首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lipid peroxidation induced by metals at sub-lethal levels, alter physiological and biochemical characteristics of biological systems. To counter the detrimental effects of the prooxidant activity of metals, a group of antioxidant enzyme systems function in the organisms. The present study was performed to investigate into the lipid peroxidation product formation due to the exposure to effects of the metals namely aluminium, lead and cadmium at sub-lethal concentrations and the biological response through protective antioxidant enzyme activity in the marine mussels,Perna viridis Lin. This organism is a known bioindicator and bioconcentrator of metals in the environment.The results of the present study were: (a) accumulation of lead showed a definite linear increase during the period of exposure whereas aluminium and cadmium showed fluctuations. Mantle and gill tissues showed greater accumulation of metals when compared to digestive gland; (b) lead and aluminium induced lipid peroxidation was greater in tissues than the peroxidation induced by cadmium. Cadmium induced peroxidation was observed only after the day 7 of the exposure; (c) anti-oxidant enzymes activity levels were significantly higher in digestive gland and mantle than gills; (d) mantle was observed to significantly contribute to the organismal response to lipid peroxidation as indicated by high activity levels of anti-oxidant enzymes.  相似文献   

2.
Increasing discharge and improper management of liquid and solid industrial wastes have created a great concern among industrialists and the scientific community over their economic treatment and safe disposal. White rot fungi (WRF) are versatile and robust organisms having enormous potential for oxidative bioremediation of a variety of toxic chemical pollutants due to high tolerance to toxic substances in the environment. WRF are capable of mineralizing a wide variety of toxic xenobiotics due to non-specific nature of their extracellular lignin mineralizing enzymes (LMEs). In recent years, a lot of work has been done on the development and optimization of bioremediation processes using WRF, with emphasis on the study of their enzyme systems involved in biodegradation of industrial pollutants. Many new strains have been identified and their LMEs isolated, purified and characterized. In this review, we have tried to cover the latest developments on enzyme systems of WRF, their low molecular mass mediators and their potential use for bioremediation of industrial pollutants.  相似文献   

3.
广州市固体废物管理与处置现状及对策   总被引:3,自引:0,他引:3  
黄小平  胡迪琴 《生态科学》2002,21(2):141-146
分析广州市工业固体废物、危险废物、生活垃圾、余泥渣土等管理与处置现状,揭示广州市现有固体废物管理处置存在的主要问题,并提出对策建议。分析表明,近年广州市工业固体废物年产生量呈上升趋势,工业固体废物排放量有所回升;1999年危险废物实现零排放,医疗垃圾的集中处置率达100%;居民生活垃圾清运处置率达100%。生活垃圾分类收集率为26%,加快了垃圾填埋场的改造和建设;余泥渣土的管理逐步规范化,市区余泥渣土排放工地申领排放证率保持100%。存在问题包括管理上欠长远规划、处置技术落后、二次污染、资源回收率低、资金匮乏等,尤其缺乏对危险废物、废旧电池的集中处置机构。  相似文献   

4.
Polynuclear aromatic hydrocarbons (PAHs) typically exist as complex mixtures in contaminated soils, yet little is known about the biodegradation of PAHs in mixtures. We have isolated two physiologically diverse bacteria, Pseudomonas stutzeri P-16 and P. saccharophila P-15, from a creosote-contaminated soil by enrichment on phenanthrene as the sole carbon source and studied their ability to metabolize several other two- and three-ring PAHs. Naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene served as growth substrates for both organisms, while fluorene was only cometabolized. We also studied the effects of these compounds on initial rates of phenanthrene uptake in binary mixtures. Lineweaver-Burk analysis of kinetic measurements was used to demonstrate competitive inhibition of phenanthrene uptake by all four compounds, suggesting that multiple PAHs are being transformed by a common enzyme pathway in whole cells. Estimates of the inhibition coefficient, Ki, are reported for each compound. The occurrence of competitive metabolic processes in physiologically diverse organisms suggests that competitive metabolism may be a common phenomenon among PAH-degrading organisms.  相似文献   

