首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transforming growth factor-betas (TGF-betas) have significant effects on testis development. The pattern of TGF-beta expression in aging testis has not been established to date. We examined age-related changes in the expression of TGF-beta and its receptors in the testis using Western blot analysis. TGF-beta1 expression increased continuously in aging rat testis, whereas no age-associated changes were observed for TGF-beta3. Strong expression of TGF-beta2, as well as type I and II receptors was observed in 12-month-old testis, but following this time, expression decreased dramatically. Interestingly, TGF-beta2 and -beta3 displayed strong and similar expression patterns in liver, regardless of age, suggesting that the down-regulation of TGF-beta2 is testis-specific. We observed significant induction of p53 and p21WAF1 in 18-month-old testis that appeared to correspond with aging. Moreover, caloric restriction (CR) prevented age-related decrease in TGF-beta2 expression. Using immunohistochemistry, we showed that all TGF-beta1, -beta2, and -beta3 proteins are expressed primarily in interstitial cells, which are located in the space between adjoining seminiferous tubules. Our data collectively indicate that aging in the testis is regulated by differential expression of TGF-beta proteins, and decreased levels of TGF-beta2 contribute to the aging process.  相似文献   

3.
4.
5.
6.
Testis is one of the most sensitive organs to ionizing radiation. The present study was designed to unravel the possible role of antioxidant proteins, peroxiredoxin I and II (Prx I and II) in the testis. Our results show that Prx I and II are constitutively expressed in the testis and their expression levels are decreased to some extent as the testis develops. Interestingly, immunohistochemical analysis revealed a preferential expression of Prx I and II in Leydig and Sertoli cells, respectively. Neither Prx I nor Prx II expression was obvious in the testicular germ cells including spermatogonia and spermatocytes. Ionizing radiation exerted oxidative stress on the testis and induced apoptosis primarily in the germ cells. When the irradiated testis was examined, the Prx system was found to be transiently up-regulated. Taken together, we suggest that the relative radiation-resistance of Leydig and Sertoli cells could be attributed in part to the antioxidant function of the Prx system in these cells.  相似文献   

7.
8.
9.
The gene encoding glutamic acid decarboxylase (GAD), the key enzyme in the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid, is shown to be expressed in the testis of several different species. Nucleotide sequence analysis of a cDNA clone isolated from the human testis confirmed the presence of GAD mRNA in the testis. The major GAD mRNA in the testis was 2.5 kilobases. Smaller amounts of a 3.7-kilobase mRNA with the same size as GAD mRNA in the brain was also detected in the testis. In situ hybridization using a GAD-specific probe revealed GAD mRNA expressing spermatocytes and spermatids located in the middle part of rat seminiferous tubules. Studies on the ontogeny of GAD mRNA expression showed low levels of GAD mRNA in testes of prepubertal rats, with increasing levels as sexual maturation is reached, compatible with GAD mRNA expression in germ cells. In agreement with this, fractionation of cells from the rat seminiferous epithelium followed by Northern (RNA) blot analysis showed the highest levels of GAD mRNA associated with spermatocytes and spermatids. Evidence for the presence of GAD protein in the rat testis was obtained from the demonstration of GAD-like immunoreactivity in seminiferous tubules, predominantly at a position where spermatids and spermatozoa are found. Furthermore, GAD-like immunoreactivity was seen in the midpiece of ejaculated human spermatozoa, the part that is responsible for generating energy for spermatozoan motility.  相似文献   

10.
The purpose of this study was to identify factors that contribute to bovine testis development and donor age-dependent differences in the abilities of bovine ectopic testis tissue grafts to produce elongated spermatids. We used real-time RT-PCR and microarrays to evaluate and to identify the expression of genes that are involved in Sertoli and germ cell development in bovine testis tissues. Testis tissues were obtained from 2-, 4-, and 8-wk-old bull calves and were grafted immediately. Grafted bovine testis tissue was removed from mice, RNA was isolated from the grafts, and real-time RT-PCR was used to evaluate gene expression during the grafting period. In addition, the gene expression in the donor tissue was analyzed using Affymetrix Bovine GeneChips, to identify differentially expressed genes. Examination of the testis tissue grafts indicated that Sertoli cell-specific gene expression was lower in 8-wk donor tissue grafts compared to the donors of other ages. Furthermore, the expression of KIT, which is a germ cell-specific gene, was low in testis tissue grafts. Microarray analysis of the donor tissue showed that several genes that are involved in angiogenesis or tissue growth were differentially expressed in 2-, 4-, and 8-wk-old bovine testes. The levels of expression of the genes for angiogenin, transgelin, thrombomodulin, early growth response 1, insulin-like growth factor 2, and insulin-like growth factor-binding protein 3 were lower in testis tissues from older animals. Using these data, it will be possible in the future to manipulate the testis xenograft microenvironment so as to improve the efficiency of sperm production within the graft.  相似文献   

