首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsp70 escort proteins (Hep) have been implicated as essential for maintaining the function of yeast mitochondrial hsp70 molecular chaperones (mtHsp70), but the role that escort proteins play in regulating mammalian chaperone folding and function has not been established. We present evidence that human mtHsp70 exhibits limited solubility due to aggregation mediated by its ATPase domain and show that human Hep directly enhances chaperone solubility through interactions with this domain. In the absence of Hep, mtHsp70 was insoluble when expressed in Escherichia coli, as was its isolated ATPase domain and a chimera having this domain fused to the peptide-binding domain of HscA, a soluble monomeric chaperone. In contrast, these proteins all exhibited increased solubility when expressed in the presence of Hep. In vitro studies further revealed that purified Hep regulates the interaction of mtHsp70 with nucleotides. Full-length mtHsp70 exhibited slow intrinsic ATP hydrolysis activity (6.8+/-0.2 x 10(-4) s(-1)) at 25 degrees C, which was stimulated up to 49-fold by Hep. Hep also stimulated the activity of the isolated ATPase domain, albeit to a lower maximal extent (11.5-fold). In addition, gel-filtration studies showed that formation of chaperone-escort protein complexes inhibited mtHsp70 self-association, and they revealed that Hep binding to full-length mtHsp70 and its isolated ATPase domain is strongest in the absence of nucleotides. These findings provide evidence that metazoan escort proteins regulate the catalytic activity and solubility of their cognate chaperones, and they indicate that both forms of regulation arise from interactions with the mtHsp70 ATPase domain.  相似文献   

2.
The chaperone hsp90 is capable of binding and hydrolyzing ATP. Using information on a related ATPase, DNA gyrase B, we selected three conserved residues in hsp90's ATP-binding domain for mutation. Two of these mutations eliminate nucleotide binding, while the third retains nucleotide binding but is apparently deficient in ATP hydrolysis. We first analyzed how these mutations affect hsp90's binding to the co-chaperones p23 and Hop, and to the hydrophobic resin, phenyl-Sepharose. These experiments showed that ATP's effects, specifically, increased affinity for p23 and decreased affinity for Hop and phenyl-Sepharose, are brought on by ATP binding alone. We also tested the ability of hsp90 mutants to assist hsp70, hsp40, and Hop in the refolding of denatured firefly luciferase. While hsp90 is capable of participating in this process in a nucleotide-independent manner, the ability to hydrolyze ATP markedly potentiates hsp90's effect. Finally, we assembled progesterone receptor heterocomplexes with hsp70, hsp40, Hop, p23, and wild type or mutant hsp90. While neither ATP binding nor hydrolysis was necessary to bind hsp90 to the receptor, mature complexes containing p23 and capable of hormone binding were only obtained with wild type hsp90.  相似文献   

3.
Translocation of tRNAs across mitochondrial membranes is a receptor-mediated active transport process requiring ATP. A large tRNA import complex from the inner membrane of Leishmania mitochondria catalyzes translocation into phospholipid vesicles. In this reconstituted system, the import substrate tRNA(Tyr)(GUA) specifically stimulated hydrolysis of ATP within the vesicles, with the subsequent generation of a membrane potential by pumping out of protons, as shown by the protonophore-sensitive uptake of the potential-sensitive dye rhodamine 123. Generation of membrane potential was dependent on ATP hydrolysis, and inhibited by oligomycin, recalling the proton-translocation mechanism of the respiratory F(1)-F(0)-ATPase. For translocation of tRNA, ATP could be replaced by low pH of the medium, but proton-dependent import was resistant to oligomycin. Moreover, ATP hydrolysis, generation of membrane potential and tRNA uptake were inhibited by carboxyatractyloside, a specific inhibitor of mitochondrial ATP-ADP translocase, implying an ATP requirement within the vesicles. These observations imply a gating mechanism in which tRNA, on binding to its receptor, triggers the energetic activation of the complex, leading to the opening of import channels.  相似文献   

