首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang M  Zhang HQ  Xue SB 《Cell research》2000,10(3):213-220
Apoptosis manifests in two major execution programs downstream of the death signal:the caspase pathway and organelle dysfunction.An important antiapoptosis factor,Bcl-2 protein,contributes in caspase pathway of apoptosis.Calcium,an important intracellular signal element in cells,is also observed to have changes during apoptosis,which maybe affected by Bcl-2 protein.We have previously reported that in Harringtonine (HT) induced apoptosis of HL-60 cells,there‘s change of intracellular calcium distribution,oving from cytoplast especially Golgi‘s apparatus to nucleus and accumulating there with the highest concentration.We report here that caspase-3 becomes activated in HT-induced apoptosis of HL-60 cells,which can be inhibited by overexpression of Bcl-2 protein.No sign of apoptosis or intracellular calcium movement from Golgi‘s apparatus to nucleus in HL-60 cells overexpressing Bcl-2 or treated with Ac-DEVD-CHO,a specific inhibitor of caspase-3.The results indicate that activated caspase-2 can promote the movement of intracellular calcium from Golgi‘s apparatus to nucleus,and the process is inhibited by Ac-DEVD-CHO(inhibitor of caspase-3),and that Bcl-2 can inhibit the movement and accumulation of intracellular calcium in nucleus through its inhibition on caspase-3.Calcium relocalization in apoptosis seems to be irreversible,which is different from the intracellular calcium changes caused by growth factor.  相似文献   

2.
Caspase-3 is thought to play an important role(s) in the nuclear morphological changes that occur in apoptotic cells and many nuclear substrates for caspase-3 have been identified despite the cytoplasmic localization of procaspase-3. Therefore, whether activated caspase-3 is localized in the nuclei and how active caspase-3 has access to its nuclear targets are important and unresolved questions. Here we confirmed nuclear localizations for both caspase-3-p17 and caspase-3-p12 subunits of active caspase in apoptotic cells using subcellular fractionation analysis. We also prepared polyclonal and monoclonal antibodies specific for active caspase-3 to define the subcellular localization of active caspase-3. Immunocytochemical observations using anti-active caspase-3 antibodies showed nuclear accumulation of active caspase-3 during apoptosis. In addition, caspase-3, but not caspase-7, translocated from the cytoplasm into the nucleus after induction of apoptosis. Mutations at the cleavage site between the p17 and p12 subunits and the substrate recognition site for the P3 amino acid of the DXXD substrate cleavage motif inhibited nuclear translocation of caspase-3, indicating that nuclear transport of active caspase-3 required proteolytic activation and substrate recognition. These results suggest that active caspase-3 is translocated in association with a substrate-like protein(s) from the cytoplasm into the nucleus during progression through apoptosis.  相似文献   

3.
In this study, we show that protein phosphatase-1 (PP1) inhibitor-3 (Inh3) is localized to the nucleoli and centrosomes in interphase HEK 293 cells. Inh3 exhibited a specific co-localization to the nucleoli with PP1gamma1, and to the centrosomes with PP1alpha. These findings indicate that Inh3 may act as a modulator of PP1 functions in the processes of cytokinesis, as well as of nucleolar events. The specificity of the interaction of Inh3 with the PP1 isoforms was also demonstrated in vitro, where Inh3 co-immunoprecipitated with PP1alpha and PP1gamma1, but not with PP1beta. The nuclear localization signal of Inh3 was identified as a N-terminal basic cluster (33RKRK36), while nucleolar localization was shown to be dependent on a C-terminal basic cluster (94HRKGRRR100). The importance of the individual basic residues was quantitatively assessed by site-directed mutagenesis and a novel use of laser scanning cytometry.  相似文献   

