首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 5,10-methenyltetrahydromethanopterin cyclohydrolase of Methanobacterium thermoautotrophicum was purified 128-fold to homogeneity. The enzyme had a subunit Mr of 41,000 as indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. From high-performance size exclusion chromatography of the native protein, an Mr of 82,000 was determined, suggesting a dimer of identical subunits. The enzyme was inhibited by 10-formyltetrahydromethanopterin and stimulated by Mg2+. Evaluation of the reaction equilibrium indicated that the methenyl derivative was favored over 5-formyltetrahydromethanopterin, with a much higher equilibrium constant than for the analogous reaction of tetrahydrofolate derivatives. Folate derivatives did not serve as substrates for this enzyme.  相似文献   

2.
Formylmethanofuran:tetrahydromethanopterin (H4MPT) formyltransferase and 5,10-methenyl-H4MPT cyclohydrolase purified from Methanosarcina barkeri catalyze a formyl group transfer and the hydrolysis of the methenyl function, respectively. The results from UV spectroscopy and HPLC analyses, and comparison with results obtained with the enzymes isolated from Methanobacterium thermoautotrophicum showed 5-formyl-H4MPT to be the product of the formyltransferase and cyclohydrolase reactions in M. barkeri. The findings disagree with an earlier report in which 10-formyl-H4MPT was identified as the product of the cyclohydrolase in the latter organism. In addition, it was observed that 10-formyl-H4MPT, which is non-enzymically formed from 5,10-methenyl-H4MPT at alkaline pH, becomes rapidly converted into the 5-formyl derivative. The latter finding explains why the nature of the formyl species previously had been improperly assigned.  相似文献   

3.
The cell extract protein content of acetate- and methanol-grown Methanosarcina thermophila TM-1 was examined by two-dimensional polyacrylamide gel electrophoresis. More than 100 mutually exclusive spots were present in acetate- and methanol-grown cells. Spots corresponding to acetate kinase, phosphotransacetylase, and the five subunits of the carbon monoxide dehydrogenase complex were identified in acetate-grown cells. Activities of formylmethanofuran dehydrogenase, formylmethanofuran:tetrahydromethanopterin formyltransferase, 5,10-methenyltetrahydromethanopterin cyclohydrolase, methylene tetrahydromethanopterin:coenzyme F420 oxidoreductase, formate dehydrogenase, and carbonic anhydrase were examined in acetate- and methanol-grown Methanosarcina thermophila. Levels of formyltransferase in either acetate- or methanol-grown Methanosarcina thermophila were approximately half the levels detected in H2-CO2-grown Methanobacterium thermoautotrophicum. All other enzyme activities were significantly lower in acetate- and methanol-grown Methanosarcina thermophila.  相似文献   

4.
The N5,N10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain Marburg has been purified with reasonable yield and much higher specific activity than previously reported. For the first time it has been shown that both N5,N10-methylenetetrahydromethanopterin dehydrogenase and N5,N10-methenyltetrahydromethanopterin cyclohydrolase activities were stable under air and could be purified using aerobic operations. The dehydrogenase activity from Methanobacterium thermoautotrophicum Marburg was stable in phosphate buffer with or without glycerol or ammonium sulfate under both aerobic and anaerobic conditions. However, the presence of either 2-mercaptoethanol or dithiothreitol in the enzyme solution destroyed the enzyme activity during both aerobic and anaerobic incubations. Dehydrogenase was purified 62-fold using Phenyl-Sepharose and DEAE-Sephadex chromatography in succession under air. Both of these chromatographic methods separated dehydrogenase activity from N5,N10-methenyltetrahydromethanopterin cyclohydrolase; DEAE-Sephadex provided the best separation. Phenyl-Sepharose chromatography of the supernatant of cell extracts containing ammonium sulfate at 60% of saturation provided a 4.7-fold purification and 98% recovery of cyclohydrolase; this result established the air stability of N5,N10-methenyltetrahydromethanopterin cyclohydrolase from Methanobacterium thermoautotrophicum Marburg.  相似文献   