4.
Mitochondrial tRNA import is widespread, but mechanistic insights of how tRNAs are translocated across mitochondrial membranes remain scarce. The parasitic protozoan T. brucei lacks mitochondrial tRNA genes. Consequently, it imports all organellar tRNAs from the cytosol. Here we investigated the connection between tRNA and protein translocation across the mitochondrial inner membrane. Trypanosomes have a single inner membrane protein translocase that consists of three heterooligomeric submodules, which all are required for import of matrix proteins. In vivo depletion of individual submodules shows that surprisingly only the integral membrane core module, including the protein import pore, but not the presequence-associated import motor are required for mitochondrial tRNA import. Thus we could uncouple import of matrix proteins from import of tRNAs even though both substrates are imported into the same mitochondrial subcompartment. This is reminiscent to the outer membrane where the main protein translocase but not on-going protein translocation is required for tRNA import. We also show that import of tRNAs across the outer and inner membranes are coupled to each other. Taken together, these data support the ‘alternate import model’, which states that tRNA and protein import while mechanistically independent use the same translocation pores but not at the same time.  相似文献   

5.
The mitochondrial chaperone mhsp70 mediates protein transport across the inner membrane and protein folding in the matrix. These two reactions are effected by two different mhsp70 complexes. The ADP conformation of mhsp70 favors formation of a complex on the inner membrane; this 'import complex' contains mhsp70, its membrane anchor Tim44 and the nucleotide exchange factor mGrpE. The ATP conformation of mhsp70 favors formation of a complex in the matrix; this 'folding complex' contains mhsp70, the mitochondrial DnaJ homolog Mdj1 and mGrpE. A precursor protein entering the matrix interacts first with the import complex and then with the folding complex. A chaperone can thus function as part of two different complexes within the same organelle.  相似文献   

6.
《The Journal of cell biology》1994,127(6):1547-1556
The import of preproteins into mitochondria involves translocation of the polypeptide chains through putative channels in the outer and inner membranes. Preprotein-binding proteins are needed to drive the unidirectional translocation of the precursor polypeptides. Two of these preprotein-binding proteins are the peripheral inner membrane protein MIM44 and the matrix heat shock protein hsp70. We report here that MIM44 is mainly exposed on the matrix side, and a fraction of mt- hsp70 is reversibly bound to the inner membrane. Mt-hsp70 binds to MIM44 in a 1:1 ratio, suggesting that mt-hsp70 is localizing to the membrane via its interaction with MIM44. Formation of the complex requires a functional ATPase domain of mt-hsp70. Addition of Mg-ATP leads to dissociation of the complex. Overexpression of mt-hsp70 rescues the protein import defect of mutants in MIM44; conversely, overexpression of MIM44 rescues protein import defects of mt-hsp70 mutants. In addition, yeast strains with conditional mutations in both MIM44 and mt-hsp70 are barely viable, showing a synthetic growth defect compared to strains carrying single mutations. We propose that MIM44 and mt-hsp70 cooperate in translocation of preproteins. By binding to MIM44, mt-hsp70 is recruited at the protein import sites of the inner membrane, and preproteins arriving at MIM44 may be directly handed over to mt-hsp70.  相似文献   

7.
A major 70 kDa protein of the yeast mitochondrial outer membrane is coded by a nuclear gene, synthesized on cytoplasmic ribosomes, and transported to the mitochondrial outer membrane. In order to investigate in detail the information necessary for localizing the 70 kDa protein at the outer membrane, we have examined the intracellular and intramitochondrial location of fusion proteins which consist of various lengths of the amino-terminal region of the 70 kDa protein with an enzymatically active beta-galactosidase. The results indicate that the extreme amino-terminal 12 amino acids of the 70 kDa protein function as a targeting sequence, whereas the subsequent uncharged region (up to residue 29) is necessary for "stop-transfer" and "anchoring" functions. Moreover, we have found that a fusion protein which contained the amino-terminal 19 amino acids of the 70 kDa protein is localized on the outer membrane as well as in the matrix space. Changes in the dual localization of this fusion protein accompanied its overproduction or expression in a respiration-deficient yeast mutant.  相似文献   

