首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Our current knowledge about the forces leapers generate and absorb is very limited and based exclusively on rigid force platform measurements. In their natural environments, however, leapers take off and land on branches and tree trunks, and these may be compliant. We evaluated the influence of substrate properties on leaping kinetics in prosimian leapers by using a combined field and laboratory approach. Tree sway and the timing of takeoffs relative to the movements of trees were documented for animals under natural conditions in Madagascar. Field data collected on three species (Indriindri, Propithecus diadema, Propithecus verreauxi) indicate that in the majority of takeoffs, the substrate sways and the animals takeoff before the elastic rebound of the substrate. This implies that force is “wasted” to deform supports. Takeoff and landing forces were measured in an experimental setting with a compliant force pole at the Duke University Primate Center. Forces were recorded for 2 Propithecus verreauxi and 3 Hapalemur griseus. Peak takeoff forces were 9.6 (P. verreauxi) and 10.3 (H. griseus) times body weight, whereas peak landing forces were 6.7 (P. verreauxi) and 8.4 (H. griseus) times body weight. As part of the impulse generated does not translate into leaping distance but is used to deform the pole, greater effort is required to reach a given target substrate, and, consequently, takeoff forces are high. The landing forces, on the other hand, are damped by the pole/substrate yield that increases the time available for deceleration. Our results contrast with previous studies of leaping forces recorded with rigid platform measuring systems that usually report higher landing than takeoff forces. We conclude that 1) Leapers generate and are exposed to exceptionally high locomotory forces. The takeoff forces are higher than the landing forces when using compliant supports, indicating that the takeoff rather than the landing may be critical in interpreting leaping behavior and related aspects of muscu-loskeletal design. 2) Large-bodied vertical clingers and leapers do not usually take advantage of the elastic energy stored in substrates. Rather, force (and energy) is wasted to deform compliant supports. 3) A compliant force pole approximates the conditions faced by large-bodied vertical clingers and leapers in the wild more closely than do rigid force platforms. © 1995 Wiley-Liss, Inc.  相似文献   

2.
We present the results of a 4-month field investigation of positional behavior, vertical ranging, and species differences in limb proportions and body mass in a mixed-species troop of Saguinus fuscicollis, Saguinus labiatus, and Callimico goeldii in northwestern Brazil. Despite certain similarities in overall positional repertoire, patterns of positional behavior varied significantly between species. Travel in Callimico occurred principally in the lowest levels of the canopy, and was characterized by an exaggerated form of hindlimb-dominated bounding (bounding-hop), and leaping to and from vertical trunks (55.1% of leaps). In contrast, saddle-back tamarins traveled in the lower and middle levels of the canopy, and engaged in a range of leaping behaviors, including stationary leaps (37.3%), acrobatic leaps (31.3%), and trunk-to-trunk leaps (20%). Red-bellied tamarins exploited the highest levels of the arboreal canopy. Travel in this species was dominated by quadrupedal bounding and acrobatic leaps (67% of leaps) that began and ended on thin, flexible supports. Species differences in positional behavior correlated with species differences in limb proportions and locomotor anatomy, and provide a framework for understanding niche partitioning in mixed-species troops of Saguinus and Callimico.  相似文献   