5.
Goal, Scope and Background The disposal phase of a product’s life cycle in LCA is often neglected or based on coarse indicators like ‘kilogram waste’. The goal of report No. 13 of the ecoinvent project (Doka 2003) is to create detailed Life Cycle Inventories of waste disposal processes. The purpose of this paper is to give an overview of the models behind the waste disposal inventories in ecoinvent, to present exemplary results and to discuss the assessment of long-term emissions. This paper does not present a particular LCA study. Inventories are compiled for many different materials and various disposal technologies. Considered disposal technologies are municipal incineration and different landfill types, including sanitary landfills, hazardous waste incineration, waste deposits in deep salt mines, surface spreading of sludges, municipal wastewater treatment, and building dismantling. The inventoried technologies are largely based on Swiss plants. Inventories can be used for assessment of the disposal of common, generic waste materials like paper, plastics, packaging etc. Inventories are also used within the ecoinvent database itself to inventory the disposal of specific wastes generated during the production phase. Inventories relate as far as possible to the specific chemical composition of the waste material (waste-specific burdens). Certain expenditures are not related to the waste composition and are inventoried with average values (process-specific burdens). Methods The disposal models are based on previous work, partly used in earlier versions of ecoinvent/ETH LCI data. Important improvements were the extension of the number of considered chemical elements to 41 throughout all disposal models and new landfill models based on field data. New inventories are compiled for waste deposits in deep salt mines and building material disposal. Along with the ecoinvent data and the reports, also Excel-based software tools were created, which allow ecoinvent members to calculate waste disposal inventories from arbitrary waste compositions. The modelling of long-term emissions from landfills is a crucial part in any waste disposal process. In ecoinvent long-term emissions are defined as emissions occurring 100 years after present. They are reported in separate emission categories. The landfill inventories include long-term emissions with a time horizon of 60’000 years after present. Results and Discussion As in earlier studies, the landfills prove to be generally relevant disposal processes, as also incineration and wastewater treatment processes produce landfilled wastes. Heavy metals tend to concentrate in landfills and are washed out to a varying degree over time. Long-term emissions usually represent an important burden from landfills. Comparisons between burdens from production of materials and the burdens from their disposal show that disposal has a certain relevance. Conclusion The disposal phase should by default be included in LCA studies. The use of a material not only necessitates its production, but also requires its disposal. The created inventories and user tools facilitate heeding the disposal phase with a similar level of detail as production processes. The risk of LCA-based decisions shifting burdens from the production or use phase to the disposal phase because of data gaps can therefore be diminished. Recommendation and Perspective Future improvements should include the modelling of metal ore refining waste (tailings) which is currently neglected in ecoinvent, but is likely to be relevant for metals production. The disposal technologies considered here are those of developed Western countries. Disposal in other parts of the World can differ distinctly, for logistic, climatic and economic reasons. The cross-examination of landfill models to LCIA soil fate models could be advantageous. Currently only chemical elements, like copper, zinc, nitrogen etc. are heeded by the disposal models. A possible extension could be the modelling of the behaviour of chemical compounds, like dioxins or other hydrocarbons.  相似文献   

6.
The response of hydroxylase activity of cytochrome P-450 from the microsomes of fish liver depends on fish species and on the kind of pollution. Differences in activity of the enzyme in whitefish Coregonus lavaretus and Pike Esox lucius depend on differences in ecology and in sensitivity of species to industrial effluents. Whitefish reacted to pollution by decrease in the activity of cytochrome P-450. In pike the activity of the enzyme increased under the influence of industrial wastewater. Males of both species are less resistant than females to the aforementioned pollutants. With consideration to the obtained results, the determination of activity of cytochropme P-450 may be recommended as the indicator of pollution level of the aquatic environment with industrial waste products, including those containing heavy metals.  相似文献   