8.
The process of mitochondrial protein import has been studied for many years. Despite this attention, many processes associated with mitochondrial biogenesis are poorly understood. Insight into one of these processes, assembly of beta-barrel proteins into the mitochondrial outer membrane, will be discussed. This review focuses on recent data that suggest that assembly of beta-barrel proteins into the outer mitochondrial membrane is dependent on a newly identified protein complex termed the sorting and assembly machinery (SAM complex). Members of the SAM complex have been identified in both eukaryotic and prokaryotic organisms, suggesting that the process of beta-barrel assembly into membranes has been conserved through evolution.  相似文献   

9.
The role of nucleoside triphosphates (NTPs) in the import of porin into the mitochondrial outer membrane was investigated with two forms of the porin precursor: the in vitro synthesized biosynthetic precursor (bs-porin) and a water-soluble form of porin (ws-porin) obtained by subjecting the membrane-derived porin to an acid-base treatment (exposure to trichloroacetic acid, followed by alkali and rapid neutralization). The import of ws-porin into mitochondria did not require NTPs, whereas the import of bs-porin required NTPs. In other characteristics, such as binding to a specific receptor protein on the mitochondrial surface, two-step insertion into the outer membrane, and formation of specific membrane channels, ws-porin was indistinguishable from bs-porin. Thus, the acid-base treatment applied in the preparation of ws-porin can substitute for the NTP-requiring step in mitochondrial protein import. We conclude that NTPs are required for unfolding mitochondrial precursor proteins ("translocation competent folding").  相似文献   

10.
The 70-kDa peroxisomal membrane protein (PMP70) is one of the major components of rat liver peroxisomal membranes and belongs to a superfamily of proteins known as ATP binding cassette transporters. PMP70 is markedly induced by administration of hypolipidemic agents in parallel with peroxisome proliferation and induction of peroxisomal fatty acid beta-oxidation enzymes. To characterize the role of PMP70 in biogenesis and function of peroxisomes, we transfected the cDNA of rat PMP70 into Chinese hamster ovary cells and established cell lines stably expressing PMP70. The content of PMP70 in the transfectants increased about 5-fold when compared with the control cells. A subcellular fractionation study showed that overexpressed PMP70 was enriched in peroxisomes. This peroxisomal localization was confirmed by immunofluorescence and immunoelectron microscopy. The number of immuno-gold particles corresponding to PMP70 on peroxisomes increased markedly in the transfectants, but the size and the number of peroxisomes were essentially the same in both the transfectants and the control cells. beta-Oxidation of palmitic acid increased about 2-3-fold in the transfectants, whereas the oxidation of lignoceric acid decreased about 30-40%. When intact peroxisomes prepared from both the cell lines were incubated with palmitoyl-CoA, oxidation was stimulated with ATP, but the degree of the stimulation was higher in the transfectants than in the control cells. Furthermore, we established three Chinese hamster ovary cell lines stably expressing mutant PMP70. In these cells, beta-oxidation of palmitic acid decreased markedly. These results suggest that PMP70 is involved in metabolic transport of long chain acyl-CoA across peroxisomal membranes and that increase of PMP70 is not associated with proliferation of peroxisomes.  相似文献   

11.
The constitutive HSP70 purified from CHO cells, which indicated a single band in SDS-polyacrylamide gel electrophoresis, showed multiple bands in native-polyacrylamide gel electrophoresis. These results indicate that the protein may exist in oligomeric forms. After crosslinking the oligomers with glutaraldehyde, SDS-polyacrylamide gel electrophoresis showed three protein bands of molecular weight 70 kDa, 153 kDa, and 200 kDa corresponded to monomer, dimer, and trimer, respectively. The relative amount of oligomeric forms was dependent upon ATP concentrations: it increased upon hydrolysis of ATP or decreased upon incubation with high concentrations of ATP (1-10 mM). Autoradiographic analysis of the native polyacrylamide gel electrophoresis of HSP70 following incubation with [gamma-32P]ATP revealed that ATP bound to only monomer. These results suggest that the equilibrium between oligomeric forms is dependent on ATP concentrations. Nonetheless, during heat shock, both monomer and oligomer might be indistinguishably associated with some proteins, probably denatured proteins.  相似文献   

