首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study describes the effects of mixtures of xanthan gum and galactomannan, guar gum, or locust bean gum, on the lipids in plasma and liver in non-diabetic and diabetic rats. Non-diabetic rats were fed cholesterol-free diets with 3% guar gum, locust bean gum, or xanthan gum (3G, 3L, and 3X), or a mixture of xanthan gum and guar gum or locust bean gum (1:2, w/w) (2G1X, 2L1X) for 2 weeks. Rats fed diets not containing these polysaccharides were used as controls. The total cholesterol in plasma and the triacylglycerol in liver were significantly lowered in rats fed the 2G1X diet. The 3G, 3X, 3L, and 2L1X diets showed no significant effect on the total cholesterol and triacylglycerol in plasma and liver. In the streptozotocin-induced (STZ) diabetic rats, the total cholesterol in plasma was lowered in rats fed the 3G, 3X or 2G1X diet for 4 weeks, and the 2G1X diet was more effective than the 3G and 3X diets. The triacylglycerol in plasma in STZ diabetic rats was also significantly lowered by the 2G1X diet. These results showed that a mixture of xanthan gum and guar gum has an improved hypolipidemic effect on non-diabetic and STZ diabetic rats. The effects of the 2G1X diet on the diabetic symptoms in STZ diabetic rats, suppression of food and water intakes, decrease in glucose in urine, and lowering of plasma glucose, were also observed.  相似文献   

2.
This study describes the effects of mixtures of xanthan gum and galactomannan, guar gum, or locust bean gum, on the lipids in plasma and liver in non-diabetic and diabetic rats. Non-diabetic rats were fed cholesterol-free diets with 3% guar gum, locust bean gum, or xanthan gum (3G, 3L, and 3X), or a mixture of xanthan gum and guar gum or locust bean gum (1:2, w/w) (2G1X, 2L1X) for 2 weeks. Rats fed diets not containing these polysaccharides were used as controls. The total cholesterol in plasma and the triacylglycerol in liver were significantly lowered in rats fed the 2G1X diet. The 3G, 3X, 3L, and 2L1X diets showed no significant effect on the total cholesterol and triacylglycerol in plasma and liver. In the streptozotocin-induced (STZ) diabetic rats, the total cholesterol in plasma was lowered in rats fed the 3G, 3X or 2G1X diet for 4 weeks, and the 2G1X diet was more effective than the 3G and 3X diets. The triacylglycerol in plasma in STZ diabetic rats was also significantly lowered by the 2G1X diet. These results showed that a mixture of xanthan gum and guar gum has an improved hypolipidemic effect on non-diabetic and STZ diabetic rats. The effects of the 2G1X diet on the diabetic symptoms in STZ diabetic rats, suppression of food and water intakes, decrease in glucose in urine, and lowering of plasma glucose, were also observed.  相似文献   

3.
Four cyanobacterial strains, Cyanothece sp., Oscillatoria sp., Nostoc sp. and Nostoc carneum were studied for physico-chemical characterization of extracellular polysaccharide (EPS) secreted during the controlled growth condition. Hydrolyzed EPSs showed the compositional involvement of four sugar moieties viz. mannose, glucose, xylose and ribose in varying combinations. Infrared spectra of EPSs showed a specific absorbance of O-H stretching at 3448-3400 cm(-1), asymmetrical-symmetrical C-H stretching at 2924 and 2854 cm(-1) and a bending vibration of C-H at 1400-1380 cm(-1). Absorbance at 1259 and 1140 cm(-1) with Cyanothece sp. EPS, indicated the presence of sulfur containing functional group. Thermal gravimetric analysis and differential scanning calorimetric analysis confirmed the polysaccharides thermal stability as high as around 250 degrees C. In the presence of 0.1 M NaCl aqueous solution, the intrinsic viscosity of polysaccharides from Oscillatoria sp. and Nostoc sp. decreased 1.6 fold, whereas, 3-5 fold reduction in intrinsic viscosity was observed with commercially available guar and xanthan gum.  相似文献   