4.
Protein phosphatase 1 (PP1) is a eukaryotic serine/threonine protein phosphatase, and mediates diverse cellular processes in animal systems via the association of a catalytic subunit (PP1c) with multiple regulatory subunits that determine the catalytic activity, the subcellular localization, and the substrate specificity. However, no regulatory subunit of PP1 has been identified in plants so far. In this study, we identified inhibitor-3 (Inh3) as a regulatory subunit of PP1 and characterized a functional role of Inh3 in Vicia faba and Arabidopsis (Arabidopsis thaliana). We found Inh3 as one of the proteins interacting with PP1c using a yeast two-hybrid system. Biochemical analyses demonstrated that Arabidopsis Inh3 (AtInh3) bound to PP1c via the RVxF motif of AtInh3, a consensus PP1c-binding sequence both in vitro and in vivo. AtInh3 inhibited the PP1c phosphatase activity in the nanomolar range in vitro. AtInh3 was localized in both the nucleus and cytoplasm, and it colocalized with Arabidopsis PP1c in these compartments. Disruption mutants of AtINH3 delayed the progression of early embryogenesis, arrested embryo development at the globular stage, and eventually caused embryo lethality. Furthermore, reduction of AtINH3 expression by RNA interference led to a decrease in fertility. Transformation of the lethal mutant of inh3 with wild-type AtINH3 restored the phenotype, whereas that with the AtINH3 gene having a mutation in the RVxF motif did not. These results define Inh3 as a regulatory subunit of PP1 in plants and suggest that Inh3 plays a crucial role in early embryogenesis in Arabidopsis.  相似文献   

5.
Many molecules are inducibly localized in lipid rafts, and their alteration inhibits early activation events, supporting a critical role for these domains in signaling. Using confocal microscopy and cellular fractionation, we have shown that the pool of Bad, attached to lipid rafts in proliferating cells, is released when cells undergo apoptosis. Kinetic studies indicate that rafts alteration is a consequence of an intracellular signal triggered by interleukin-4 deprivation. Growth factor deprivation in turn induces PP1alpha phosphatase activation, responsible for cytoplasmic Bad dephosphorylation as well as caspase-9 and caspase-3 activation. Caspases translocate to rafts and induce their modification followed by translocation of Bad from rafts to mitochondria, which correlates with apoptosis. Taken together, our results suggest that alteration of lipid rafts is an early event in the apoptotic cascade indirectly induced by interleukin-4 deprivation via PP1alpha activation, dephosphorylation of cytoplasmic Bad, and caspase activation.  相似文献   

6.
7.
Caspase-7 mediated cleavage of proteasome subunits during apoptosis   总被引:1,自引:0,他引:1  
Caspase-3 and caspase-7 are structurally closely related and demonstrate overlapping substrate specificity. However, during apoptosis, they are differentially regulated and show distinct subcellular localizations, implying the presence of specific substrates. In this study, to identify caspase-7 substrates, we treated the lysates derived from caspase-3-deficient MCF-7 cells with purified caspase-7 and analyzed decreased proteins by 2-DE. Intriguingly, several proteasome subunits such as alpha2, alpha6, and Rpt1 are degraded by caspase-7 during apoptosis in vitro and in vivo. Caspase-7 mediated cleavage of proteasome subunits results in the reduction of proteasome activity and thereby increases the accumulation of ubiquitinated proteins in cells. These findings suggest that caspase-7 facilitates the execution of apoptosis through down-regulation of the 26S proteasome, which regulates the turnover of proteins involved in the apoptotic process.  相似文献   

8.
The protein phosphatase (PP) inhibitors nodularin and microcystin-LR induced apoptosis with unprecedented rapidity, more than 50% of primary hepatocytes showing extensive surface budding and shrinkage of cytoplasm and nucleoplasm within 2 min. The apoptosis was retarded by the general caspase inhibitor Z-VAD.fmk. To circumvent the inefficient uptake of microcystin and nodularin into nonhepatocytes, toxins were microinjected into 293 cells, Swiss 3T3 fibroblasts, promyelocytic IPC-81 cells, and NRK cells. All cells started to undergo budding typical of apoptosis within 0.5 - 3 min after injection. This was accompanied by cytoplasmic and nuclear shrinkage and externalization of phosphatidylserine. Overexpression of Bcl-2 did not delay apoptosis. Apoptosis induction was slower and Z-VAD.fmk independent in caspase-3 deficient MCF-7 cells. MCF-7 cells stably transfected with caspase-3 showed a more rapid and Z-VAD.fmk dependent apoptotic response to nodularin. Rapid apoptosis induction required inhibition of both PP1 and PP2A, and the apoptosis was preceded by increased phosphorylation of several proteins, including myosin light chain. The protein phosphorylation occurred even in the presence of apoptosis-blocking concentrations of Z-VAD.fmk, indicating that it occurred upstream of caspase activation. It is suggested that phosphatase-inhibiting toxins can induce caspase-3 dependent apoptosis in an ultrarapid manner by altering protein phosphorylation.  相似文献   