12.
Protease Ti, a new ATP-dependent protease in Escherichia coli, degrades proteins and ATP in a linked process, but these two hydrolytic functions are catalyzed by distinct components of the enzyme. To clarify the enzyme's specificity and the role of ATP, a variety of fluorogenic peptides were tested as possible substrates for protease Ti or its two components. Protease Ti rapidly hydrolyzed N-succinyl(Suc)-Leu-Tyr-amidomethylcoumarin (AMC) (Km = 1.3 mM) which is not degraded by protease La, the other ATP-dependent protease in E. coli. Protease Ti also hydrolyzed, but slowly, Suc-Ala-Ala-Phe-AMC and Suc-Leu-Leu-Val-Tyr-AMC. However, it showed little or no activity against basic or other hydrophobic peptides, including ones degraded rapidly by protease La. Component P, which contains the serine-active site, by itself rapidly degrades the same peptides as the intact enzyme. Addition of component A, which contains the ATP-hydrolyzing site and is necessary for protein degradation, had little or no effect on peptide hydrolysis. N-Ethylmaleimide, which inactivates the ATPase, did not inhibit peptide hydrolysis. In addition, this peptide did not stimulate the ATPase activity of component A (unlike protein substrates). Thus, although the serine-active site on component P is unable to degrade proteins, it is fully functional against small peptides in the absence of ATP. At high concentrations, Suc-Leu-Tyr-AMC caused a complete inhibition of casein breakdown, and diisopropylfluorophosphate blocked similarly the hydrolysis of both protein and peptide substrates. Thus, both substrates seem to be hydrolyzed at the same active site on component P, and ATP hydrolysis by component A either unmasks or enlarges this proteolytic site such that large proteins can gain access to it.  相似文献   

13.
Protein import into mitochondria involves several components of the mitochondrial outer and inner membranes as well as molecular chaperones located inside mitochondria. Here, we have investigated the effect of sulfhydryl group reagents on import of the in vitro transcribed/translated precursor of the F1 subunit of the ATP synthase (pF1) into Solanum tuberosum mitochondria. We have used a reducing agent, dithiothreitol (DTT), a membrane-permeant alkylating agent, N-ethylmaleimide (NEM), a non-permeant alkylating agent, 3-(N-maleimidopropionyl)biocytin (MPB), an SH-group specific agent and cross-linker 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) as well as an oxidizing cross-linker, copper sulfate. DTT stimulated the mitochondrial protein import, whereas NEM, MPB, DTNB and Cu2+ were inhibitory. Inhibition by Cu2+ could be reversed by addition of DTT. The efficiency of inhibition was higher in energized mitochondria than in non-energized. We have dissected the effect of the SH-group reagents on binding, unfolding and transport of the precursor into mitochondria. Our results demonstrated that the inhibitory effect of NEM, DTNB and Cu2+ on the efficiency of import was not due to the interaction of the SH-group reagents with import receptors. Modification of pF1 with NEM prior to the import resulted in stimulation of import, whereas DTNB and Cu2+ were inhibitory. NEM, MPB, DTNB and Cu2+ inhibited import of the NEM-modified pF1 into intact mitochondria. Import of pF1 through a receptor-independent bypass-route as well as import into mitoplasts were sensitive to DTT, NEM, MPB, DTNB and Cu2+ in a similar manner as import into mitochondria. As MPB does not cross the inner membrane, these results indicated that redox and conformational status of SH groups located on the outer surface of the inner mitochondrial membrane were essential for protein import.  相似文献   

14.
The protein kinase D (PKD) family consists of three serine/threonine protein kinases termed PKD, PKD2, and PKD3, which are similar in overall structure and primary amino acid sequence. However, each isozyme displays a distinctive intracellular localization. Taking advantage of the structural homology and opposite nuclear localization of PKD2 and PKD3, we generated an extensive set of chimeric proteins between both isozymes to determine which PKD3 domain(s) mediates its nuclear localization. We found that the C-terminal region of PKD3, which contains its catalytic domain, is necessary but not sufficient for its nuclear localization. Real time imaging of a photoactivatable green fluorescent protein fused to PKD3 revealed that point mutations that render PKD3 catalytically inactive completely prevented its nuclear import despite its interaction with importin alpha and beta. We also found that activation loop phosphorylation of PKD3 did not require its nuclear localization, and it was not sufficient to promote the nuclear import of PKD3. These results identify a novel function for the kinase activity of PKD3 in promoting its nuclear entry and suggest that the catalytic activity of PKD3 may regulate its nuclear import through autophosphorylation and/or interaction with another protein(s).  相似文献   