4.
《Carbohydrate research》1985,138(2):207-213
The non-Newtonian behavior and dynamic viscoelasticity of a series of aqueous mixtures of xanthan and guar gum were measured with a rheogoniometer. At a concentration of 0.2% of total gums, gelation did not occur at room temperature but occurred at a low temperature (0°). A much stronger interaction was observed with a mixture of deacetylated xanthan than that with native xanthan. The maximum dynamic modulus was obtained when the ratio of xanthan to guar gum was 2:1. The transition temperatures of dynamic viscoelasticity for mixtures with native and deacetylated xanthan were observed at 25 and 30°, respectively. It was concluded that the side chains of the guar gum molecular prevent an intermolecular interaction with the side chains of the xanthan molecule. An intermolecular interaction between xanthan and guar gum at low temperature might be promoted between the periphery of the side chains of the xanthan molecule and the backbone of the guar gum molecule and dissociation takes place at the transition temperature.  相似文献   

5.
The objectives were to characterize propranolol hydrochloride-loaded matrix tablets using guar gum, xanthan gum, and hydroxypropylmethylcellulose (HPMC) as rate-retarding polymers. Tablets were prepared by wet granulation using these polymers alone and in combination, and physical properties of the granules and tablets were studied. Drug release was evaluated in simulated gastric and intestinal media. Rugged tablets with appropriate physical properties were obtained. Empirical and semi-empirical models were fit to release data to elucidate release mechanisms. Guar gum alone was unable to control drug release until a 1:3 drug/gum ratio, where the release pattern matched a Higuchi profile. Matrix tablets incorporating HPMC provided near zero-order release over 12 h and erosion was a contributing mechanism. Combinations of HPMC with guar or xanthan gum resulted in a Higuchi release profile, revealing the dominance of the high viscosity gel formed by HPMC. As the single rate-retarding polymer, xanthan gum retarded release over 24 h and the Higuchi model best fit the data. When mixed with guar gum, at 10% or 20% xanthan levels, xanthan gum was unable to control release. However, tablets containing 30% guar gum and 30% xanthan gum behaved as if xanthan gum was the sole rate-retarding gum and drug was released by Fickian diffusion. Release profiles from certain tablets match 12-h literature profiles and the 24-h profile of Inderal® LA. The results confirm that guar gum, xanthan gum, and HPMC can be used for the successful preparation of sustained release oral propranolol hydrochoride tablets.  相似文献   

6.
A mannanase was purified from a cell-free extract of the recombinant Escherichia coli carrying a Bacillus subtilis WL-3 mannanase gene. The molecular mass of the purified mannanase was 38 kDa as estimated by SDS-PAGE. Optimal conditions for the purified enzyme occurred at pH 6.0 and 60 degrees C. The specific activity of the purified mannanase was 5,900 U/mg on locust bean gum (LBG) galactomannan at pH 6.0 and 50 degrees C. The activity of the enzyme was slightly inhibited by Mg(2+), Ca(2+), EDTA and SDS, and noticeably enhanced by Fe(2+). When the enzyme was incubated at 4 degrees C for one day in the presence of 3 mM Fe(2+), no residual activity of the mannanase was observed. The enzyme showed higher activity on LBG and konjac glucomannan than on guar gum galactomannan. Furthermore, it could hydrolyze xylans such as arabinoxylan, birchwood xylan and oat spelt xylan, while it did not exhibit any activities towards carboxymethylcellulose and para-nitrophenyl-beta-mannopyranoside. The predominant products resulting from the mannanase hydrolysis were mannose, mannobiose and mannotriose for LBG or mannooligosaccharides including mannotriose, mannotetraose, mannopentaose and mannohexaose. The enzyme could hydrolyze mannooligosaccharides larger than mannobiose.  相似文献   

7.
AIMS: To determine the possibility of using guar gum, a colloidal polysaccharide, as a cheap alternative to agar for gelling microbial culture media. METHODS AND RESULTS: As illustrative examples, 12 fungi and 11 bacteria were cultured on media solidified with either guar gum or agar. All fungi and bacteria exhibited normal growth and differentiation on the media gelled with guar gum. Microscopic examination of the fungi and bacteria grown on agar or guar gum gelled media did not reveal any structural differences. However, growth of most of the fungi was better on guar gum media than agar, and correspondingly, sporulation was also more advanced on the former. Bacterial enumeration studies carried out for Serratia sp. and Pseudomonas sp. by serial dilution and pour-plate method yielded similar counts on both agar and guar gum. Likewise, a selective medium, succinate medium used for growth of Pseudomonas sp. did not support growth of Bacillus sp. when inoculated along with Pseudomonas on both agar or guar gum supplemented medium. CONCLUSIONS: Guar gum, a galactomannan, which is 50 times cheaper than Difco-bacto agar, can be used as a gelling agent in place of agar in microbial culture media. SIGNIFICANCE AND IMPACT OF THE STUDY: As the media gelled with guar gum do not melt at temperature as high as 70 degrees C, these can be used for isolation and maintenance of thermophiles.  相似文献   