7.
Rat lung microsomal cytochrome P-450 (P-450) enzymes have been characterized with regard to their catalytic specificities towards activation of several procarcinogens to genotoxic metabolites in Salmonella typhimurium TA1535/pSK1002. We first examined the roles of rat liver microsomal P-450 enzymes in the activation of benzo[a]pyrene and its 7,8-diol enantiomers to genotoxic products, and found that P-450 1A1 is a major catalyst for the activation of these potential procarcinogens in rat livers. Using lung microsomes isolated from rats treated with various P-450 inducers we obtained evidence that at least three P-450 enzymes are involved in the activation of several procarcinogens. Immunoinhibition studies support the view that benzo[a]pyrene and its 7,8-diol derivatives, other dihydrodiol derivatives of polycyclic aromatic hydrocarbons, and 3-amino-1-methyl-5H-pyrido[4,3-b]indole are activated to genotoxins mainly by rat P-450 1A1, which is inducible in rat lungs by 5,6-benzoflavone and the polychlorinated biphenyl mixture Aroclor 1254. Activation of 2-amino-3,5-dimethylimidazo[4,5-f]quinoline and 2-amino-3-methylimidazo[4,5-f]quinoline may be catalyzed by another P-450 enzyme because the activities were not induced by treatment with 5,6-benzoflavone or Aroclor 1254. The observation that both activities were inhibited by antibodies raised against P-450 1A2 and by 7,8-benzoflavone suggests a role for an enzyme of P-450 1A family, probably P-450 1A2, in rat lung microsomes. The activation of aflatoxin B1 and sterigmatocystin appears to be catalyzed by other P-450 enzyme(s) rather than the P-450 1A family as judged by the different responses of activities to the P-450 inducers and the specific antibodies in rat lung microsomes. Interestingly, lung microsomal activation of several procarcinogens was found to be suppressed in rats treated with isosafrole and pregnenolone 16 alpha-carbonitrile. Thus, the results support the roles of different P-450 enzymes in the activation of procarcinogens in rat lung microsomes.  相似文献   

8.
Developments in industrially important thermostable enzymes: a review   总被引:41,自引:0,他引:41  
Cellular components of thermophilic organisms (enzymes, proteins and nucleic acids) are also thermostable. Apart from high temperature they are also known to withstand denaturants of extremely acidic and alkaline conditions. Thermostable enzymes are highly specific and thus have considerable potential for many industrial applications. The use of such enzymes in maximising reactions accomplished in the food and paper industry, detergents, drugs, toxic wastes removal and drilling for oil is being studied extensively. The enzymes can be produced from the thermophiles through either optimised fermentation of the microorganisms or cloning of fast-growing mesophiles by recombinant DNA technology. In this review, the source microorganisms and properties of thermostable starch hydrolysing amylases, xylanases, cellulases, chitinases, proteases, lipases and DNA polymerases are discussed. The industrial needs for such specific thermostable enzyme and improvements required to maximize their application in the future are also suggested.  相似文献   

9.
10.
The abilities of bacteria isolated from eight marine sedentary organisms, six marine sponges (Spirastrella sp., Phyllospongia sp., Ircinia sp., Aaptos sp., Azorica sp. and Axinella sp.), one soft coral (Lobophytum sp.) and one alga (Sargassum sp.) to produce industrial enzymes (amylase, carboxymethylcellulase and protease) were examined. The mean total viable counts of the bacterial isolates ranged from 8.7 × 104 to 8.4 × 105 cfu/g wet weight of the organism. All eight organisms harboured amylase (0.05–0.5 IU/ml), carboxymethylcellulase (0.05–0.5 IU/ml) and protease (0.1–0.5 IU/ml) producing bacteria. Of 56 bacterial strains tested, as many as 60 to 83% of the strains produced at least one of the three enzymes, and 47% of strains were able to produce all three enzymes. High activities (> 0.5 IU/ml) of the three enzymes were recorded in bacterial strains belonging to the genera Alcaligenes and Bacillus. From the results of this study, it appears that bacteria associated with marine sedentary organisms are the novel source of industrial enzymes for possible commercial applications and may play an important role in enzyme‐catalysed organic matter cycling in marine environments.  相似文献   