3.
Napier and Walker’s (1967) locomotor category of vertical clinging and leaping (VC&L) is one of the most familiar in primatology, and tarsiers are probably the most morphologically specialized of its membership. However, the link between vertical clinging and leaping remains unelucidated. We attempt to do so by reanalysis of Crompton’s 1985 and 1986 field observations of locomotion and habitat use in Tarsius bancanus, using loglinear modeling. Loglinear modeling is better suited to the categorical variables used in many field studies than more traditional statistics, such as ANOVA, developed for continuous variables. We show that climbing, as well as leaping, is one of the predominant forms of locomotion, and that all other things being equal, tarsiers tend to take off from, and land on, similar sized supports, which suggests that the following findings are not likely to be a result of substrate availability alone. Small body size lead to a prediction that tarsiers should leap down but climb up: this was not sustained: rather leaps tend to be level, and climbing accounts for more height loss than randomly expected. However, a prediction that to avoid energy loss to the substrate, the tarsiers should show a preference for large diameter supports for takeoff when leaping longer distances was supported, although tarsiers do not avoid moderately compliant supports. The prediction from ballistic principles that the longest leaps should start from high-angled supports was only weakly sustained, but low-angled supports tend to be strongly associated with short leaps, suggesting that such supports do not facilitate 45° takeoff trajectories. However, tarsiers displayed a preference for landing on medium-sized supports when leaping long distances, suggesting a preference for balancing the need for stability with minimizing musculoskeletal shock.  相似文献   

4.
I observed leaping behavior in the white-faced saki (Pithecia pithecia) and the black-bearded saki (Chiropotes satanas satanas) for 15 and 10 months, respectively, as part of a larger study of positional behavior in the tribe Pitheciini. I used focal animal instantaneous sampling to observe the two species on separate islands in their natural habitat at Guri Lake, Venezuela. Leaping behavior correlates with patterns of forest use and body size, and differences between the species relate more to habitat preferences than to habitat differences per se. Pithecia usually chose vertical or highly angled supports of lower tree portions for take-off and landing, and took off from a stationary posture. Chiropotes took off from the main crown or terminal branches, gaining momentum from locomotor movement before performing a leaping take-off. Pithecia's vertical body orientation and longer leap distance allowed it to assume a mid-flight tuck to prepare for a hindlimb-first landing onto a solid support, and to absorb landing forces with its relatively longer hindlimbs. Chiropotes remained more pronograde throughout its leaps, and minimized landing forces by landing on all four limbs onto numerous flexible supports in the terminal branches. The smaller-bodied P. pithecia is specialized for vertical clinging and leaping, and exhibits behavioral and morphological parallels with other vertical clingers and leapers. The larger C. satanas is a generalized leaper that lacks morphological specializations for leaping. Pithecia's use of solid supports in the lower tree portions allows it to move quietly through the forest-one of a suite of behaviors related to predator avoidance. This example of variation within one behavioral category has implications for devising locomotor classifications and interpreting fossil remains.  相似文献   

5.
The cyanobacterium Spirulina platensis was used to verify the possibility of employing microalgal biomass to reduce the contents of nitrate and phosphate in wastewaters. Batch tests were carried out in 0.5 dm3 Erlenmeyer flasks under conditions of light limitation (40 mol quanta m–2 s–1) at a starting biomass level of 0.50 g/dm3 and varying temperature in the range 23–40°C. In this way, the best temperature for the growth of this microalga (30°C) was determined and the related thermodynamic parameters were estimated. All removed nitrate was used for biomass growth (biotic removal), whereas phosphate appeared to be removed mainly by chemical precipitation (abiotic removal). The best results in terms of specific and volumetric growth rates ( =0.044 day–1, Q x =33.2 mg dm–3 day–1) as well as volumetric rate and final yield of nitrogen removal ( =3.26 mg dm–3 day–1, =0.739) were obtained at 30°C, whereas phosphorus was more effectively removed at a lower temperature. In order to simulate full-scale studies, batch tests of nitrate and phosphate removal were also performed in 5.0 dm3 vessels (mini-ponds) at the optimum temperature (30°C) but increasing the photon fluence rate to 80 mol quanta m–2 s–1 and varying the initial biomass concentration from 0.25 to 0.86 g/dm3. These additional tests demonstrated that an increase in the inoculum level up to 0.75 g/dm3 enhanced both NO3 and PO4 3– removal, confirming a strict dependence of these processes on biomass activity. In addition, the larger surface area of the ponds and the higher light intensity improved removal yields and kinetics compared to the flasks, particularly concerning phosphorus removal ( =0.032–0.050 day–1, Q x =34.7–42.4 mg dm–3 day–1, =3.24–4.06 mg dm–3 day–1, =0.750–0.879, =0.312–0.623 mg dm–3 day–1, and =0.224–0.440).  相似文献   