8.
The dietary fiber guar gum has beneficial effects on obesity, hyperglycemia and hypercholesterolemia in both humans and rodents. The major products of colonic fermentation of dietary fiber, the short-chain fatty acids (SCFAs), have been suggested to play an important role. Recently, we showed that SCFAs protect against the metabolic syndrome via a signaling cascade that involves peroxisome proliferator-activated receptor (PPAR) γ repression and AMP-activated protein kinase (AMPK) activation. In this study we investigated the molecular mechanism via which the dietary fiber guar gum protects against the metabolic syndrome. C57Bl/6J mice were fed a high-fat diet supplemented with 0% or 10% of the fiber guar gum for 12 weeks and effects on lipid and glucose metabolism were studied. We demonstrate that, like SCFAs, also guar gum protects against high-fat diet-induced metabolic abnormalities by PPARγ repression, subsequently increasing mitochondrial uncoupling protein 2 expression and AMP/ATP ratio, leading to the activation of AMPK and culminating in enhanced oxidative metabolism in both liver and adipose tissue. Moreover, guar gum markedly increased peripheral glucose clearance, possibly mediated by the SCFA-induced colonic hormone glucagon-like peptide-1. Overall, this study provides novel molecular insights into the beneficial effects of guar gum on the metabolic syndrome and strengthens the potential role of guar gum as a dietary-fiber intervention.  相似文献   

9.
Many phytopathogenic bacteria, such as Ralstonia solanacearum, Pantoea stewartii, and Xanthomonas campestris, produce exopolysaccharides (EPSs) that aid in virulence, colonization, and survival. EPS can also contribute to host xylem vessel blockage. The genome of Xylella fastidiosa, the causal agent of Pierce's disease (PD) of grapevine, contains an operon that is strikingly similar to the X. campestris gum operon, which is responsible for the production of xanthan gum. Based on this information, it has been hypothesized that X. fastidiosa is capable of producing an EPS similar in structure and composition to xanthan gum but lacking the terminal mannose residue. In this study, we raised polyclonal antibodies against a modified xanthan gum polymer similar to the predicted X. fastidiosa EPS polymer. We used enzyme-linked immunosorbent assay to quantify production of EPS from X. fastidiosa cells grown in vitro and immunolocalization microscopy to examine the distribution of X. fastidiosa EPS in biofilms formed in vitro and in planta and assessed the contribution of X. fastidiosa EPS to the vascular occlusions seen in PD-infected grapevines.  相似文献   

10.
Spray dried microcapsules of mint oil were prepared using gum Arabic alone and its blends with radiation or enzymatically depolymerized guar gum as wall materials. Microcapsules were evaluated for retention of mint oil during 8-week storage during which qualitative changes in encapsulated mint oil was monitored using principal component analysis. The microcapsules with radiation depolymerized guar gum as wall material component could better retain major mint oil compounds such as menthol and isomenthol. The t(1/2) calculated for mint oil in microcapsules of gum Arabic, gum Arabic:radiation depolymerized guar gum (90:10), gum Arabic:enzyme depolymerized guar gum (90:10) was 25.66, 38.50, and 17.11 weeks, respectively. The results suggested a combination of radiation depolymerized guar gum and gum Arabic to show better retention of encapsulated flavour than gum Arabic alone as wall material.  相似文献   