15.
The H(+)-ATPase from the plasma membrane of Saccharomyces cerevisiae was isolated and purified. The rate of ATP hydrolysis and ATP binding was measured as a function of pH and the effect of the vanadate and erythrosine B inhibitors was investigated. The pH dependence of the rate of ATP hydrolysis forms a bell-shaped curve with a maximum at pH 6 and half-maximal rates at pH 5.0 and 7.4. Only the pH dependence between pH 6 and pH 7.6 is reversible. Above pH 7.6 and below pH 5.5, denaturation of the isolated enzyme is observed. The rate of ATP binding shows the same pH dependency as that of ATP hydrolysis. Both pH dependencies can be described by the dissociation of a monovalent acidic group with a pK of 7.4. It is concluded that the enzyme must be protonated before ATP binding. Vanadate does not inhibit ATP binding, ADP release or Pi release at concentrations where complete inhibition of ATP hydrolysis is observed. It is concluded that vanadate inhibits a step of the reaction cycle which occurs after Pi release. In contrast, erythrosine B inhibits ATP binding and thus affects the first step of the reaction cycle.  相似文献   

16.
The mitochondrial outer membrane contains translocase complexes for the import of precursor proteins. The translocase of the outer membrane complex functions as a general preprotein entry gate, whereas the sorting and assembly machinery complex mediates membrane insertion of β-barrel proteins of the outer membrane. Several α-helical outer membrane proteins are known to carry multiple transmembrane segments; however, only limited information is available on the biogenesis of these proteins. We report that mitochondria lacking the mitochondrial import protein 1 (Mim1) are impaired in the biogenesis of multispanning outer membrane proteins, whereas overexpression of Mim1 stimulates their import. The Mim1 complex cooperates with the receptor Tom70 in binding of precursor proteins and promotes their insertion and assembly into the outer membrane. We conclude that the Mim1 complex plays a central role in the import of α-helical outer membrane proteins with multiple transmembrane segments.  相似文献   

17.
The ADP/ATP carrier of yeast (309 amino acids) is an abundant transmembrane protein of the mitochondrial inner membrane whose import involves well-defined steps (Pfanner, N., and Neupert, W. (1987) J. Biol. Chem. 262, 7528-7536). Analysis of the in vitro import of gene fusion products containing ADP/ATP carrier (AAC) sequences at the amino terminus and mouse dihydrofolate reductase (DHFR) at the carboxyl terminus indicates that the first 72 amino acids of the soluble carrier protein, a hydrophilic region of the protein, are not by themselves sufficient for initial binding to the AAC receptor on the mitochondrial surface. However, an AAC-DHFR gene fusion containing the first 111 residues of the ADP/ATP carrier protein exhibited binding to mitochondria at low temperature (2 degrees C) and internalization at 25 degrees C to a mitochondrial space protected from proteinase K in the same manner as the wild-type ADP/ATP carrier protein. The AAC-DHFR protein, in contrast to the wild-type AAC protein imported into mitochondria under optimal conditions, remained extractable at alkaline pH and appeared to be blocked at an intermediate step in the AAC import pathway. Based on its extraction properties, this AAC-DHFR hybrid is proposed to be associated with a proteinaceous component of the import apparatus within mitochondria. These data indicate that the import determinants for the AAC protein are not located at its extreme amino terminus and that protein determinants distal to the first 111 residues of the carrier may be necessary to move the protein beyond the alkali-extractable step in the biogenesis of a functional AAC protein.  相似文献   

