首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Ca(2+)-dependent cyclic lipodepsipeptides are an emerging class of antibiotics for the treatment of infections caused by Gram-positive pathogens. These compounds are synthesized by nonribosomal peptide synthetase (NRPS) complexes encoded by large gene clusters. The gene cluster encoding biosynthetic pathway enzymes for the Streptomyces fradiae A54145 NRP was cloned from a cosmid library and characterized. Four NRPS-encoding genes, responsible for subunits of the synthetase, as well as genes for accessory functions such as acylation, methylation and hydroxylation, were identified by sequence analysis in a 127 kb region of DNA that appears to be located subterminally in the bacterial chromosome. Deduced epimerase domain-encoding sequences within the NRPS genes indicated a D: -stereochemistry for Glu, Lys and Asn residues, as observed for positionally analogous residues in two related compounds, daptomycin, and the calcium-dependent antibiotic (CDA) produced by Streptomyces roseosporus and Streptomyces coelicolor, respectively. A comparison of the structure and the biosynthetic gene cluster of A54145 with those of the related peptides showed many similarities. This information may contribute to the design of experiments to address both fundamental and applied questions in lipopeptide biosynthesis, engineering and drug development.  相似文献   

5.
6.
《Gene》1996,169(1):1-7
Analysis of the gene cluster from Streptomyces hygroscopicus that governs the biosynthesis of the polyketide immuno-suppressant rapamycin (Rp) has revealed that it contains three exceptionally large open reading frames (ORFs) encoding the modular polyketide synthase (PKS). Between two of these lies a fourth gene (rapP) encoding a pipecolate-incorporating enzyme that probably also catalyzes closure of the macrolide ring. On either side of these very large genes are ranged a total of 22 further ORFs before the limits of the cluster are reached, as judged by the identification of genes clearly encoding unrelated activities. Several of these ORFs appear to encode enzymes that would be required for Rp biosynthesis. These include two cytochrome P-450 monooxygenases (P450s), designated RapJ and RapN, an associated ferredoxin (Fd) RapO, and three potential SAM-dependent O-methyltransferases (MTases), RapI, RapM and RapQ. All of these are likely to be involved in ‘late’ modification of the macrocycle. The cluster also contains a novel gene (rapL) whose product is proposed to catalyze the formation of the Rp precursor, L-pipecolate, through the cyclodeamination of L-lysine. Adjacent genes have putative roles in Rp regulation and export. The codon usage of the PKS biosynthetic genes is markedly different from that of the flanking genes of the cluster  相似文献   

7.
The polyene macrolide antibiotic nystatin produced by Streptomyces noursei contains a deoxyaminosugar mycosamine moiety attached to the C-19 carbon of the macrolactone ring through the beta-glycosidic bond. The nystatin biosynthetic gene cluster contains three genes, nysDI, nysDII, and nysDIII, encoding enzymes with presumed roles in mycosamine biosynthesis and attachment as glycosyltransferase, aminotransferase, and GDP-mannose dehydratase, respectively. In the present study, the functions of these three genes were analyzed. The recombinant NysDIII protein was expressed in Escherichia coli and purified, and its in vitro GDP-mannose dehydratase activity was demonstrated. The nysDI and nysDII genes were inactivated individually in S. noursei, and analyses of the resulting mutants showed that both genes produced nystatinolide and 10-deoxynystatinolide as major products. Expression of the nysDI and nysDII genes in trans in the respective mutants partially restored nystatin biosynthesis in both cases, supporting the predicted roles of these two genes in mycosamine biosynthesis and attachment. Both antifungal and hemolytic activities of the purified nystatinolides were shown to be strongly reduced compared to those of nystatin, confirming the importance of the mycosamine moiety for the biological activity of nystatin.  相似文献   

8.
Streptomyces avermitilis produces a group of glycosylated, methylated macrocyclic lactones, the avermectins, which have potent anthelmintic activity. A homologous recombination strategy termed gene cluster displacement was used to construct Neor deletion strains with defined endpoints and to clone the corresponding complementary DNA encoding functions for avermectin biosynthesis (avr). Thirty-five unique deletions of 0.5 to > 100 kb over a continuous 150-kb region were introduced into S. avermitilis. Analysis of the avermectin phenotypes of the deletion-containing strains defined the extent and ends of the 95-kb avr gene cluster, identified a regulatory region, and mapped several avr functions. A 60-kb region in the central portion determines the synthesis of the macrolide ring. A 13-kb region at one end of the cluster is responsible for synthesis and attachment of oleandrose disaccharide. A 10-kb region at the other end has functions for positive regulation and C-5 O methylation. Physical analysis of the deletions and of in vivo-cloned fragments refined a 130-kb physical map of the avr gene cluster region.  相似文献   