11.
A novel exopolysaccharide (EPS) produced by Lactobacillus sake 0-1 (CBS 532.92) has been isolated and characterized. When the strain was grown on glucose, the produced EPS contained glucose and rhamnose in a molar ratio of 3:2 and the average molecular mass distribution (M(infm)) was determined at 6 x 10(sup6) Da. At a concentration of 1%, the 0-1 EPS had better viscosifying properties than xanthan gum when measured over a range of shear rates from 0 to 300 s(sup-1), while shear-thinning properties were comparable. Rheological data and anion-exchange chromatography suggested the presence of a negatively charged group in the EPS. Physiological parameters for optimal production of EPS were determined in batch fermentation experiments. Maximum EPS production was 1.40 g (middot) liter(sup-1), which was obtained when L. sake 0-1 had been grown anaerobically at 20(deg)C and pH 5.8. When cultured at lower temperatures, the EPS production per gram of biomass increased from 600 mg at 20(deg)C to 700 mg at 10(deg)C but the growth rate in the exponential phase decreased from 0.16 to 0.03 g (middot) liter(sup-1) (middot) h(sup-1). EPS production started in the early growth phase and stopped when the culture reached the stationary phase. Growing the 0-1 strain on different energy sources such as glucose, galactose, mannose, fructose, lactose, and sucrose did not alter the composition of the EPS produced.  相似文献   

12.
The cyanobacterium (blue-green alga) Anabaena sp. ATCC 33047 produces an exopolysaccharide (EPS) during the stationary growth phase in batch culture. Chemical analysis of EPS revealed a heteropolysaccharidic nature, with xylose, glucose, galactose, and mannose the main neutral sugars found. The infrared (IR) spectrum of EPS showed absorption bands of carboxylate groups. The average molecular mass of the polymer was 1.35 MDa. Aqueous dispersions at EPS concentrations ranging from 0.2% to 0.6% (w/w) showed marked shear-thinning properties (power-law behavior). Linear dynamic viscoelastic properties showed that the elastic component was always higher than the viscous component. Viscous and viscoelastic properties demonstrated the absence of conformational changes within the concentration range studied. Stress-growth experiments revealed that 0.4% and 0.6% (w/w) EPS dispersions showed thixotropic properties. A detailed comparison of the linear dynamic viscoelasticity, transient flow, and decreasing shear rate flow curve properties was made for 0.4% (w/w) dispersions of xanthan gum (XG), Alkemir 110 (AG), and EPS. Viscoelastic spectra demonstrated that the EPS dispersion turned out to be more "fluidlike" than the AG and XG dispersions. The flow indexes indicated that the EPS dispersion was less shear-sensitive than that of XG, showing essentially the same viscosity, that is, >50 s(-1). The fact that viscosities of EPS and AG dispersions were not substantially different within the shear-rate range covered must be emphasized, in relation to EPS potential applications. The rheological behavior of EPS dispersions indicates the formation of an intermediate structure between a random-coil polysaccharide and a weak gel.  相似文献   

13.
Guar gum was hydrolyzed using cellulase from Aspergillus niger at 5.6 pH and 50°C temperature. Hydrolyzed guar gum sample was characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, dilute solution viscometry and rotational viscometry. Viscometry analysis of native guar gum showed a molecular weight of 889742.06, whereas, after enzymatic hydrolysis, the resultant product had a molecular weight of 7936.5. IR spectral analysis suggests that after enzymatic hydrolysis of guar gum there was no major transformation of functional group. Thermal analysis revealed no major change in thermal behavior of hydrolyzed guar gum. It was shown that partial hydrolysis of guar gum could be achieved by inexpensive and food grade cellulase (Aspergillus niger) having commercial importance and utilization as a functional soluble dietary fiber for food industry.  相似文献   

14.
Bacteroides ovatus utilizes guar gum, a high-molecular-weight branched galactomannanan, as a sole source of carbohydrate. No extracellular activity was detectable. Approximately 30% of the total cell-associated mannanase activity partitioned with cell membranes. When inner and outer membranes of B. ovatus were separated on sucrose gradients, the mannanase activity was associated mainly with fractions containing outer membranes. Enzyme activity was solubilized by 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS) or by Triton X-100 at a detergent-to-protein ratio of 1:1. The enzyme was stable for only 4 h at 37 degrees C and for 50 to 60 h at 4 degrees C. Analysis of the products of the CHAPS-solubilized mannanase on Bio-Gel A-5M and Bio-Gel P-10 gel filtration columns indicated that the enzyme breaks guar gum into high-molecular-weight fragments. The CHAPS-solubilized mannanase was partially purified by chromatography on a FPLC Mono Q column. The partially purified mannanase preparation contained three major polypeptides (Mr 94,500, 61,000, and 43,000) and several minor ones. High mannanase activity was seen only when B. ovatus was grown on guar gum. Cross-absorbed antiserum detected two other guar gum-associated outer membrane proteins: a CHAPS-extractable 49,000-dalton polypeptide and a 120,000-dalton polypeptide that was not solubilized by CHAPS. Neither of these polypeptides was detectable in the partially purified mannanase preparation. These results indicate that there are at least two guar gum-associated outer membrane polypeptides other than the mannanase.  相似文献   