11.
Assessing the impact of episodic pollution   总被引:1,自引:0,他引:1  
Seager  John  Maltby  Lorraine 《Hydrobiologia》1989,188(1):633-640
The increased tightening of controls on industrial and municipal wastewater discharges has resulted in steady improvements in the quality of many important rivers over recent years. However, episodic pollution, particularly from farm wastes and combined sewer overflows continues to pose a major problem, and is one of the main causes of poor quality rivers today. Despite our acknowledgement of this continuing problem, very little is known of the mechanistic basis of responses and recovery of aquatic organisms and communities exposed to intermittent pulses of common pollutants. The majority of ecotoxicological studies to date have been concerned with the effects of continuous exposure. Although such studies may provide a means of predicting the impact of episodic pollution events, a more appropriate test design would be to assess toxicity under pulsed and fluctuating exposure. Studies should also include a post-exposure observation period and should consider recovery of individuals and communities. This paper reviews the results of reported studies relevant to the investigation of episodic pollution and pays particular attention to the effects of magnitude, duration and frequency of exposure. Results of field investigations using an in situ bioassay technique are also presented to emphasize the importance of field validation of proposed water quality criteria for intermittent pollution events.  相似文献   

12.
Either an overabundance or a deficiency of trace metals in the food chain can ultimately affect adversely the health of livestock and man. Increasing interest in the United States in the distribution of metals in the environment and in metal pollutants has led to widespread interdisciplinary research sponsored by governmental, private and academic groups concerning the availability of trace elements for absorption by plants and animals, and the effects of trace elements throughout the food chain. The state of the art and the needs for research are reviewed by interdisciplinary committees in the National Academy of Sciences and in many government agencies. Research is encouraged through contracts and grants awarded by federal and state agencies and the National Science Foundation to universities for studies of specific metals, specific diseases and correlations between metals and health in specific geographic areas. Effects on the environment of coal-fired power plants, the mining and processing of metals, asbestos, and phosphate, and the disposal of industrial and nuclear wastes have also received much attention in the past few years.  相似文献   

13.
The biochemical basis for the complex effects of the anti-cancer drug cisplatin on hepatic cytochrome P-450 activity was studied in adult male rat liver using P-450 form-specific steroid hydroxylase assays and antibody probes. Cisplatin treatment of adult male rats resulted in a marked and prolonged feminization of the pattern of P-450 enzymes expressed in hepatic tissue. The adult male-specific cytochrome P-450 forms designated P-450 2c (P-450 gene IIC11), P-450 2a (gene IIIA2), and P-450 RLM2 were decreased by 70-90% after 7-14 days, with parallel decreases in their respectively associated microsomal steroid hydroxylase activities. Concomitantly, hepatic levels of the female-predominant enzymes P-450 3 (gene IIA1) and P-450j (gene IIE1) were elevated approximately 2-4-fold. The female-specific microsomal enzyme androstenedione 5 alpha-reductase was induced approximately 20-fold by cisplatin; however, no elevation of the female-specific P-450 2d was detected. The underlying hormonal basis for these effects of cisplatin was then examined. Serum testosterone levels were found to be depleted by cisplatin in a time- and dose-dependent manner which correlated with the observed changes in these hepatic enzymes. Furthermore, castration of adult rats altered the profile of these enzymes in a manner which resembled that observed with cisplatin treatment, suggesting that androgen depletion was the primary cause for the observed feminization of hepatic enzyme expression. Consistent with this possibility, the synthetic androgen methyltrienolone effectively blocked the changes in hepatic enzyme expression induced by cisplatin. Moreover, hepatic enzyme feminization was significantly reversed by chorionic gonadotropin, which fully restored serum testosterone levels in the cisplatin-treated rat. Luteinizing hormone-releasing hormone challenge experiments demonstrated that the responsiveness of the pituitary to this hypothalamic regulator of testicular androgen production was unimpaired by cisplatin treatment, indicating that hypothalamic production or secretion of luteinizing hormone-releasing hormone may be deficient in the cisplatin-treated animals. These studies establish that the effects of cisplatin on hepatic P-450 enzyme expression result from its interruption of the hypothalamic-pituitary stimulation of testicular androgen production and that this, in turn, leads to a depletion of circulating androgens required for maintenance of normal P-450 enzyme expression in adult male rats.  相似文献   