5.
The nickel enzyme methyl-coenzyme M reductase (MCR) catalyzes the terminal step of methane formation in the energy metabolism of all methanogenic archaea. In this reaction methyl-coenzyme M and coenzyme B are converted to methane and the heterodisulfide of coenzyme M and coenzyme B. The crystal structures of methyl-coenzyme M reductase from Methanosarcina barkeri (growth temperature optimum, 37 degrees C) and Methanopyrus kandleri (growth temperature optimum, 98 degrees C) were determined and compared with the known structure of MCR from Methanobacterium thermoautotrophicum (growth temperature optimum, 65 degrees C). The active sites of MCR from M. barkeri and M. kandleri were almost identical to that of M. thermoautotrophicum and predominantly occupied by coenzyme M and coenzyme B. The electron density at 1.6 A resolution of the M. barkeri enzyme revealed that four of the five modified amino acid residues of MCR from M. thermoautotrophicum, namely a thiopeptide, an S-methylcysteine, a 1-N-methylhistidine and a 5-methylarginine were also present. Analysis of the environment of the unusual amino acid residues near the active site indicates that some of the modifications may be required for the enzyme to be catalytically effective. In M. thermoautotrophicum and M. kandleri high temperature adaptation is coupled with increasing intracellular concentrations of lyotropic salts. This was reflected in a higher fraction of glutamate residues at the protein surface of the thermophilic enzymes adapted to high intracellular salt concentrations.  相似文献   

6.
GTP cyclohydrolase I, an enzyme that catalyzes the first reaction in the pathway for the biosynthesis of pterin compounds, was purified from of C3H mouse liver by 192-fold to apparent homogeneity, using Ultrogel AcA34, DEAE-Trisacryl, and GTP-agarose gels. Its native molecular weight was estimated at 362,000. When the enzyme was subjected to electrophoresis on a denaturing polyacrylamide gel, only one protein band was evident, and its molecular weight was estimated at 55,700. The NH2-terminal amino acid of this enzyme was serine. These results indicate the enzyme consists of six to eight subunits. No coenzyme or metal ion was required for activity. This enzyme activity was inhibited by most of divalent cations and was slightly activated by potassium ion. The Km value for GTP was determined to be 17.3 microM. The temperature and pH optima for the activity were 60 degrees C and pH 8.0-8.5, respectively. The expected products, a dihydroneopterin compound and formic acid, were found in a molar ratio of 1.01. A polyclonal antiserum generated against the purified enzyme was used to compare GTP cyclohydrolase I from the hph-1 mutant and normal mouse. The hph-1 mutant liver contained only 8% of normal specific activity, but a normal amount of GTP cyclohydrolase I antigen as compared with the C3H mouse. Subunit molecular weight and electrophoretic behavior of GTP cyclohydrolase I from hph-1 mutant were not different from those of the enzyme from C3H mouse. These results suggest that the hph-1 mutation may involve alteration of the catalytic site but does not detectably alter the whole enzyme structure.  相似文献   

7.
An oxygen-sensitive fumarate reductase has been purified from the cytosol fraction of the cells of the archaebacterium Methanobacterium thermoautotrophicum. A major portion of the purification was performed inside an anaerobic chamber, employing reducing agents to maintain low redox potentials. The apparent molecular weight of the native enzyme is 78,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a minimal subunit molecular weight of about 20,000. Iodoacetamide (1 mM) and copper chloride (5 mM) caused significant loss in the enzyme activity. The optimum temperature for the enzymatic activity was 75 degrees C. The pH optimum was found to be 7.0. The fumarate reductase had an apparent Km of 0.20 mM for fumarate. Purified enzyme was colorless; spectroscopic studies indicated the absence of flavins as a cofactor. The spectral data, however, suggested the presence of an unknown cofactor tightly bound to the enzyme. Fumarate reductase is involved in the anabolic rather than the catabolic metabolism of M. thermoautotrophicum.  相似文献   

8.
An oxygen-sensitive fumarate reductase has been purified from the cytosol fraction of the cells of the archaebacterium Methanobacterium thermoautotrophicum. A major portion of the purification was performed inside an anaerobic chamber, employing reducing agents to maintain low redox potentials. The apparent molecular weight of the native enzyme is 78,000. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated a minimal subunit molecular weight of about 20,000. Iodoacetamide (1 mM) and copper chloride (5 mM) caused significant loss in the enzyme activity. The optimum temperature for the enzymatic activity was 75 degrees C. The pH optimum was found to be 7.0. The fumarate reductase had an apparent Km of 0.20 mM for fumarate. Purified enzyme was colorless; spectroscopic studies indicated the absence of flavins as a cofactor. The spectral data, however, suggested the presence of an unknown cofactor tightly bound to the enzyme. Fumarate reductase is involved in the anabolic rather than the catabolic metabolism of M. thermoautotrophicum.  相似文献   