6.
This study assessed the genotype by environment (G × E) interaction for diameter growth in 15 Eucalyptus globulus progeny trials in Australia. Single-site analyses revealed significant subrace and family-within-subrace variance in all trials. Across-site subrace () and family () correlations were estimated by linear mixed model analyses of pairs of trials. Using a factor analytic structure for subrace and family random terms in a multi-environment mixed model analysis, best linear unbiased predictions of subrace effects were obtained for each trial. These were then averaged for each of four states (Victoria, Tasmania, South Australia and Western Australia) and across all sites. Statistically significant G × E interaction was detected, and weighted means across states for and were 0.73 and 0.76, respectively. Nevertheless, the three subraces from the Otway Ranges were both fast growing and relatively stable in their ranks over all sites. We evaluated the sensitivity of subraces to changing environmental conditions, on the basis of random coefficient models regressing subrace performance on selected trial climatic variables. The results suggested differential susceptibility of subraces to water, light and (to a less extent) temperature stresses during summer. Moreover, using multivariate techniques to visualize and interpret the across-site correlation structure for subrace effects, we could identify site clusters of reduced G × E interaction related to soil water availability and evaporative demand during summer. A revised site-type classification using these factors should allow a better capture of genetic gains from breeding and deployment.  相似文献   

7.
In arboreal animals such as the grey mouse lemur (Microcebus murinus Miller, 1777), leaping is the most frequent strategy for predator avoidance. The aim of this study was to characterise the locomotor adaptation in response to the structural constraint of the habitat (i.e., position of the landing substrate). Thus, we characterised the push-off phase by inducing the lemurs to leap up to a range of heights from horizontal to their own individual highest performance. Using uniplanar high-frequency cineradiographs collected in a sagittal plane, the relative contributions of the centre of mass (CoM) velocity vector magnitude and orientation to leaping performance were evaluated. The kinematics of the push-off phase showed that for low landing heights, leaping performance was essentially due to hip and knee extensions. Higher leaps seemed to be related to an increase in ankle contribution. At all leaping heights, the proximal-to-distal sequence of the hind limb joints controlled the orientation and magnitude of the M. murinus CoM velocity vector while pushing off. Finally, the analysis of the velocity vector at the onset of take-off suggested that the optimal solution for predator avoidance was to leap for horizontal distance and not for vertical distance.  相似文献   

8.
Experiments were performed to optimize the macronutrients concentrations for in vitro rooting of Ceratonia siliqua micropropagated shoots. Several dilutions of Murashige and Skoog (MS) medium were tested: full-strength MS, half-strength MS ( MS), and MS + full N. The frequency of in vitro rooting was enhanced when the MS was used (50 % rooted shoots). Mature leaves from 20 – 30 year-old carob trees and from 2 year-old micropropagated plants were collected and the concentrations of macronutrients (N, P, K, Ca, Mg) assessed. Based on the mineral composition of the leaves a new medium was formulated and compared with the previous ones showing an increment of the rooting frequency to 80 %. Moreover, shoots rooted in the new medium did not show symptoms of apical necrosis that occurred in the other tested media.  相似文献   

