spermatogonial cells by ethylnitrosourea (ENU). On being examined cytologically it was found to carry 40 chromosomes but was effectively XXY since one of the two X chromosomes present was distally fused to a Y chromosome. In common with the previously described XXY mice, all of which carried 41 chromosomes, the mouse was sterile with a total absence of germ cells. Because of this, it was not possible to determine if the white spotting was inherited. The spotting could not be related to any observable abnormality of chromosomes known to carry spotting genes, nor could it be linked in any way with the X and Y fusion. It was concluded from the cytological considerations and the time interval (6 months) that had elapsed between mutagen treatment and birth of the offspring, that whereas the spotting was probably the result of ENU damage in a spermatogonial stem cell, the XY fusion was probably a later and spontaneous event.  相似文献   

13.
Fragile X syndrome represents the most common inherited cause of mental retardation. It is caused by a stretch of CGG repeats within the fragile X gene, which increases in length as it is transmitted from generation to generation. Once the repeat exceeds a threshold length, no protein is produced, resulting in the fragile X phenotype. Both X chromosome inactivation and inactivation of the FMR1 gene are the result of methylation. X inactivation occurs earlier than inactivation of the FMR1 gene. The instability to a full mutation is dependent on the sex of the transmitting parent and occurs only from mother to child. For most X-chromosomal diseases, female carriers do not express the phenotype. A clear exception is fragile X syndrome. It is clear that more than 50% of the neurons have to express the protein to ensure a normal phenotype in females. This means that a normal phenotype in female carriers of a full mutation is accompanied by a distortion of the normal distribution of X inactivation.  相似文献   

14.
Kathleen Church 《Chromosoma》1979,71(3):359-370
The X chromosome can be identified with the light microscope throughout all stages of the gonial cell cycle (including interphase) in the grasshopper Brachystola magna. At gonial mitotic stages the X chromosome gives the appearance of being undercondensed or negatively heteropycnotic. At interphase the X projects out from the body of the nucleus. — Examination with the electron microscope reveals that the X is compartmentalized at least two gonial cell cycles prior to the entry of the cells into meiotic prophase. The membrane layers that envelope the X chromatin at interphase remain associated with the X chromosome throughout gonial mitotic stages providing the ultrastructural basis for the apparent negative heteropycnosis observed with the light microscope. — The X chromosome is inactive in RNA synthesis during gonial mitotic stages but is hyperactive in RNA synthesis when compared to autosomes at gonial interphase. — X chromosome condensation which reaches its maximum at premieotic interphase is initiated at or prior to the pre-pentultimate gonial division.  相似文献   

15.
The detection of a low level 45,X cell line during routine cytogenetic analysis in an adult female can be difficult to interpret. In the absence of recent information regarding loss of the X chromosome and ageing, we undertook a prospective study. A total of 19,650 cells from 655 females aged from birth to 80 years were screened cytogenetically. The frequency of X chromosome loss ranged from 0.07% at age <16 years to 7.3% at >65 years of age and showed a highly significant quadratic relationship between X chromosome loss and ageing (P < or = 0.00001). We have produced a graphic representation that provides a minimum baseline age-related rate of X chromosome loss. This should assist diagnostic cytogenetics laboratories to determine the significance of 45,X cell lines detected in women of all ages. We also compared the frequency of 45,X cells in women referred with at least one spontaneous abortion with those referred for other reasons and found no significant difference. Thus, in our population, an excess of 45,X cells is not associated with pregnancy loss.  相似文献   

16.
Because of its function, the X chromosome has a special status in mammalian genomes, with the specific occurrence of genes that influence both female and male fertility. Long ago, the XO karyotype (Turner syndrome) was associated with infertility, proving the correlation between normal X chromosome dosage and normal female fertility. Nevertheless, the search for specific X-borne fertility genes was not completely successful and suggested, instead, that female X-linked fertility, for example, depends upon groups of X-linked genes. Conversely, X-linked hyperfertility has been observed in sheep, where a mutation in BMP15 leads to a hyperfertile phenotype, but only in the heterozygous state. Many male fertility genes map to the X chromosome, consistent with a genetic model developed in the early 1990s. Ironically, NR0B1 (formerly DAX1), once presented as the paradigm of genes responsible for ovarian development and function, is probably one of these male fertility factors and is active in the maintenance of spermatogenesis. Indeed, duplications of this gene on the human X chromosome lead to XY sex reversal, as NR0B1 is able to counterbalance the effect in humans. Nevertheless, invalidation experiments in mice demonstrate the effect of this factor on male germ-cell production.  相似文献   

17.
Summary A 19-year-old male with azoospermia was found to have a 45,X karyotype with additional euchromatic material on 15p. The parents' karyotypes are normal. The cytogenetic data, the positive H-Y-typing, and the presence of Yp-specific restriction fragments detected in the proband's genome by molecular DNA probes suggest that the short arm of the Y chromosome, including part of the centromere, is translocated onto the nucleolus organizer region (NOR) of chromosome 15.  相似文献   

18.
19.
20.
Summary A structural X chromosome abnormality was found in the karyotype of a tall patient with gonadal dysgenesis and with no extragenital anomalies. Based on her mother's karyotype, which showed a pericentric inversion of the X chromosome: 46,X,inv(X)(p22q24), as well as from G and R banding, we concluded that the abnormal X chromosome of our patient was a recombinant chromosome that had originated as a result of one crossing over in the inversion loop during gametogenesis in her mother. The recombinant X chromosome had a partial deletion of Xq and a partial duplication of Xp: 46,X,rec(X),dup p,inv(X)(p22q24). After BUDR incorporation, the abnormal X chromosome of the patient and that of her mother showed a late replication. The karyotype-phenotype correlation and the nonrandom inactivation of the inverted X chromosome in the mother are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号