11.
β-hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the GM2 gangliosidoses. β-hexosaminidase activity is many times higher in the epididymis than in other tissues, is present in sperm, and is postulated to be required for mammalian fertilization. To better understand which cells are responsible for β-hexosaminidase expression and how it is regulated in the male reproductive system, we quantitated the mRNA expression of the α- and β-subunits of β-hexosaminidase and carried out immunocytochemical localization studies of the enzyme in the rat testis and epididymis. β-hexosaminidase α-subunit mRNA was abundant and differentially expressed in the adult rat testis and epididymis, at 13- and 2-fold brain levels, respectively. In contrast, β-subunit mRNA levels in the testis and epididymis were 0.3- and 5-fold brain levels. During testis development from 7–91 postnatal days of age, testis levels of α-subunit mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium; in contrast, β-subunit mRNA was expressed at low levels throughout testis development. In isolated male germ cells, β-hexosaminidase α-subunit expression was most abundant in haploid round spermatids, whereas the β-subunit mRNA was not detected in germ cells. Within the epididymis both α- and β-subunit mRNA concentrations were highest in the corpus, with 1.5-fold and 9-fold initial segment values, respectively. Light microscopic immunocytochemistry revealed that β-hexosaminidase was localized to Sertoli cells and interstitial macrophages in the testis. In the epididymis, β-hexosaminidase staining was most intense in narrow cells in the initial segment, principal cells in the caput, and proximal corpus, and clear cells throughout the duct. Electron microscopic immunocytochemistry revealed that β-hexosaminidase was predominantly present in lysosomes in Sertoli and epididymal cells. The cellular and regional specificity of β-hexosaminidase immunolocalization suggest an important role for the enzyme in testicular and epididymal functions. Mol. Reprod. Dev. 46:227–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
13.
利用RT—PCR和3′-RACE的方法从黑鲷精巢中克隆丁DMRT1基因cDNA的部分序列。组织特异性表达分析表明DMRT1基因只在精巢中表达,半定量RT—PCR检测显示DMRT1基因在性别逆转前、性别逆转期和性别逆转后的精巢中的表达量无显著差异,在鱼类成体的精巢中,DMRT1的表达量可能不会因精巢结构或生理状态的改变而发生改变,而始终维持一定量的表达。  相似文献   

14.
邢晓为  李麓芸  卢光琇 《遗传》2007,29(6):699-704
研究小鼠生精新基因SRG4在出生后小鼠睾丸及手术隐睾中的表达特性, 为了解SRG4在精子发生中的作用奠定基础。取出生后1, 3, 12 w小鼠睾丸进行免疫组化检测, 观察SRG4蛋白在出生后小鼠不同发育阶段睾丸中的表达; 制备单侧手术隐睾模型, 取术后0~18 d 的隐睾组织进行半定量RT-PCR检测, 观察SRG4 mRNA在隐睾病变过程中的表达变化, 并对隐睾术后18 d 睾丸进行组织原位杂交分析。免疫组化分析结果表明, SRG4蛋白在出生1 w的小鼠睾丸中几乎检测不到, 在出生3 w的小鼠睾丸中有明显表达, 在出生12 w的小鼠中大量表达, 主要分布在精母细胞和圆形精子细胞胞浆及胞膜, 呈不均匀分布。半定量RT-PCR结果发现, SRG4 mRNA在小鼠隐睾术后0~6 d表达没有明显下调, 9 d 开始表达下调, 第18 d表达最低。组织原位杂交结果表明, 术后18 d隐睾睾丸生殖细胞大量凋亡, 精曲小管中仅见到个别的SRG4阳性信号, 而对照则不受影响。上述结果说明, SRG4蛋白表达受小鼠生长发育调控; 隐睾模型中, 随着生殖细胞的大量凋亡, SRG4基因表达下调, 提示SRG4基因可作为一个精子发生特定阶段的分子标记用以研究精子发生过程。  相似文献   