9.
The Pacinian corpuscle (PC) is the cutaneous mechanoreceptor responsible for sensation of high-frequency (20–1000 Hz) vibrations. PCs lie deep within the skin, often in multicorpuscle clusters with overlapping receptive fields. We developed a finite-element mechanical model of one or two PCs embedded within human skin, coupled to a multiphysics PC model to simulate action potentials elicited by each PC. A vibration was applied to the skin surface, and the resulting mechanical signal was analyzed using two metrics: the deformation amplitude ratio (\({\rho }_{\mathrm{1S}} \), \({\rho }_{\mathrm{2S}} )\) and the phase shift of the vibration (\({\delta }_{\mathrm{S}1}^{\mathrm{mech}} \), \({\delta }_{\mathrm{S}2}^{\mathrm{mech}} )\) between the stimulus and the PC. Our results showed that the amplitude attenuation and phase shift at a PC increased with distance from the stimulus to the PC. Differences in amplitude (\(\rho _{12} )\) and phase shift (\({\delta }_{12}^{\mathrm{mech}} )\) between the two PCs in simulated clusters directly affected the interspike interval between the action potentials elicited by each PC (\({\delta }_{12}^{\mathrm{spike}} )\). While \({\delta }_{12}^{\mathrm{mech}} \) had a linear relationship with \({\delta }_{12}^{\mathrm{spike}} \), \(\rho _{12} \)’s effect on \({\delta }_{12}^{\mathrm{spike}} \) was greater for lower values of \(\rho _{12} \). In our simulations, the separation between PCs and the distance of each PC from the stimulus location resulted in differences in amplitude and phase shift at each PC that caused \({\delta }_{12}^{\mathrm{spike}} \) to vary with PC location. Our results suggest that PCs within a cluster receive different mechanical stimuli which may enhance source localization of vibrotactile stimuli, drawing parallels to sound localization in binaural hearing.  相似文献   

10.
This study examines the levels of gene flow, the distance and the patterns of pollen and seed dispersal, the intra-population spatial genetic structure (SGS) and the effective population size of a spatially isolated Myracrodruon urundeuva population using five microsatellite loci. The study was carried out in the Paulo de Faria Ecological Station, São Paulo State, Brazil and included the sampling and mapping of 467 adult-trees and 149 juveniles. Open-pollinated seeds (514) from 29 seed-trees were also sampled and genotyped. Significant SGS was detected in both adult (S p  = 0.0269) and juveniles trees (S p  = 0.0246), indicating short-distance seed dispersal. Using maternity analysis, all juveniles had the mother-tree assigned within the stand. A father-tree within the stand was also assigned for 97.3% of the juveniles and 98.4% of offspring. The average pollen dispersal distance measured in juveniles \( \left( {\hat{\delta } = 1 3 8\pm 1 6 9 {\text{ m}},{\text{ mean}} \pm {\text{SD}}} \right) \) and offspring \( \left( {\hat{\delta } = 2 5 2\pm 20 4 {\text{ m}}} \right) \) were higher than the average seed dispersal distance measured in juveniles \( \left( {\hat{\delta } = 1 2 4\pm 1 50{\text{ m}}} \right) \). About 70% of the pollen from juveniles and 51% from offspring traveled less than 200 m and, 72% of the seeds traveled less than 50 m. The effective population size of the studied sample indicates that the 467 adult-trees and 145 juveniles correspond respectively to 335 and 63 individuals that are neither inbred nor relatives. The results are discussed in relation to their impact on seed collection practices and genetic conservation.  相似文献   

11.
A 5-month field study on both the distribution and ecology of Callimico goeldii was carried out in the seasonally dry rain forest of north-western Bolivia. The species was found to be very sparsely distributed (approximately one group per 4 km2) in isolated groups of about 6 animals throughout the study area. Callimico was found to associate a great deal with two species of Saguinus that inhabit the same region in greater densities. It appears to be a habitat specialist, preferring low-lying and damp, but well-drained, bamboo forest and spending nearly all its time within 3 m of ground level, travelling mainly by vertical clinging and leaping. We believe that this ecological specialisation accounts for the species' discontinuous micro-distribution, and that this in turn is related to Callimico's distinctive pattern of social organisation.  相似文献   

