首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic AMP-dependent protein kinases from several mammalian sources inhibit Na+-dependent α-aminoisobutyric acid transport by membrane vesicles isolated from 3T3 cells. Evidence is provided that phosphorylation of membrane proteins by the enzyme is responsible for the inhibition. Lysis of the vesicles, or a reduction in the intravesicular volume is not the cause of reduced transport.The cyclic AMP-dependent protein kinase and its catalytic subunit phosphorylate a number of membrane proteins. Most of these proteins are phosphorylated, but to a lesser extent in the absence of protein kinase or cyclic AMP. The phosphorylated proteins remain associated with the membranes during hypotonic lysis treatments, which would be expected to release intra-vesicular contents and loosely associated membrane proteins. 32P-labeled bands detected on sodium dodecyl sulfate polyacrylamide gels after phosphorylation of membranes by the catalytic subunit of the cyclic AMP-dependent kinase are eliminated by treatment with either pronase or 1 N NaOH, but not by ribonuclease nor by phospholipase C. The stability of the incorporated radioactivity to hot acid and hydroxylamine relative to hot base suggests that most of the 32P from [γ-32P]ATP is incorporated into protein phosphomonoester linkages.  相似文献   

2.
Inside-out vesicles from lymphocyte plasma membrane were phosphorylated in the presence of [gamma -32P]ATP. The dissociated catalytic subunit of cyclic AMP-dependent protein kinase stimulated both membrane protein and membrane lipid phosphorylation, indicating the presence of a phosphorylation cascade. The phosphorylated membrane lipids were analyzed by thin-layer chromatography. Increase of 32P-labelling stimulated by the cyclic AMP-dependent protein kinase was found exclusively in polyphosphoinositides.  相似文献   

3.
Plasma membrane preparations from lymphocytes, platelets and red cells were phosphorylated in the presence of [gamma-32 P]ATP. The dissociated catalytic subunit of cyclic AMP-dependent protein kinase increased the 32P-labelling of proteins and polyphosphoinositides in lymphocyte, platelet and in some red cell membranes. In the majority of red cell membrane preparations the 32P-labelling of proteins and polyphosphoinositides seemed to be stimulated by the catalytic subunit of the endogenous protein kinase, since the phosphorylation was not increased by the addition of the catalytic subunit but it was decreased by the heat-stable inhibitor protein of the protein kinase. Different sets of 32P-labelled proteins were shown by SDS-gel electrophoresis in the membranes of the 3 cell types. A 24000-Mr protein was the only one which was phosphorylated by the catalytic subunit in each membrane.  相似文献   

4.
Phosphorylation of eukaryotic ribosomal proteins in vitro by essentially homogeneous preparations of cyclic AMP-dependent protein kinase catalytic subunit and cyclic GMP-dependent protein kinase was compared. Each protein kinase was added at a concentration of 30nM. Ribosomal proteins were identified by two-dimensional gel electrophoresis. Almost identical results were obtained when ribosomal subunits from HeLa or ascites-tumour cells were used. About 50-60% of the total radioactive phosphate incorporated into small-subunit ribosomal proteins by either kinase was associated with protein S6. In 90 min between 0.7 and 1.0 mol of phosphate/mol of protein S6 was incorporated by the catalytic subunit of cyclic AMP-dependent protein kinase. Of the other proteins, S3 and S7 from the small subunit and proteins L6, L18, L19 and L35 from the large subunit were predominantly phosphorylated by the cyclic AMP-dependent enzyme. Between 0.1 and 0.2 mol of phosphate was incorporated/mol of these phosphorylated proteins. With the exception of protein S7, the same proteins were also major substrates for the cyclic GMP-dependent protein kinase. Time courses of the phosphorylation of individual proteins from the small and large ribosomal subunits in the presence of either protein kinase suggested four types of phosphorylation reactions: (1) proteins S2, S10 and L5 were preferably phosphorylated by the cyclic GMP-dependent protein kinase; (2) proteins S3 and L6 were phosphorylated at very similar rates by either kinase; (3) proteins S7 and L29 were almost exclusively phosphorylated by the cyclic AMP-dependent protein kinase; (4) protein S6 and most of the other proteins were phosphorylated about two or three times faster by the cyclic AMP-dependent than by the cyclic GMP-dependent enzyme.  相似文献   