9.
γ-射线可诱导人髓性白血病细胞株HL-60细胞凋亡,但其机制尚未完全明了。为了观察caspase-3在这种细胞凋亡模型中的作用,本研究设计合成针对caspase-3mRNA5′-非编码区和编码起始区的反义寡核苷酸(ASODNs),即ASODN-1和ASODN-2,以脂质体介导法将不同浓度ASODN-1和ASODN-2转染进入HL-60细胞,γ-射线照射。应用TUNEL法观察凋亡细胞形态学变化及检测凋亡细胞百分率,免疫细胞化学、Westernblotting和RT-PCR技术分别检测caspase-3及其mRNA在引入ASODNs前后的表达水平,并以错配寡核苷酸(MODN)转染及未转染细胞作为对照组。TUNEL法检测发现,当ASODN-1和ASODN-2转染终浓度≥3μmol/L时,γ-射线诱导的HL-60细胞凋亡率降低,与对照组相比均有显著性差异(P<0.01)。免疫细胞化学结果显示,与两对照组相比,转染ASODNs后各组caspase-3阳性细胞率显著下降,阳性细胞染色减弱,其平均灰度值显著增高(P<0.01)。Westernblotting检测显示,转染ASODNs组细胞caspase-3蛋白酶原表达降低,其中ASODN-1组显著低于ASODN-2组。RT-PCR结果显示两对照组细胞caspase-3mRNA均有明显表达,转染ASODNs后caspase-3mRNA表达丰度降低。另外,ASODN-1抑制细胞凋亡和caspase-3表达的作用显著强于ASODN-2(分别为P<0.05和P<0.01)。实验结果表明,caspase-3mRNAASODNs能够抑制γ-射线照射诱导的HL-60细胞凋亡,下调caspase-3蛋白和caspase-3mRNA的表达水平,其抑制作用在一定范围内呈剂量依赖性。  相似文献   

10.
A cytotoxic lectin (Viscum album L. coloratum agglutinin, VCA) from Korean mistletoe was isolated by affinity chromatography on Sepharose 4B immobilized with asialofetuin. In HL-60 cells, addition of VCA resulted in a dose- and time-dependent growth suppression, morphological changes of apoptotic nuclei, and DNA fragmentation characteristics of apoptosis. To investigate how caspase-3 activation during VCA-induced apoptosis induces cleavages of PARP, the expression of PARP and the pattern of caspase-3 activation in HL-60 cells were investigated. The native and processed PARP forms typically seen in apoptotic cells were observed, and a decrease in expression of the 32-kDa form of caspase-3 in a dose-dependent manner was observed. The VCA-induced apoptosis was significantly inhibited by a caspase-3 specific inhibitor, z-DEVD-FMK, and the PARP processing and caspase-3 activation were also inhibited by the inhibitor. A possible involvement of cell cycle arrest in VCA-induced apoptosis was investigated by flow cytometry and the results suggested that the apoptotic effect of VCA is not involved in the induction of cell cycle arrest.  相似文献   

11.
The colonic epithelial cells near the top of the crypt and in the lumen have been shown to undergo apoptosis. Since butyric acid is the major short-chain fatty acid produced by fermentation of dietary fiber in the large bowel, it has been proposed that it could act as an important regulator of apoptosis in colorectal cancer. Here we report that in cells treated with butyric acid, the cleavage of DNA-PKcs was paralleled or preceded by the induction of activation of caspase-3, and these events were inhibited by Bcl-2 overexpression. We also demonstrated the redistribution of activated caspase-3 to the nuclear compartment where it locally cleaves DNA-PKcs and poly(ADP-ribose) polymerase, and cleaved fragments were released in the cytosolic compartment. The observed activation of caspase-3 and nuclear cleavage of its substrates and their subsequent release into the cytosol were inhibited by a specific caspase-3 inhibitor, the tetrapeptide DEVD-CHO. These findings suggest that relocalization of activated caspase-3 to the nucleus may constitute an important apoptotic signal during butyric acid-induction of apoptosis human colorectal cancer cells.  相似文献   