12.
The C2 fragmentation energies of the most stable isolated-pentagon-rule (IPR) isomers of the C80 and C82 fullerenes were evaluated with second-order Møller-Plesset (MP2) theory, density-functional theory (DFT) and the semiempirical self-consistent charge density-functional tight-binding (SCC-DFTB) method. Zero-point energy, ionization energy and empirical C2 corrections were included in the calculation of fragmentation energies for comparison with experimental C2 fragmentation energies of the fullerene cations. In the case of the most probable Stone-Wales pathway of C2 fragmentation of C80, the calculated \(D_{0} {\left( {{\text{C}}_{{{\text{80}}}} ^{ + } } \right)}\) agree well with experimental data, whereas in the case of C82 fragmentation, the calculated \(D_{0} {\left( {{\text{C}}_{{{\text{82}}}} ^{ + } } \right)}\) exceed by up to 1.2 eV the experimental ones, which suggests that other IPR isomers may be present in sufficient amounts in experimental samples. Computer-intensive MP2 calculations and DFT calculations with larger basis sets do not yield much improved C2 fragmentation energies, compared to those reported earlier with B3LYP/3-21G. On the other hand, semiempirical approaches such as SCC-DFTB, which are orders of magnitude less intensive, yield satisfactory fragmentation energies for higher fullerenes and may become a method of choice for routine calculations of fullerenes and carbon nanotubes.
Figure C2 fragmentation energies of C80 and C82 fullerenes have been calculated with B3LYP/6-31G* model chemistry, with semiempirical self-consistent-charge density-functional tight-binding (SCC-DFTB) method and with the more rigorous MP2 method. The influence of basis set extension and level of theory on the resulting fragmentation energies is discussed
  相似文献   

13.
Mild alkaline hydrolysis of the glycophosphosphingolipids of the protozoanLeptomonas samueli liberated several phosphoinositol-containing oligosaccharides (PI-oligosaccharides), which were purified by high performance anion exchange chromatography. The oligosaccharides in the resulting four fractions were characterized by methylation analysis, fast atom bombardment mass spectrometry and two-dimensional nuclear magnetic resonance spectroscopy. The oligosaccharides contain the core structure Man(1–4)GlcN(1–6)-myo-inositol-1-OPO3, and are substituted with 2mol of 2-aminoethylphosphonate per mol of oligosaccharide. The nonreducing ends of the oligosaccharides were terminated by rhamnose branched neutral and acidic xylose-containing penta-, hexa-, hepta- and octasaccharides, of which the three most abundant were shown to have the structures:
  相似文献   

14.
Four adultTarsius bancanus were followed for a total of over 120 hrs in Sepilok Forest Reserve, Sabah, using radiotracking techniques. Seven hundred and twenty-two records of locomotor and postural behaviour were gathered.Tarsius bancanus travels a mean of 1,800 m per night, over large (4.5 to 11.25 ha) ranges. They move at a mean height of 0.89 m, utilizing primarily vertical sapling trunks of diametre 2 to 4 cm. Lateral movement is carried out largely by leaping.Tarsius were found on the ground in 5.3% of cases, but movement on the ground is very largely restricted to short investigative movements by walking. Climbing is mostly related to foraging behaviour and characteristically occurs on relatively small supports.Tarsius bancanus' locomotion is similar to, but more specialized than that ofT. spectrum, Galago alleni, andGalago senegalensis, all of which have rather similar patterns of habitat utilization. We suggest that the energetic constraints of small body size together with the need to patrol large home ranges may have lead both toTarsius bancanus extreme degree of locomotor specialization and to its exclusive animalivory.  相似文献   