18.
Dielectric spectroscopy with microwaves in the frequency range between 0.2 and 20 GHz was used to study the hydration of myosin subfragment 1 (S1). The data were analyzed by a method recently devised, which can resolve the total amount of water restrained by proteins into two components, one with a rotational relaxation frequency (fc) in the gigahertz region (weakly restrained water) and the other with lower fc (strongly restrained water). The weight ratio of total restrained water to S1 protein thus obtained (0.35), equivalent to 2100 water molecules per S1 molecule, is not much different from the values (0.3-0.4) for other proteins. The weakly restrained component accounts for about two-thirds of the total restrained water, which is in accord with the number of water molecules estimated from the solvent-accessible surface area of alkyl groups on the surface of the atomic model of S1. The number of strongly restrained water molecules coincides with the number of solvent-accessible charged or polar atoms. The dynamic behavior of the S1-restrained water during the ATP hydrolysis was also examined in a time-resolved mode. The result indicates that when S1 changes from the S1.ADP state into the S1.ADP.P1 state (ADP release followed by ATP binding and cleavage), about 9% of the weakly restrained waters are released, which are restrained again on slow P1 release. By contrast, there is no net mobilization of strongly restrained component. The observed changes in S1 hydration are quantitatively consistent with the accompanying large entropy and heat capacity changes estimated by calorimetry (Kodama, 1985), indicating that the protein surface hydrophobicity change plays a crucial role in the enthalpy-entropy compensation effects observed in the steps of S1 ATP hydrolysis.  相似文献   

19.
hsp90 and hsp70 are essential components of a five-protein system, including also the nonessential cochaperones Hop, hsp40, and p23, that assembles glucocorticoid receptor (GR).hsp90 heterocomplexes and causes the simultaneous opening of the steroid binding pocket to access by steroid. The first event in assembly is the ATP-dependent and hsp40 (YDJ-1)-dependent binding of hsp70 to the GR, which primes the receptor for subsequent ATP-dependent activation by hsp90 [Morishima, Y., Murphy, P. J. M., Li, D. P., Sanchez, E. R., and Pratt, W. B. (2000) J. Biol. Chem. 275, 18054-18060]. Here, we demonstrate that, during the priming step, ATP-bound hsp70 is converted to GR-bound hsp70 that is approximately 1/3 in the ADP- and approximately 2/3 in the ATP-dependent conformation. In the second step, hsp90, which is provided in the non-nucleotide-bound state, is converted to GR-bound hsp90 in the ATP-dependent conformation. The ATPase activity of hsp70 is K(+)-dependent, and the priming step is K(+)-dependent. Surprisingly, the subsequent hsp90-dependent step, which is rate-limiting for receptor activation, is also potassium-dependent. This suggests that GR-bound hsp70 is also converted from the ATP-dependent to the ADP-dependent conformation while it cooperates with hsp90 to activate steroid binding activity. Because the priming step requires both sustained high levels of ATP and YDJ-1 for optimal activity and because both steps require potassium, we predict that receptor-bound hsp70 undergoes iterative ratcheting between its ATP- and ADP-dependent conformations in opening the hydrophobic steroid binding pocket.  相似文献   

20.
Human telomerase is a ribonucleoprotein which uses its internal RNA moiety as a template for telomeric DNA synthesis. This enzyme is up-regulated in most malignant tumors and is therefore considered as a possible cancer target. Here we examined the effects of differently modified oligomers on telomeraseactivity from HL-60 cell extracts (TRAP-ezetrade mark assay). Phosphorothioate-modified oligonucleotides (PS-ODNs) inhibited telomerase activity at subnanomolar concen-trations and proved to be more efficient than peptide nucleic acids. In contrast to all the investigated oligomers, PS-ODNs were found to bind to the protein motif of telomerase called the primer binding site but poorly to its RNA. This is suggested by kinetic investigations demonstrating a competitive interaction of PS-ODNs and TS primer at the primer binding site. The K m value of the TS primer was 10.8 nM, the K i value of a 20mer PS-ODN was 1.6 nM. When the TS primer was PS-modified a striking increase in the telomerase activity was found which correlates with the number of phosphodiesters replaced. The K m value of a completely PS-modified TS primer was 0.56 nM. Based on these results the design of chimeric ODNs is proposed consisting of a 5'-PS-modified part targeting the primer binding site and a 3'-terminus part targeting the telomerase RNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号