14.
Global population increases, coupled with intensive animal and livestock production practices, have resulted in the generation, accumulation, and disposal of large amounts of wastes around the world. Aerosolization of microbial pathogens, endotoxins, odors, and dust particles is an inevitable consequence of the generation and handling of waste material. Bioaerosols can be a source of microbial pathogens, endotoxins, and other allergens. Given the close proximity of population centers to concentrated animal-rearing operations and municipal treatment facilities in many parts of the world, there is concern regarding the occupational and public health impacts associated with the exposure to bioaerosols from municipal and animal wastes. Major advances have been made in our understanding of bioaerosol characteristics, identifying the hazards, and identifying possible human and animal health links with aerosolized pathogens and allergens. However, significant knowledge and technology gaps still exist. These include a lack of clear understanding of the fate and transport of bioaerosols, especially within the open environment, an inability to accurately predict the health risks associated with bioaerosolized pathogens, and a lack of standardized bioaerosol sampling protocols, and efficient samplers. This review synthesizes the information related to bioaerosols and addresses the contemporary issues associated with bioaerosols from municipal and animal wastes, with a focus on pathogens.  相似文献   

15.
Many enzymes are therapeutic targets for drug discovery, whereas other enzymes are important for understanding drug metabolism and pharmacokinetics during compound testing in animals. Testing of drug efficacy and metabolism in an animal model requires the measurement of disease endpoints as well as assays of enzyme activity in specific tissues at selected time points during treatment. This requires the removal of tissue and biochemical assays. Techniques to noninvasively assess drug effects on enzyme activity using imaging technology would facilitate understanding of drug efficacy, pharmacokinetics, and drug metabolism. Using a commercially available cytochrome P-450 3A substrate whose oxidized product is a luciferase substrate, we show for the first time that cytochrome P-450 enzyme activity can be measured in vivo in real time by bioluminescent imaging. This imaging approach could be applicable to study drug effects on therapeutic target enzymes, as well as drug metabolism enzymes.  相似文献   

16.
Abstract

Deficiencies of organic matter and essential nutrients are important features of derelict/degraded lands; these characteristics have profound effects on the establishment of functional soil-plant systems on such lands. This work reports on the impact of organic wastes amendments on the establishment, growth and biomass yield of grass mixtures grown on a degraded soil. The experimental site was a heavily compacted and eroded land due to excavation (scrapping) of topsoil layer for urban construction activities. Zero, 10 and 20cm layers each of substrates collected from an old (abandoned) municipal refuse and from site affected by long-term surface disposal of livestock litter and topsoil collected under fallow vegetation were applied on soil surface, before the establishment of a mixture of grass species. Substrates collected from old municipal refuse contained high amount of essential nutrients and metals and, on application, produced upward shift in soil pH and electrical conductivity. Nevertheless, these properties neither significantly retarded plant growth nor impaired biomass yield. Plant establishment and biomass yield were comparable under topsoil application and organic waste amended soil and produced significantly higher biomass yield when spread at 20cm layers were made of them. This experimental group also produced superior biomass yield over the unamended control. The agronomic benefits of organic waste incorporation stemmed from improved soil properties in surface horizon and contents of essential nutrients supportive of the establishment and development of plant cover. Nutrient supply is related to soil organic matter status, organic wastes are therefore important to the reconstruction of effective nutrient cycling and the eventual functional soil-plant system on this degraded ecosystem. The goal of these revegetation efforts is to improve soil and plant productivity, plant diversity, conservation of native grasslands and aesthetic.  相似文献   