15.
Cellular location and hormonal regulation of ghrelin expression in rat testis   总被引:12,自引:0,他引:12  
Ghrelin, the endogenous ligand for the growth hormone-secretagogue receptor, is a recently cloned 28-amino acid peptide, expressed primarily in the stomach and hypothalamus, with the ability to stimulate growth hormone (GH) release and food intake. However, the possibility of additional, as yet unknown biological actions of ghrelin has been suggested. As a continuation of our recent findings on the expression and functional role of ghrelin in rat testis, we report here the pattern of cellular expression of ghrelin peptide in rat testis during postnatal development and after selective Leydig cell elimination, and we assess hormonal regulation of testicular ghrelin expression, at the mRNA and/or protein levels, in different experimental models. Immunohistochemical analyses along postnatal development demonstrated selective location of ghrelin peptide within rat testis in mature fetal- and adult-type Leydig cells. In good agreement, ghrelin protein appeared undetectable in testicular interstitium after selective Leydig cell withdrawal. In terms of hormonal regulation, testicular ghrelin mRNA and protein expression decreased to negligible levels after long-term hypophysectomy, whereas replacement with human chorionic gonadotropin (CG) (as superagonist of LH) partially restored ghrelin mRNA and peptide expression. Furthermore, acute administration of human CG (25 IU) to intact rats resulted in a transient increase in testicular ghrelin mRNA levels, with peak values 4 h after injection, an effect that was not mimicked by FSH (12.5 IU/rat). In contrast, testicular expression of ghrelin mRNA remained unaltered in GH-deficient rats, under hyper- and hypothyroidism conditions, as well as in adrenalectomized animals. In conclusion, our results demonstrate that mature Leydig cells are the source of ghrelin expression in rat testis, the protein being expressed in both fetal- and adult-type Leydig cells. In addition, our data indicate that testicular expression of ghrelin is hormonally regulated and is at least partially dependent on pituitary LH.  相似文献   

16.
17.
镉中毒大鼠睾丸与肝脏金属硫蛋白表达的时相研究   总被引:6,自引:1,他引:5  
啮齿目动物睾丸对镉毒性较肝脏更敏感.为阐明睾丸的镉毒性分子机制,比较了肝脏与睾丸金属硫蛋白(MT)表达的时相变化.mRNA采用RT-PCR技术分析并用光密度扫描定量;蛋白质定量用ELISA方法.结果显示,睾丸中存在MT,镉中毒后MT1与MT2 mRNA明显升高,但MT没有相应增加;肝脏镉中毒后MTmRNA与MT均明显升高.结果提示:镉虽然能诱导睾丸MTmRNA的转录,但没有促进其MT的合成,这可能是睾丸对镉毒性与致癌作用较肝脏更敏感的重要原因.  相似文献   

18.
19.
20.
Li W  Zhang J  Liu X  Xu R  Zhang Y 《Cell and tissue research》2007,329(2):351-362
Mta1, a representative of the MTA gene family, is believed to be involved in the metastasis of malignant tumors. However, a systematic study of its physiological function has not been performed. It has been found in normal mouse organs at relatively low levels, except for in testis, suggesting a potential function in the male reproductive system. In order to explore the role of Mta1 protein during spermatogenesis, its expression in adult mouse testis was compared with that in developing mouse testis and in testis from adult mice treated with methoxyacetic acid, which selectively depletes primary spermatocytes. Quantitative analysis revealed that Mta1 protein gradually increased in the testis from 14 days postnatally. Immunolocalization analysis demonstrated strong signals in the seminiferous tubules, and Mta1 was predominantly present in the nucleus of primary spermatocytes and spermatogonia from 14 days postnatally. The most intensive staining was located in the nucleus of pachytene spermatocytes in mature testes. The expression pattern of Mta1 during spermatogenesis was also shown to be stage-specific by immunohistochemistry analysis. Finally, dramatic loss of Mta1 expression from pachytene spermatocytes was observed in the spermatogenic-arrested adult mouse testis. These results collectively demonstrate that Mta1 appears during postnatal testis development and suggest that this expression may be crucial for spermatogenesis. This study was supported by the Natural Science Foundation of China (2006: 30570982; 2003: 30370750; 2003: 30371584).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号