5.
We investigated the effects of enzyme phosphorylation in vitro on the properties of diacylglycerol kinase. Diacylglycerol kinase and protein kinase C, both present as Mr-80,000 proteins, were highly purified from pig thymus cytosol. Protein kinase C phosphorylated diacylglycerol kinase (up to 1 mol of 32P/mol of enzyme) much more actively than did cyclic AMP-dependent protein kinase. Phosphorylated and non-phosphorylated diacylglycerol kinase showed a similar pI, approx. 6.8. Diacylglycerol kinase phosphorylated by either protein kinase C or cyclic AMP-dependent protein kinase was almost exclusively associated with phosphatidylserine membranes. In contrast, soluble kinase consisted of the non-phosphorylated form. The catalytic properties of the lipid kinase were not much affected by phosphorylation, although phosphorylation-linked binding with phosphatidylserine vesicles resulted in stabilization of the enzyme activity.  相似文献   

6.
Purified P400 protein was phosphorylated by both purified Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and the catalytic subunit of cyclic AMP-dependent protein kinase (A-kinase). Because P400 protein was suggested to function as an integral membrane protein, we investigated the phosphorylation of P400 protein using crude mitochondrial and microsomal fractions (P2/P3 fraction). Incubation of the P2/P3 fraction from mouse cerebellum with cyclic AMP or the catalytic subunit of A-kinase stimulated the phosphorylation of P400 protein. The phosphorylation of P400 protein was not observed in the P2/P3 fraction from mouse forebrain. Cyclic AMP and A-kinase enhanced the phosphorylation of several proteins, including P400 protein, suggesting that P400 protein is one of the best substrates for A-kinase in the P2/P3 fraction. Although endogenous and exogenous CaM kinase II stimulated the phosphorylation of some proteins in the P2/P3 fraction, the phosphorylation of P400 protein was weak. Immunoprecipitation with the monoclonal antibody to P400 protein confirmed that the P400 protein itself was definitely phosphorylated by the catalytic subunit of A-kinase and CaM kinase II. A-kinase phosphorylated only the seryl residue in P400 protein. Immunoblot analysis of the cells in primary culture of mouse cerebellum confirmed the expression of P400 protein, which migrated at the same position on sodium dodecyl sulfate-polyacrylamide gel electrophoresis as that in the P2/P3 fraction. Incubation of the cultured cerebellar cells with [32P]orthophosphate resulted in the labeling of P400 protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Native acetyl CoA carboxylase was phosphorylated by catalytic subunit of cyclic AMP-dependent protein kinase and ATP-citrate lyase kinase to 1 and 0.5 mol/subunit respectively. Both protein kinases added together increased acetyl CoA carboxylase phosphorylation additively. Partial proteolysis of 32P-acetyl CoA carboxylase followed by electrophoretic analysis showed that the 32P-phosphopeptides generated from acetyl CoA carboxylase phosphorylated with lyase kinase were different from the peptides obtained from the enzyme phosphorylated by cyclic AMP-dependent protein kinase. Mapping of tryptic 32P-phosphopeptides by high performance liquid chromatography showed that the major phosphopeptides phosphorylated by ATP-citrate lyase kinase were different from the major phosphopeptides phosphorylated by cyclic AMP-dependent protein kinase. The results suggest that at least one different site on acetyl CoA carboxylase is preferentially phosphorylated by each protein kinase.  相似文献   