9.
10.
11.
Six putative regulatory genes are located at the flank of the nystatin biosynthetic gene cluster in Streptomyces noursei ATCC 11455. Gene inactivation and complementation experiments revealed that nysRI, nysRII, nysRIII, and nysRIV are necessary for efficient nystatin production, whereas no significant roles could be demonstrated for the other two regulatory genes. To determine the in vivo targets for the NysR regulators, chromosomal integration vectors with the xylE reporter gene under the control of seven putative promoter regions upstream of the nystatin structural and regulatory genes were constructed. Expression analyses of the resulting vectors in the S. noursei wild-type strain and regulatory mutants revealed that the four regulators differentially affect certain promoters. According to these analyses, genes responsible for initiation of nystatin biosynthesis and antibiotic transport were the major targets for regulation. Data from cross-complementation experiments showed that nysR genes could in some cases substitute for each other, suggesting a functional hierarchy of the regulators and implying a cascade-like mechanism of regulation of nystatin biosynthesis.  相似文献   

12.
The 53-kb biosynthetic gene cluster for the novel anticholesterol natural product herboxidiene was identified in Streptomyces chromofuscus ATCC 49982 by genome sequencing and gene inactivation. In addition to herboxidiene, a biosynthetic intermediate, 18-deoxy-herboxidiene, was also isolated from the fermentation broth of S. chromofuscus ATCC 49982 as a minor metabolite.  相似文献   

13.
【背景】微生物来源的天然产物是小分子药物或药物先导物的重要来源。对链霉菌Streptomyces antibioticus NRRL 8167的基因组分析显示,其包含多个次级代谢产物的生物合成基因簇,具有产生多种新化合物的潜力。【目的】对链霉菌S. antibioticus NRRL 8167中次级代谢产物进行研究,以期发现结构新颖或生物活性独特的化合物,并对相应产物的生物合成基因簇和生物合成途径进行解析。【方法】利用HPLC图谱结合特征性紫外吸收和LC-MS方法,排除S. antibioticus NRRL 8167产生的已知化合物,确定具有特殊紫外吸收的化合物作为挖掘对象,然后利用正、反相硅胶柱色谱、高效液相色谱等技术对次级代谢产物进行分离纯化,分离化合物。利用质谱及核磁共振光谱技术对化合物结构进行解析和鉴定;提取链霉菌S. antibioticus NRRL 8167基因组DNA,利用PacBio测序平台进行基因组测序;利用生物信息学对基因组进行注释,并对合成该化合物的基因簇进行定位分析,推导其生物合成途径。【结果】确定这个化合物是NaphthgeranineA,属于聚酮类化合物。全基因组序列分析发现S.antibioticusNRRL8167基因组含有28个次级代谢产物生物合成基因簇,其中基因簇20可能负责Naphthgeranine A的生物合成,并对其生物合成途径进行了推导。【结论】基于紫外吸收光谱和质谱特征,从S. antibioticus NRRL 8167菌株的发酵提取物中分离鉴定了一个聚酮类化合物Naphthgeranine A。该菌株的全基因组测序为其生物合成基因簇的鉴定提供了前提,对Naphthgeranine A生物合成基因簇和生物合成途径的推测为进一步研究这个化合物的生物合成机制奠定了基础。  相似文献   

14.
The biosynthetic gene cluster for tobramycin, a 2-deoxystreptamine-containing aminoglycoside antibiotic, was isolated from Streptomyces tenebrarius ATCC 17920. A genomic library of S. tenebrarius was constructed, and a cosmid, pST51, was isolated by the probes based on the core regions of 2-deoxy-scyllo-inosose (DOI) synthase, and L-glutamine:DOI aminotransferase and L-glutamine:scyllo-inosose aminotransferase. Sequencing of 33.9 kb revealed 24 open reading frames (ORFs) including putative tobramycin biosynthetic genes. We demonstrated that one of these ORFs, tbmA, encodes DOI synthase by in vitro enzyme assay of the purified protein. The catalytic residues of TbmA and dehydroquinate synthase were studied by homology modeling. The gene cluster found is likely to be involved in the biosynthesis of tobramycin.  相似文献   