15.
Others have shown that exposing oocytes to high levels of (10–20 mM) causes a paradoxical fall in intracellular pH (pHi), whereas low levels (e.g., 0.5 mM) cause little pHi change. Here we monitored pHi and extracellular surface pH (pHS) while exposing oocytes to 5 or 0.5 mM NH3/NH4 +. We confirm that 5 mM causes a paradoxical pHi fall (−ΔpHi ≅ 0.2), but also observe an abrupt pHS fall (−ΔpHS ≅ 0.2)—indicative of NH3 influx—followed by a slow decay. Reducing [NH3/NH4 +] to 0.5 mM minimizes pHi changes but maintains pHS changes at a reduced magnitude. Expressing AmtB (bacterial Rh homologue) exaggerates −ΔpHS at both levels. During removal of 0.5 or 5 mM NH3/NH4 +, failure of pHS to markedly overshoot bulk extracellular pH implies little NH3 efflux and, thus, little free cytosolic NH3/NH4 +. A new analysis of the effects of NH3 vs. NH4 + fluxes on pHS and pHi indicates that (a) NH3 rather than NH4 + fluxes dominate pHi and pHS changes and (b) oocytes dispose of most incoming NH3. NMR studies of oocytes exposed to 15N-labeled show no significant formation of glutamine but substantial accumulation in what is likely an acid intracellular compartment. In conclusion, parallel measurements of pHi and pHS demonstrate that NH3 flows across the plasma membrane and provide new insights into how a protein molecule in the plasma membrane—AmtB—enhances the flux of a gas across a biological membrane.
Walter F. Boron (Corresponding author)Email:
  相似文献   

16.
From unripe fruits of Bromelia hieronymi Mez (Bromeliaceae), a partially purified protease preparation was obtained by acetone fractionation of the crude extract. Purification was achieved by anionic exchange chromatography (FPLC) on Q-Sepharose HP followed by cationic exchange chromatography (SP-Sepharose HP). Homogeneity of the new enzyme, named hieronymain II, was confirmed by SDS-PAGE and mass spectroscopy (MALDI-TOF-TOF). The molecular mass of was 23,411 Da, and maximum proteolytic activity (more than 90% of maximum activity) was achieved at pH 7.5–9.0 on casein and at pH 7.3–8.3 on Z-Phe-Arg-p-nitroanilide. The enzyme was completely inhibited by E-64 and iodoacetic acid and activated by the addition of cysteine. The N-terminal sequence of hieronymain II (AVPQSIDWRVYGAV) was compared with those of 12 plant cysteine proteases which showed more than 70% of identity. Kinetic enzymatic assays were made on Z-Phe-Arg-p-nitroanilide ( / ). No detectable activity could be found on PFLNA or Z-Arg-Arg-p-nitroanilide.  相似文献   

17.
We prove almost sure exponential stability for the disease-free equilibrium of a stochastic differential equations model of an SIR epidemic with vaccination. The model allows for vertical transmission. The stochastic perturbation is associated with the force of infection and is such that the total population size remains constant in time. We prove almost sure positivity of solutions. The main result concerns especially the smaller values of the diffusion parameter, and describes the stability in terms of an analogue \(\mathcal{R}_\sigma\) of the basic reproduction number \(\mathcal{R}_0\) of the underlying deterministic model, with \(\mathcal{R}_\sigma \le \mathcal{R}_0\). We prove that the disease-free equilibrium is almost sure exponentially stable if \(\mathcal{R}_\sigma <1\).  相似文献   

18.
Ye Q  Holbrook NM  Zwieniecki MA 《Planta》2008,227(6):1311-1319
A steady supply of water is indispensable for leaves to fulfil their photosynthetic function. Understanding water movement in leaves, especially factors that regulate the movement of water flux from xylem to epidermis, requires that the nature of the transport pathway be elucidated. To determine the hydraulic linkage between xylem and epidermis, epidermal cell turgor pressure (P t) in leaves of Tradescantia fluminensis was monitored using a cell pressure probe in response to a 0.2 MPa step change in xylem pressure applied at the leaf petiole. Halftime of P t changes were 10–30 times greater than that of water exchange across an individual cell membrane suggesting that cell-to-cell water transport constitutes a significant part of the leaf hydraulic path from xylem to epidermis. Furthermore, perfusion of H2O2 resulted in increases of both and by a factor of 2.5, indicating that aquaporins may play a role in the xylem to epidermis hydraulic link. The halftime for water exchange did not differ significantly between cells located at the leaf base (2.5 s), middle (2.6 s) and tip (2.5 s), indicating that epidermal cell hydraulic properties are similar along the length of the leaf. Following the pressure application to the xylem (0.2 MPa), P t changed by 0.12, 0.06 and 0.04 MPa for epidermal cells at the base, middle and the tip of the leaf, respectively. This suggests that pressure dissipation between xylem and epidermis is significant, and that the pressure drop along the vein may be due to its structural similarities to a porous pipe, an idea which was further supported by measurements of xylem hydraulic resistance using a perfusion technique.  相似文献   