8.
Calcium-accumulating vesicles were isolated by differential centrifugation of sonicated platelets. Such vesicles exhibit a (Ca2+ + Mg2+)-ATPase activity of about 10 nmol (min . mg)-1 and an ATP-dependent Ca2+ uptake of about 10 nmol (min . mg)-1. When incubated in the presence of Mg[gamma-32P]ATP, the pump is phosphorylated and the acyl phosphate bond is sensitive to hydroxylamine. The [32P]phosphate-labeled Ca2+ pump exhibits a subunit molecular weight of 120 000 when analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Platelet calcium-accumulating vesicles contain a 23 kDa membrane protein that is phosphorylatable by the catalytic subunit of cAMP-dependent protein kinase but not by protein kinase C. This phosphate acceptor is not phosphorylated when the vesicles are incubated in the presence of either Ca2+ or Ca2+ plus calmodulin. The latter protein is bound to the vesicles and represents 0.5% of the proteins present in the membrane fraction. Binding of 125I-labeled calmodulin to this membrane fraction was of high affinity (16 nM), and the use of an overlay technique revealed four major calmodulin-binding proteins in the platelet cytosol (Mr = 94 000, 87 000, 60 000 and 43 000). Some minor calmodulin-binding proteins were enriched in the membrane fractions (Mr = 69 000, 57 000, 39 000 and 37 000). When the vesicles are phosphorylated in the presence of MgATP and of the catalytic subunit of cAMP-dependent protein kinase, the rate of Ca2+ uptake is essentially unaltered, while the Ca2+ capacity is diminished as a consequence of a doubling in the rate of Ca2+ efflux. Therefore, the inhibitory effect of cAMP on platelet function cannot be explained in such simple terms as an increased rate of Ca2+ removal from the cytosol. Calmodulin, on the other hand, was observed to have no effect on the initial rate of calcium efflux when added either in the absence or in the presence of the catalytic subunit of the cyclic AMP-dependent protein kinase, nor did the addition of 0.5 microM calmodulin result in increased levels of vesicle phosphorylation.  相似文献   

9.
Previous reports from this laboratory and others have established that both the rabbit and human erythrocyte membranes contain multiple protein kinase and phosphate acceptor activities. We now report that these membranes also contain phosphoryl acceptor sites for the soluble cyclic AMP-dependent and -independent protein kinases from rabbit erythrocytes. The rabbit erythrocyte membrane, which does not contain a cyclic AMP-dependent protein kinase, has at least four polypeptides (Bands 2.1, 2.3, 4.5, and 4.8) which are phosphorylated in the presence of the soluble cyclic AMP-dependent protein kinases I, IIa, and IIb isolated from rabbit erythrocyte lysates. The resulting phosphoprotein profile is very similar to that obtained for the cyclic AMP-mediated autophosphorylation of human erythrocyte membranes. The activities of the soluble cyclic AMP-dependent protein kinases toward the membranes have been studied at several pH values. Although the substrate specificity of the three kinases is similar, polypeptide 2.3 appears to be phosphorylated to a greater extent by kinase IIa than by I or IIb. This occurs at all pH values studied. Also apparent is that the pH profile for membrane phosphorylation is different from that of histone phosphorylation. The phosphorylation of membrane proteins can also be catalyzed by the soluble erythrocyte casein kinases. These enzymes are not regulated by cyclic nucleotides and can use either ATP or GTP as their phosphoryl donor. Polypeptides 2.1, 2.9, 4.1, 4.5, 4.8, and 5 of both human and rabbit erythrocyte membranes are phosphorylated in the presence of GTP and the casein kinases. This reaction is optimal at pH 7.5. Experiments were performed to determine whether the phosphorylation of the membranes by the soluble and membrane-bound kinases is additive or exclusive. Our results indicate that after maximal autophosphorylation of the erythrocyte membranes, phosphoryl acceptor sites are available to the soluble cyclic AMP-dependent and -independent protein kinases. Furthermore, after maximal phosphorylation of the membranes with one type of soluble kinase, further 32P incorporation can occur as a result of exposure to the other type of soluble kinase.  相似文献   

10.
A rabbit heart membrane fraction enriched in sarcoplasmic reticulum was incubated in a reaction mixture containing [gamma-32P]ATP. The catalytic subunit of cyclic AMP-dependent protein kinase enhanced the 32P-labelling of both phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate. Ca2 +-calmodulin also increased the 32P-incorporation into both polyphosphoinositides. Upon SDS gel-electrophoretic analysis of the membrane proteins, phospholamban was found to be concurrently phosphorylated by the exogenous catalytic subunit as well as by an endogenous Ca2+-calmodulin-dependent protein kinase.  相似文献   