15.
The Gram-negative bacterium Xylella fastidiosa was the first plant pathogen to be completely sequenced. This species causes several economically important plant diseases, including citrus variegated chlorosis (CVC). Analysis of the genomic sequence of X. fastidiosa revealed a 12 kb DNA fragment containing an operon closely related to the gum operon of Xanthomonas campestris. The presence of all genes involved in the synthesis of sugar precursors, existence of exopolysaccharide (EPS) production regulators in the genome, and the absence of three of the X. campestris gum genes suggested that X. fastidiosa is able to synthesize an EPS different from that of xanthan gum. This novel EPS probably consists of polymerized tetrasaccharide repeating units assembled by the sequential addition of glucose-1-phosphate, glucose, mannose and glucuronic acid on a polyprenol phosphate carrier.  相似文献   

16.
Polarization microscopy has been used to investigate the structure of 50/50 xanthan/galactomannan (guar gum or locust bean gum) mixtures in aqueous solution, the total concentration ranging from 0.5 to 4%. By the use of polarized light microscopy birefringent areas resulting from the formation of cholesteric mesophases in xanthan gum was clearly seen as has previously been reported by several authors. In xanthan/galactomannan mixtures, we also observed birefringent areas. Moreover, these zones in the blend appeared more anisotropic than with xanthan gum alone. This suggests that xanthan molecules organize themselves as liquid crystalline mesophases in definite enriched xanthan areas resulting from a concentration of xanthan inside these birefringent zones. Upon heating, this anisotropy disappears at a temperature well below the helix-coil transition temperature of xanthan molecules. In fact, this loss of order of the mixed system occurs at the same temperature as the melting temperature of the gel, as assessed by the use of rheological measurements. Since the ordered helical structure of the xanthan molecules still exists beyond the melting temperature while anisotropy disappears, this suggests that the xanthan molecules are no longer concentrated in specific areas but more evenly distributed in the medium. Gel melting would, therefore, be the result of the disappearance of these xanthan enriched areas.  相似文献   

17.
The use of entomopathogenic nematodes on cabbage leaves against larvae of the diamondback moth (DBM) Plutella xylostella requires the addition of formulation adjuvants to achieve satisfying control. Without adjuvants nematodes settle in the tank mix of backpack sprayers causing uneven distribution. The polymers arabic and guar gum, alginate and xanthan were used in concentrations between 0.05 and 0.3% to retard sedimentation of Steinernema carpocapsae. Arabic gum had no effect, guar gum prevented sedimentation at 0.3% but the effect dropped significantly at lower concentration. At 0.05%, xanthan prevented nematode sedimentation better than alginate. Deposition of nematodes on the leaves was significantly increased by the addition of any of the polymers. Spraying nematodes on leaves with an inclination of 45° without the addition of any formulation resulted in 70% run-off. Adding 0.2% alginate or xanthan reduced the losses to <20%. The use of a surfactant–polymer formulation significantly reduced defoliation by DBM larvae. Visual examinations provided evidence that nematodes are not ingested by DBM larvae. Invasion of S. carpocapsae is an active process via the anus. The function of the formulation is not to prolong nematode survival, but to provide environmental conditions which enable rapid invasion of the nematodes. Nematode performance was improved by selection of the best surfactant in combination with xanthan and by optimisation of the concentrations of the surfactant Rimulgan® and the polymer xanthan. The best control results were achieved with Rimulgan® at 0.3% together with 0.3% xanthan, causing DBM mortality of >90% at 80% relative humidity and >70% at 60%. The formulation lowered the LC50 from 12 to 1 nematode/larva. The viscosity of the surfactant–polymer formulations correlated well with nematode efficacy, prevention of sedimentation and adherence to the leave. This physical parameter can therefore be recommended for improvement of nematode formulations to be used for foliar application against DBM.  相似文献   