15.
Pulsawat N  Kitani S  Nihira T 《Gene》2007,393(1-2):31-42
Virginiamycin M (VM) of Streptomyces virginiae is a hybrid polyketide-peptide antibiotic with peptide antibiotic virginiamycin S (VS) as its synergistic counterpart. VM and VS belong to the Streptogramin family, which is characterized by strong synergistic antibacterial activity, and their water-soluble derivatives are a new therapeutic option for combating vancomycin-resistant Gram-positive bacteria. Here, the VM biosynthetic gene cluster was isolated from S. virginiae in the 62-kb region located in the vicinity of the regulatory island for virginiamycin production. Sequence analysis revealed that the region consists of 19 complete open reading frames (ORFs) and one C-terminally truncated ORF, encoding hybrid polyketide synthase (PKS)-nonribosomal peptide synthetase (NRPS), typical PKS, enzymes synthesizing precursors for VM, transporters for resistance, regulatory proteins, and auxiliary enzymes. The involvement of the cloned gene cluster in VM biosynthesis was confirmed by gene disruption of virA encoding a hybrid PKS-NRPS megasynthetase, which resulted in complete loss of VM production without any effect on VS production. To assemble the VM core structure, VirA, VirF, VirG, and VirH consisting, as a whole, of 24 domains in 8 PKS modules and 7 domains in 2 NRPS modules were predicted to act as an acyltransferase (AT)-less hybrid PKS-NRPS, whereas VirB, VirC, VirD, and VirE are likely to be essential for the incorporation of the methyl group into the VM framework by a HMG-CoA synthase-based reaction. Among several uncommon features of gene organization in the VM gene cluster, the lack of AT domain in every PKS module and the presence of a discrete AT encoded by virI are notable. AT-overexpression by an additional copy of virI driven by ermEp() resulted in 1.5-fold increase of VM production, suggesting that the amount of VirI is partly limiting VM biosynthesis.  相似文献   

16.
Gene clusters for the biosynthesis of kanamycin (Km) and gentamicin (Gm) were isolated from the genomic libraries of Streptomyces kanamyceticus and Micromonospora echinospora, respectively. The sequencing of the 47 kb-region of S. kanamyceticus genomic DNA revealed 40 putative open reading frames (ORFs) encoding Km biosynthetic proteins, regulatory proteins, and resistance and transport proteins. Similarly, the sequencing of 32.6 kb genomic DNA of M. echinospora revealed a Gm biosynthetic gene cluster flanked by resistant genes. Biosynthetic pathways for the formation of Km were proposed by the comparative study of biosynthetic genes. Out of 12 putative Km biosynthetic genes, kanA was expressed in Escherichia coli and determined its function as a 2-deoxy-scyllo-inosose synthase. Furthermore, the acetylations of aminoglycoside-aminocyclitols (AmAcs) by Km acetyltransferase (KanM) were also demonstrated. The acetylated derivatives completely lost their antibacterial activities against Bacillus subtilis. The comparative genetic studies of Gm, Km, tobramycin (Tm), and butirosin (Bn) reveal their similar biosynthetic routes and provide a framework for the further biosynthetic studies.  相似文献   

17.
Streptomyces viridifaciens MG456-hF10 produces the antibiotic valanimycin, a naturally occurring azoxy compound. Valanimycin is known to be derived from valine and serine with the intermediacy of isobutylamine and isobutylhydroxylamine, but little is known about the stages in the pathway leading to the formation of the azoxy group. In previous studies, a cosmid containing S. viridifaciens DNA was isolated that conferred valanimycin production upon Strepto-myces lividans TK24. Subcloning of DNA from the valanimycin-producing cosmid has led to the identi-fication of a 22 kb segment of DNA sufficient to allow valanimycin production in S. lividans TK24. Sequencing of this DNA segment and the surrounding DNA revealed the presence of 20 genes. Gene disruption experiments defined the boundaries of the valanimycin gene cluster, which appears to contain 14 genes. The cluster includes an amino acid decar-boxylase gene (vlmD), a valanimycin resistance gene (vlmF ), at least two regulatory genes (vlmE, vlmI ), two genes encoding a flavin monooxygenase (vlmH, vlmR), a seryl tRNA synthetase gene (vlmL ) and seven genes of unknown function. Overproduction and characterization of VlmD demonstrated that it catalyses the decarboxylation of l-valine. An unusual feature of the valanimycin gene cluster is that four genes involved in branched amino acid biosynthesis are located near its 5' end.  相似文献   