9.
A Piekarowicz  R Yuan  D C Stein 《Gene》1988,74(1):93-97
A DNA methyltransferase, M.NgoAI, was purified to homogeneity from Neisseria gonorrhoeae strain WR220 by successive column chromatography. Its Mr is 25,000, as determined by both gel filtration and denaturing polyacrylamide gel electrophoresis. Maximal enzymatic activity was obtained in 50 mM Tris.HCl (pH 7.4), 10 mM EDTA, with incubation at 37 degrees C. An apparent Km value for S-adenosylmethionine and 5' -GGCC sites was determined to be 1.25 microM and 89.6 nM, respectively.  相似文献   

10.
The rabbit liver enzymes 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase, and 10-formyltetrahydrofolate synthetase have been purified to apparent homogeneity. Polyacrylamide gel electrophoresis patterns suggest a single protein is responsible for all three catalytic activities. The properties of the dehydrogenase and cyclohydrolase activities suggest that a single active site may catalyze these two reactions. This conclusion is based on spectral changes observed in the conversion of 5,10-methylenetetrahydrofolate to 10-formyltetrahydrofolate, the similarity of dissociation constants determined from initial velocity studies for the two reactions, and the similarity of the pH-activity curves for the two reactions. NADP+ and NADPH lower the Km for 5,10-methenyltetrahydrofolate 2- to 3-fold above pH 7 in the cyclohydrolase reaction but below pH 7 they act as partial inhibitors.  相似文献   

11.
Euglena aquacobalamin reductase (NADPH: EC 1.6.99.-) was purified, and its subcellular distribution was studied to elucidate the mechanism of the conversion of hydroxocobalamin to 5'-deoxyadenosylcobalamin. The enzyme was found in the mitochondria. It was purified about 150-fold over the Euglena mitochondrial extract in a yield of 38%. The purified enzyme was homogeneous in polyacrylamide gel electrophoresis. Spectra of the purified enzyme showed that it was a flavoprotein. The molecular weight of the enzyme was calculated to be 66,000 by Sephadex G-100 gel filtration and 65,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme was specific to NADPH with an apparent Km of 43 microM and to hydroxocobalamin with an apparent Km of 55 microM. The enzyme did not require FAD or FMN as a cofactor. The optimum pH and temperature were 7.0 and 40 degrees C, respectively.  相似文献   

12.
We have identified a 56-kDa fatty acid binding protein in rat renal basolateral membrane and purified it by extraction in nonionic detergent (Triton X-100), followed by gel filtration, DEAE-cellulose chromatography, and affinity chromatography. The purified protein was homogeneous on polyacrylamide gel electrophoresis in the presence of Triton X-100 or SDS. It showed amphiphilic properties on gel filtration, polyacrylamide gel electrophoresis, and oleate-Sepharose 4B chromatography. Its molecular mass was estimated to be 56 kDa by SDS-polyacrylamide gel electrophoresis. The protein showed optimal binding activity at pH 7.5 and 37 degrees C. The apparent Kd for palmitic acid was 0.79 microM. It was immunologically clearly distinct from renal cytosolic fatty acid binding protein.  相似文献   

13.
Leukotriene A4 hydrolase was rapidly and extensively purified from rat neutrophils using anion exchange and gel filtration high-pressure liquid chromatography. The enzyme which converts the allylic epoxide leukotriene A4 to the 5,12-dihydroxyeicosatetraenoic acid leukotriene B4 was localized in the cytosolic fraction and exhibited an optimum activity at pH 7.8 and an apparent Km for leukotriene A4 between 2 X 10(-5) and 3 X 10(-5) M. The purified leukotriene A4 hydrolase was shown to have a molecular weight of 68 000 on sodium dodecylsulfate polyacrylamide gel electrophoresis and of 50 000 by gel filtration. The molecular weight and monomeric native form of this enzyme are unique characteristics which distinguish leukotriene A4 hydrolase from previously purified epoxide hydrolases.  相似文献   

14.
The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophically grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 microM, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40 degrees C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric alpha 2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to greater than 95% in the soluble (supernatant) fraction. Sodium (10 microM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P. productus.  相似文献   