18.
Batch xanthan fermentations by Xanthomonas campestris NRRL B-1459 at various temperatures ranging between 22 degrees C and 35 degrees C were studied. At 24 degrees C or lower, xanthan formation lagged significantly behind cell growth, resembling typical secondary metabolism. However, at 27 degrees C and higher, xanthan biosynthesis followed cell growth from the beginning of the exponential phase and continued into the stationary phase. Cell growth at 35 degrees C was very slow; the specific growth rate was near zero. The specific growth rate had a maximum value of 0.26 h(-1) at temperatures between 27 degrees C and 31 degrees C. Cell yield decreased from 0.53 g/g glucose at 22 degrees C to 0.28 g/g glucose at 33 degrees C, whereas xanthan yield increased from 54% at 22 degrees C to 90% at 33 degrees C. The specific xanthan formation rate also increased with increasing temperature. The pyruvate content of xanthan produced at various temperatures ranged between 1.9% and 4.5%, with the maximum occurring between 27 degrees C and 30 degrees C. These results suggest that the optimal temperatures for cell growth are between 24 degrees C and 27 degrees C, whereas those for xanthan formation are between 30 degrees C and 33 degrees C. For single-stage batch fermentation, the optimal temperature for xanthan fermentation is thus dependent on the design criteria (i. e., fermentation rate, xanthan yield, and gum qualities). However, a two-stage fermentation process with temperature shift-up from 27 degrees C to 32 degrees C is suggested to optimize both cell growth and xanthan formation, respectively, at each stage, and thus to improve overall xanthan fermentation.  相似文献   

19.
Many phytopathogenic bacteria, such as Ralstonia solanacearum, Pantoea stewartii, and Xanthomonas campestris, produce exopolysaccharides (EPSs) that aid in virulence, colonization, and survival. EPS can also contribute to host xylem vessel blockage. The genome of Xylella fastidiosa, the causal agent of Pierce's disease (PD) of grapevine, contains an operon that is strikingly similar to the X. campestris gum operon, which is responsible for the production of xanthan gum. Based on this information, it has been hypothesized that X. fastidiosa is capable of producing an EPS similar in structure and composition to xanthan gum but lacking the terminal mannose residue. In this study, we raised polyclonal antibodies against a modified xanthan gum polymer similar to the predicted X. fastidiosa EPS polymer. We used enzyme-linked immunosorbent assay to quantify production of EPS from X. fastidiosa cells grown in vitro and immunolocalization microscopy to examine the distribution of X. fastidiosa EPS in biofilms formed in vitro and in planta and assessed the contribution of X. fastidiosa EPS to the vascular occlusions seen in PD-infected grapevines.  相似文献   

20.
Suthar S 《Bioresource technology》2006,97(18):2474-2477
Recycling of guar gum industrial waste through vermitechnology was studied under laboratory conditions by using composting earthworm Perionyx excavatus (Perrier). Three different combination of guar gum industrial waste namely guar gum industrial waste:cow dung:saw dust in 40:30:30 ratio (T1), guar gum industrial waste:cow dung:saw dust in 60:20:20 ratio (T2), and guar gum industrial waste:cow dung:saw dust in 75:15:10 ratio (T3) were used for vermicomposting experiments. Chemical changes during vermicomposting were measured and comparatively T2 showed great increase (from its initial level) for total N (25.4%), phosphorus (72.8%) and potassium (20.9%) than the other treatments. T2 also showed higher vermicomposting coefficient (VC), higher mean biomass for P. excavatus (146.68 mg) and higher cocoon production (about 21.9% and 645.5% more than the T1 and T3, respectively). Maximum earthworm mortality during vermicomposting was recorded with T3 treatment while zero mortality was recorded for T2 treatment after 150 days. Overall, T2 treatment appeared to be an ideal combination for enhancing maximum biopotential of earthworms to management guar gum industrial waste as well as for earthworm biomass and cocoon production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号