12.
13.
The role of protein kinase C-beta (PKC-beta) in apoptosis induced by tumor necrosis factor (TNF)-alpha and anti-Fas monoclonal antibody (mAb) in the human myeloid HL-60 leukemia cell line was studied by using its variant HL-525, which is deficient in PKC-beta. In contrast to the parental HL-60 cells, HL-525 is resistant to TNF-alpha-induced apoptosis but sensitive to anti-Fas mAb-induced apoptosis. Both cell types expressed similar levels of the TNF-receptor I, whereas the Fas receptor was detected only in HL-525 cells. Transfecting the HL-525 cells with an expression vector containing PKC-beta reestablished their susceptibility to TNF-alpha-induced apoptosis. The apoptotic effect of TNF-alpha in HL-60 and the transfectants was abrogated by fumonisin, an inhibitor of ceramide generation, and by the peptide Ac-YVAD-BoMK, an inhibitor of caspase-1 and -4. Supplementing HL-525 cells with exogenous ceramides bypassed the PKC-beta deficiency and induced apoptosis, which was also restrained by the caspase-1 and -4 inhibitor. The apoptotic effect of anti-Fas mAb in HL-525 cells was abrogated by the antioxidants N-acetylcysteine and glutathione and by the peptide z-DEVD-FMK, an inhibitor of caspase-3 and -7. We suggest that TNF-alpha-induced apoptosis involves PKC-beta and then ceramide and, in turn, caspase-1 and/or -4, whereas anti-Fas mAb-induced apoptosis utilizes reactive oxygen intermediates and, in turn, caspase-3 and/or -7.  相似文献   

14.
15.
Protein phosphatase 1 (PP1) is a ubiquitous serine/threonine phosphatase that regulates many cellular processes, including cell division. When transiently expressed as fluorescent protein (FP) fusions, the three PP1 isoforms, alpha, beta/delta, and gamma1, are active phosphatases with distinct localization patterns. We report here the establishment and characterization of HeLa cell lines stably expressing either FP-PP1gamma or FP alone. Time-lapse imaging reveals dynamic targeting of FP-PP1gamma to specific sites throughout the cell cycle, contrasting with the diffuse pattern observed for FP alone. FP-PP1gamma shows a nucleolar accumulation during interphase. On entry into mitosis, it localizes initially at kinetochores, where it exchanges rapidly with the diffuse cytoplasmic pool. A dramatic relocalization of PP1 to the chromosome-containing regions occurs at the transition from early to late anaphase, and by telophase FP-PP1gamma also accumulates at the cleavage furrow and midbody. The changing spatio-temporal distribution of PP1gamma revealed using the stable PP1 cell lines implicates it in multiple processes, including nucleolar function, the regulation of chromosome segregation and cytokinesis.  相似文献   

16.
Zhu XF  Liu ZC  Xie BF  Li ZM  Feng GK  Xie HH  Wu SJ  Yang RZ  Wei XY  Zeng YX 《Life sciences》2002,70(11):1259-1269
Annonaceous acetogenins have potent antitumor effect in vitro and in vivo. Squamocin is one of the annonaceous acetogenins and has been reported to have antiproliferative effect on cancer cells. Our results from this study showed that squamocin inhibited proliferation of HL-60 cells with IC50 value of 0.17 microg/ml and induced apoptosis of HL-60 cells. Investigation of the mechanism of squamocin-induced apoptosis revealed that treatment of HL-60 cells with squamocin resulted in extensive nuclear condensation. DNA fragmentation, cleavage of the death substrate poly (ADP-ribose) polymerase (PARP) and induction of caspase-3 activity. Pretreatment of HL-60 cells with caspase-3 specific inhibitor DEVD-CHO prevented squamocin-induced DNA fragmentation, PARP cleavage and cell death. The expression levels of protein bcl-2, bax have no change in response to squamocin treatment in HL-60 cells, whereas stress-activated protein kinase (SAPK/JNK) was activated after treatment with squamocin in HL-60 cells. These results suggest that apoptosis of HL-60 cells induced by squamocin requires caspase-3 activation and is related to SAPK activation.  相似文献   