15.
Acid trehalase was purified from the yeast suc2 deletion mutant. After hydrophobic interaction chromatography, the enzyme could be purified to a single band or peak by a further step of either polyacrylamide gel electrophoresis, gel filtration, or isoelectric focusing. An apparent molecular mass of 218,000 Da was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate suggested a molecular mass of 216,000 Da. Endoglycosidase H digestion of the purified enzyme resulted after sodium dodecyl sulfate gel electrophoresis in one distinct band at 41,000 Da, representing the mannose-free protein moiety of acid trehalase. The carbohydrate content of the enzyme was 86%. Amino acid analysis indicated 354 residues/molecule of enzyme including 9 cysteine moieties and only 1 methionine. The isoelectric point of the enzyme was estimated by gel electrofocusing to be approximately 4.7. The catalytic activity showed a maximum at pH 4.5. The activity of the enzyme was not inhibited by 10 mM each of HgCl2, EDTA, iodoacetic acid, phenanthrolinium chloride or phenylmethylsulfonyl fluoride. There was no activation by divalent metal ions. The acid trehalase exhibited an apparent Km for trehalose of 4.7 +/- 0.1 mM and a Vmax of 99 mumol of trehalose min-1 X mg-1 at 37 degrees C and pH 4.5. The acid trehalase is located in the vacuoles. The rabbit antiserum raised against acid trehalase exhibited strong cross-reaction with purified invertase. These cross-reactions were removed by affinity chromatography using invertase coupled to CNBr-activated Sepharose 4B. Precipitation of acid trehalase activity was observed with the purified antiserum.  相似文献   

16.
The major wound-inducible monoterpene synthase (cyclase) of grand fir (Abies grandis) stems transforms geranyl pyrophosphate to both (-)-alpha-pinene (40%) and (-)-beta-pinene (60%). The enzyme was purified to apparent homogeneity by anion-exchange and hydrophobic interaction chromatography, coupled to discontinuous native polyacrylamide gel electrophoresis at neutral pH and polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (also at neutral pH) followed by renaturation in 1% Tween 20 (polyoxyethylenesorbitan monolaurate). The renatured enzyme produced a mixture of isomeric pinenes from geranyl pyrophosphate identical to that generated by the native form. The protein exhibited a molecular weight of 63,000 by gel permeation chromatography and of 62,000 by denaturing gel electrophoresis, indicating that the monomer is active. The enzyme required Mn2+ (Km = 30 microM) for activity, exhibited a Km value of 6 microM for the substrate geranyl pyrophosphate, showed a pH optimum at 7.8 and temperature optimum at 42 degrees C, and was inhibited by pyrophosphate (I50 = 0.17 mM), orthophosphate (I50 = 51 mM), and alpha-pinene, as well as by the histidine-directed reagent diethylpyrocarbonate (I50 = 0.64 mM) and the cysteine-directed reagent p-hydroxymercuribenzoate (I50 = 1.9 microM). Although similar in many respects to constitutive monoterpene cyclases of herbaceous species, this inducible cyclase, the first enzyme of this type to be purified to homogeneity from a conifer, is distinguished by the relatively high pH optimum, and the strict specificity and high affinity for the divalent metal ion cofactor.  相似文献   

17.
Five bands of lactate dehydrogenase (LDH) isoenzymes were seen by polyacrylamide gel electrophoresis in gastrocnemius muscle of the turtle (Kachuga smithi). The major band was of M2H2 type and was partially purified by gel filtration and affinity chromatography. The specific activity of the enzyme was 2.6 units/mg protein. The half-life of the enzyme at 4 degrees C, was about 7 days. The optimum temperature for enzyme activity was 30 degrees C and the enzyme was irreversibly inactivated at 40 degrees C. The optimum pH for the forward reaction (pyruvate to lactate) was 5.5, while for reverse reaction it was between 8.0 to 9.5. The apparent Km values for pyruvate, NADH, lactate and NAD+ were 0.20, 0.013, 25 and 0.333 mM, respectively. Oxalate was found to be the inhibitor of LDH with Ki of about 4.2 mM.  相似文献   