18.
Tetzlaff CN  You Z  Cane DE  Takamatsu S  Omura S  Ikeda H 《Biochemistry》2006,45(19):6179-6186
Streptomyces avermitilis, an industrial organism responsible for the production of the anthelminthic avermectins, harbors a 13.4 kb gene cluster containing 13 unidirectionally transcribed open reading frames corresponding to the apparent biosynthetic operon for the sesquiterpene antibiotic pentalenolactone. The advanced intermediate pentalenolactone F, along with the shunt metabolite pentalenic acid, could be isolated from cultures of S. avermitilis, thereby establishing that the pentalenolactone biosynthetic pathway is functional in S. avermitilis. Deletion of the entire 13.4 kb cluster from S. avermitilis abolished formation of pentalenolactone metabolites, while transfer of the intact cluster to the pentalenolactone nonproducer Streptomyces lividans 1326 resulted in production of pentalenic acid. Direct evidence for the biochemical function of the individual biosynthetic genes came from expression of the ptlA gene (SAV2998) in Escherichia coli. Assay of the resultant protein established that PtlA is a pentalenene synthase, catalyzing the cyclization of farnesyl diphosphate to pentalenene, the parent hydrocarbon of the pentalenolactone family of metabolites. The most upstream gene in the cluster, gap1 (SAV2990), was shown to correspond to the pentalenolactone resistance gene, based on expression in E. coli and demonstration that the resulting glyceraldehyde-3-phosphate dehydrogenase, the normal target of pentalenolactone, was insensitive to the antibiotic. Furthermore, a second GAPDH isozyme (gap2, SAV6296) has been expressed in E. coli and shown to be inactivated by pentalenolactone.  相似文献   

19.
Genes homologous to 2-deoxystreptamine (DOS) biosynthetic genes were isolated from aminoglycoside producers, Micromonospora and Streptomyces spp., using PCR primers based on the core sequences of 2-deoxy-scyllo-inosose (DOI) synthase and L-glutamine: scyllo-inosose aminotransferase (GIA). Identities of 40-45% were observed for DOI synthases, and 65-75% were observed for GIAs. The gene cluster of tobramycin biosynthesis was isolated from the genomic library of Streptomyces tenebrarius using DOI synthase as a probe. Sequencing of 33.9 kb revealed 24 putative open reading frames including the tobramycin biosynthetic gene cluster (13.8 kb) and a transport protein. This cluster encodes proteins homologous to 2-deoxystreptamine biosynthetic enzymes, glycosyltransferase and other aminocyclitols biosynthetic enzymes. Sequence analysis revealed the evolution of DOI synthases from 3-dehydroquinate (DHQ) synthases in actinomycetes. DOI synthases and GIA are therefore useful for cloning biosynthetic genes of DOS-containing aminocyclitol antibiotics or for screening such metabolites producers.  相似文献   

20.
Wang Y  Chen Y  Shen Q  Yin X 《Gene》2011,483(1-2):11-21
The biosynthetic gene cluster for laspartomycins, a family of 11 amino acid peptide antibiotics, has been cloned and sequenced from Streptomyces viridochromogenes ATCC 29814. Annotation of a segment of 88912bp of S. viridochromogenes genomic sequence revealed the putative lpm cluster and its flanking regions which harbor 43 open reading frames. The lpm cluster, which spans approximately 60 kb, consists of 21 open reading frames. Those include four NRPS genes (lpmA/orf18, lpmB/orf25, lpmC/orf26 and lpmD/orf27), four genes (orfs 21, 22, 24 and 29) involved in the lipid tail biosynthesis and attachment, four regulatory genes (orfs 13, 19, 32 and 33) and three putative exporters or self-resistance genes (orfs 14, 20 and 30). In addition, the gene involved in the biosynthesis of the nonproteinogenic amino acid Pip was also identified in the lpm cluster while the genes necessary for the biosynthesis of the rare residue diaminopropionic acid (Dap) were found to reside elsewhere on the chromosome. Interestingly, the dabA, dabB and dabC genes predicted to code for the biosynthesis of the unusual amino acid diaminobutyric acid (Dab) are organized into the lpm cluster even though the Dab residue was not found in the laspartomycins. Disruption of the NRPS lpmC gene completely abolished laspartomycin production in the corresponding mutant strain. These findings will allow molecular engineering and combinatorial biosynthesis approaches to expand the structural diversity of the amphomycin-group peptide antibiotics including the laspartomycins and friulimicins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号