17.
Proteases are ubiquitous enzymes that occur in various biological systems ranging from microorganisms to higher organisms. Microbial proteases are largely utilized in various established industrial processes. Despite their numerous industrial applications, they are not efficient in hydrolysis of recalcitrant, protein-rich keratinous wastes which result in environmental pollution and health hazards. This paved the way for the search of keratinolytic microorganisms having the ability to hydrolyze “hard to degrade” keratinous wastes. This new class of proteases is known as “keratinases”. Due to their specificity, keratinases have an advantage over normal proteases and have replaced them in many industrial applications, such as nematicidal agents, nitrogenous fertilizer production from keratinous waste, animal feed and biofuel production. Keratinases have also replaced the normal proteases in the leather industry and detergent additive application due to their better performance. They have also been proved efficient in prion protein degradation. Above all, one of the major hurdles of enzyme industrial applications (cost effective production) can be achieved by using keratinous waste biomass, such as chicken feathers and hairs as fermentation substrate. Use of these low cost waste materials serves dual purposes: to reduce the fermentation cost for enzyme production as well as reducing the environmental waste load. The advent of keratinases has given new direction for waste management with industrial applications giving rise to green technology for sustainable development.  相似文献   

18.
Summary For many organisms, some heavy metals in external media are essential at low concentrations but are toxic at high concentrations. Strongly toxic heavy metals are toxic even at low concentrations. Recently, it was proven that changes of valencies of Fe, Cu and Mn were necessary for these metals to be utilized by organisms, especially microorganisms. The valencies of Hg and Cr are changed by reducing systems of cells in the process of detoxifying them. Thus, the processes of oxidoreduction of these metals are important for biological systems of metal-autoregulation and metal-mediated regulation. Metal ion-specific reducing enzyme systems function in the cell surface layer of microorganisms. These enzymes require NADH or NADPH as an electron donor and FMN or FAD as an electron carrier component. Electron transport may be operated by transplamsa-membrane redox systems. Metal ion reductases are also found in the cytoplasm. The affinities of metal ions to ligand residues change with the valence of the metal elements and mutual interactions of various metal ions are important for regulation of oxidoreduction states. Microorganisms can utilize essential metal elements and detoxify excess metals by respective reducing enzyme systems and by regulating movement of heavy metal ions.  相似文献   

19.
Yeast, a model organism for iron and copper metabolism studies   总被引:12,自引:0,他引:12  
Virtually all organisms on earth depend on transition metals for survival. Iron and copper are particularly important because they participate in vital electron transfer reactions, and are thus cofactors of many metabolic enzymes. Their ability to transfer electrons also render them toxic when present in excess. Disturbances of iron and copper steady-state levels can have profound effects on cellular metabolism, growth and development. It is critical to maintain these metals in a narrow range between utility and toxicity. Organisms ranging from bacteria and plants to mammals have developed sophisticated mechanisms to control metal homeostasis. In this review, we will present an overview of the current understanding of iron and copper metabolism in yeast, and the utility of yeast as a model organism to investigate iron and copper metabolism in mammals and plants.  相似文献   

20.
《Trends in biotechnology》2000,18(4):141-146
The adequacy of the existing treatment, disposal and recycling processes of waste streams from biotechnological laboratories and industrial processes, especially those using genetically modified microorganisms, have been repeatedly discussed. Here, we focus on the discussions linked to the DNA content of these wastes, the properties of extracellular (or 'naked') DNA and the ability to transfer genetic information between bacteria (e.g. antibiotic resistances) or into higher organisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号