18.
Porcine and ovine 19-S thyroglobulins prepared from frozen glands in several buffers using slice extraction or homogenization, ammonium sulfate precipitation and DEAE-cellulose chromatography or Sepharose 6B gel filtration were contaminated with protease activity of pH optima 4.5 and 8.6, as shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Optimum temperatures of autodigestion were 37 degrees C at pH 4.5 and 25 degrees C at pH 8.6. Thyroglobulins prepared from unfrozen glands pH 7.2 in 0.1 M sodium phosphate using slice extraction, ammonium sulfate precipitation and Sepharose 6B gel filtration were devoid of acid proteolytic activity but still underwent autodigestion at pH 8.6. Diisopropylfluorophosphate was a potent inhibitor of the alkaline protease activity of ovine thyroglobulin preparations. In contrast to thyroglobulin obtained from frozen glands the proteins purified from fresh unfrozen glands at pH 7.2 only showed the 19-S and the 12-S species by electrophoresis in sodium dodecyl sulfate polyacrylamide gels. Very few bands migrating faster than 12-S were visible. After full reduction and S-alkylation of porcine and ovine thyroglobulins, no qualitative changes were observed in the gel electrophoresis pattern as compared to the unmodified proteins. Species of apparent mol. wt. corresponding to the native 12 S were the major component, strongly suggesting a mol. wt. of about 330 000 for the elementary peptide chains of pig and sheep thyroglobulins.  相似文献   

19.
W Shao  J Wiegel 《Journal of bacteriology》1992,174(18):5848-5853
A highly thermostable beta-xylosidase, exhibiting similarly high activities for arylxylose and arylarabinose, was purified (72-fold) to gel electrophoretic homogeneity from the ethanologenic thermophilic anaerobe Thermoanaerobacter ethanolicus. The isoelectric point is pH 4.6; the apparent molecular weight is around 165,000 for the native enzyme (gel filtration and gradient polyacrylamide gel electrophoresis) and 85,000 for the two subunits (sodium dodecyl sulfate-polyacrylamide gel electrophoresis). The enzyme exhibited the highest affinity towards p-NO2-phenyl xyloside (pNPX) (substrate concentration for half-maximal activity = 0.018 mM at 82 degrees C and pH 5.0) but the highest specific activity with p-NO2-phenylarabinofuranoside. T(opt), 5 min, the temperature for the maximum initial activity in a 5-min assay of the purified enzyme, was observed around pH 5.9 and 93 degrees C; however at 65 and 82 degrees C, the pH optimum was 5.0 to 5.2, and at this pH the maximal initial activity was observed at 82 degrees C (pH 5.0 to 5.5). The pH curves and temperature curves for arylxylosides as substrates differed significantly from those for arylarabinosides as substrates. An incubation for 3 h at 82 degrees C in the absence of substrate reduced the activity to around 75%. At 86 degrees C the half-life was around 15 min. With pNPX as the substrate, an Arrhenius energy of 69 kJ/mol was determined. The N-terminal sequence did not reveal a high similarity to those from other published enzyme sequences.  相似文献   

20.
Lysophospholipase [EC 3.1.1.5] was solubilized from the cells of Vibrio parahaemolyticus with Triton X-100 and purified by the following procedure; precipitation with ammonium sulfate, acid treatment and ion exchange column chromatography using DEAE-cellulose, DEAE-Sephadex A-50, and CM-cellulose, successively. The purified preparation was shown to be homogeneous by polyacrylamide gel disk electrophoresis. The isoelectric point of the enzyme was found to be around pH 3.64 by isoelectric focusing electrophoresis, and its molecular weight was estimated to be 89,000 at pH 7.6 by gel filtration on Sephadex G-200. The minimal molecular weight (15,000) was found at pH 3 by gel filtration on Sephadex G-100 and also by SDS-polyacrylamide disk electrophoresis. The enzyme hydrolyzed 1-acyl-GPC, 1-acyl-GPE, 2-acyl-GPE, and lysocardiolipin but did not attack monoacylglycerol, triacylglycerol, or phosphatidylcholine at all. The enzyme activity required no bivalent cations, and was unaffected by reagents specific to SH-groups, although it was inhibited by Hg2+. The enzyme activity was completely inhibited by preincubation with diisopropylfluorophosphate. The enzyme lost its activity on preincubation with either 1% SDS or 8 M urea at 37 degrees C for 30 min, but the activity lost with urea was recovered by dialysis against distilled water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号