19.
In Pseudomonas acidovorans, the pathways of 4-hydroxybenzoate and vanillate metabolism converge on the early intermediate, protocatechuate, which undergoes meta-cleavage. The methoxyl group of vanillate is almost completely oxidized, as shown by an experiment with (14C-methoxyl) vanillate. In batch cultures, 4-hydroxybenzoate and vanillate are simultaneously oxidized. Simultaneous oxidation was explained above all by the fact that both substrates mutually repress the ability of the cells to utilize the partner substrate.If P. acidovorans is growing in a turbidostat on one of the two substrates and is suddenly exposed to an equimolar mixture of both substrates, the respiration rates for the two substrates reciprocate, the for the substrate utilized first passing through a transient minimum, that for the added substrate passing through a transient maximum. Finally, a balance appears to be established, the for 4-hydroxybenzoate being slightly above that for vanillate. Transient phenomena also occur if a chemostat culture with both substrates is suddenly operated as a turbidostat culture or if cells not adapted to either substrate are suddenly exposed to a mixture of both substrates in the turbidostat.If a chemostat culture of P. acidovorans, growing at the expense of an equimolar mixture of 4-hydroxybenzoate and vanillate, is operated under conditions of increasing oxygen deficiency, the utilization ratio of the two substrates increases in favour of 4-hydroxybenzoate. However, if the culture is operated under conditions of increasing nitrogen deficiency, the utilization ratio increases in favour of vanillate.Abbreviations 4HB 4-hydroxybenzoate - VA vanillate - OD optical density  相似文献   

20.
Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r ij 2 ] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r ij is greater or less than a cutoff value r cutoff. We have performed spectral decomposition of the distance matrices $ {\mathbf{D}} = \sum {\lambda_{k} {\mathbf{v}}_{k} {\mathbf{v}}_{k}^{T} } Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r ij2] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r ij is greater or less than a cutoff value r cutoff. We have performed spectral decomposition of the distance matrices , in terms of eigenvalues and the corresponding eigenvectors and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r 2—the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r 2 from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 ?, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 ?. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the dynamics. After structure matching, we apply principal component analysis (PCA) to obtain the important apparent motions for both bound and unbound structures. There are significant similarities between the first few key motions and the first few low-frequency normal modes calculated from a static representative structure with an elastic network model (ENM) that is based on the contact matrix C (related to D), strongly suggesting that the variations among the observed structures and the corresponding conformational changes are facilitated by the low-frequency, global motions intrinsic to the structure. Similarities are also found when the approach is applied to an NMR ensemble, as well as to atomic molecular dynamics (MD) trajectories. Thus, a sufficiently large number of experimental structures can directly provide important information about protein dynamics, but ENM can also provide a similar sampling of conformations. Finally, we use distance constraints from databases of known protein structures for structure refinement. We use the distributions of distances of various types in known protein structures to obtain the most probable ranges or the mean-force potentials for the distances. We then impose these constraints on structures to be refined or include the mean-force potentials directly in the energy minimization so that more plausible structural models can be built. This approach has been successfully used by us in 2006 in the CASPR structure refinement ().  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号