17.
FSK88, a forskolin derivative, was extracted and purified from cultured tropical plant roots, Coleus forskohlii. Our previous studies have demonstrated that FSK88 can inhibit HL-60 cell proliferation and induce the differentiation of HL-60 cells to monocyte macrophages. In this study, we showed that FSK88 can induce apoptotic death of human gastric cancer BGC823 cells in a dose- and time-dependent manner. Results showed that FSK88-induced apoptosis was accompanied by the mitochondrial release of cytochrome c and activation of caspase-3 in BGC823 cells. Furthermore, treatment with caspase-3 inhibitor (z-DEVD-fmk) was capable of preventing the FSK88-induced caspase-3 activity and apoptosis. FSK88-induced apoptosis in human gastric cancer BGC823 cells was also accompanied by the up-regulation of Bax, Bad and down-regulation of Bcl-2. Theses results clearly demonstrated that the induction of apoptosis by FSK88 involved multiple cellular and molecular pathways and strongly suggest that pro- and anti-apoptotic Bcl-2 family genes, mitochondrial membrane potential (Deltapsi(m)), cytochrome c, and caspase-3, participate in the FSK88-induced apoptotic process in human gastric cancer BGC823 cells.  相似文献   

18.
Glutathione (GSH) is important in free radical scavenging, maintaining cellular redox status, and regulating cell survival in response to a wide variety of toxicants. The rate-limiting enzyme in GSH synthesis is glutamate-cysteine ligase (GCL), which is composed of catalytic (GCLC) and modifier (GCLM) subunits. To determine whether increased GSH biosynthetic capacity enhances cellular resistance to tumor necrosis factor-alpha- (TNF-alpha-) induced apoptotic cell death, we have established several mouse liver hepatoma (Hepa-1) cell lines overexpressing GCLC and/or GCLM. Cells overexpressing GCLC alone exhibit modest increases in GCL activity, while cells overexpressing both subunits have large increases in GCL activity. Importantly, cells overexpressing both GCL subunits exhibit increased resistance to TNF-induced apoptosis as judged by a loss of redox potential; mitochondrial membrane potential; translocation of cytochrome c to the cytoplasm; and activation of caspase-3, caspase-8, and caspase-9. Analysis of the effects of TNF on these parameters indicates that maintaining mitochondrial integrity mediates this protective effect in GCL-overexpressing cells.  相似文献   

19.
Unlike other caspases, caspase-2 appears to be a nuclear protein although immunocytochemical studies have suggested that it may also be localized to the cytosol and golgi. Where and how caspase-2 is activated in response to apoptotic signals is not clear. Earlier immunocytochemistry studies suggest that caspase-2 is activated in the nucleus and through cleavage of BID leads to increased mitochondrial permeability. More recent studies using bimolecular fluorescence complementation found that caspase-2 oligomerization that leads to activation only occurs in the cytoplasm. Thus, apoptotic signals may lead to activation of caspase-2 which may already reside in the cytoplasm or lead to release of nuclear caspase-2 to the extra-nuclear cytoplasmic compartment. It has not been possible to study release of nuclear caspase-2 to the cytoplasm by cell fractionation studies since cell lysis is known to release nuclear caspase-2 to the extra-nuclear fraction. This is similar to what is known about unliganded nuclear estrogen receptor-α (ERα ) when cells are disrupted. In this study we found that pre-treatment of cells with N-ethylmaleimide (NEM), which alkylates cysteine thiol groups in proteins, completely prevents redistribution of caspase-2 and ERα from the nucleus to the extra-nuclear fraction when cells are lysed. Using this approach we provide evidence that apoptotic signals rapidly leads to a shift of caspase-2 from the nucleus to the extra-nuclear fraction, which precedes the detection of apoptosis. These findings are consistent with a model where apoptotic signals lead to a rapid shift of caspase-2 from the nucleus to the cytoplasm where activation occurs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号