11.
Crude cardiac membrane vesicles were separated into subfractions of sarcolemma and sarcoplasmic reticulum. The subfractions were used to determine the origin and type of cyclic AMP-dependent protein kinase activity present in myocardial membranes. A cyclic AMP-binding protein of molecular weight 55,000 was covalently labeled with the photoaffinity probe 8-azido adenosine 3',5'-mono[32P]phosphate, and found to copurify with the (Na+ + K+)-ATPase activity of sarcolemma, and away from the (Ca2+ + K+)-ATPase activity of sarcoplasmic reticulum. Endogenous cyclic AMP-dependent protein kinase activity also copurified with sarcolemma. Protein substrates phosphorylated by cyclic AMP-dependent protein kinase activity had apparent molecular weights of 21,000 and 8000 and were present in both sarcolemma and sarcoplasmic reticulum. However, while addition of cyclic AMP alone resulted in phosphorylation of sarcolemma proteins, both cyclic AMP and exogenous, soluble cyclic AMP-dependent kinase were required for phosphorylation of sarcoplasmic reticulum proteins. Addition of the calcium-binding protein, calmodulin, to either sarcolemma or sarcoplasmic reticulum resulted in phosphorylation of the 21,000 and 8000-dalton proteins, as well. The results suggest that cardiac sarcolemma contains an intrinsic type II cyclic AMP-dependent protein kinase activity that is not present in sarcoplasmic reticulum. On the other hand, Ca2+- and calmodulin-dependent protein kinase activity is present in both sarcolemma and sarcoplasmic reticulum.  相似文献   

12.
Sarcomplasmic reticulum from rabbit fast skeletal muscle contains intrinsic protein kinase activity (ATP:protein phosphotransferase, EC 2.7.1.37) and a substrate. The protein kinase activity was Mg2+ dependent and could also phosphorylate exogenous protein substrates. Autophosphorylation of sarcoplasmic reticulum vesicles was not stimulated by cyclic AMP, neither was it inhibited by the heat-stable protein kinase inhibitor protein. The phosphorylated membranes had the characteristics of a protein with a phosphoester bond. An average of 73 pmol Pi/mg protein were incorporated in 10 min at 30 degrees C. Addition of exogenous cyclic AMP-dependent protein kinase increased the endogenous level of phosphorylation by 25-100%. Sarcoplasmic reticulum membrane phosphorylation, mediated by either endogenous cyclic AMP-independent or exogenous cyclic AMP-dependent protein kinase, occurred on a 100 000 dalton protein and both enzyme activities resulted in enhanced calcium uptake and Ca2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3), in a manner similar to cardiac microsomal preparations. Regulation of Ca2+ transport in skeletal sarcoplasmic reticulum may be mediated by phosphorylation of a 100 000 dalton component of these membranes.  相似文献   

13.
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase from rat liver was phosphorylated by cyclic AMP-dependent protein kinase and [gamma-32P]ATP. Treatment of the 32P-labeled enzyme with thermolysin removed all of the radioactivity from the enzyme core and produced a single labeled peptide. The phosphopeptide was purified by ion exchange chromatography, gel filtration, and reverse phase high pressure liquid chromatography. The sequence of the 12-amino acid peptide was found to be Val-Leu-Gln-Arg-Arg-Arg-Gly-Ser(P)-Ser-Ile-Pro-Gln. Correlation of the extent of phosphorylation with activity showed that a 50% decrease in the ratio of kinase activity to bisphosphate activity occurred when only 0.25 mol of phosphate was incorporated per mol of enzyme subunit, and maximal changes occurred with 0.7 mol incorporated. The kinetics of cyclic AMP-dependent protein kinase-catalyzed phosphorylation of the native bifunctional enzyme was compared with that of other rat liver protein substrates. The Km for 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (10 microM) was less than that for rat liver pyruvate kinase (39 microM), fructose-1,6-bisphosphatase (222 microM), and 6- phosphofructose -1-kinase (230 microM). Comparison of the initial rate of phosphorylation of a number of protein substrates of the cyclic AMP-dependent protein kinase revealed that only skeletal muscle phosphorylase kinase was phosphorylated more rapidly than the bifunctional enzyme. Skeletal muscle glycogen synthase, heart regulatory subunit of cyclic AMP-dependent protein kinase, and liver pyruvate kinase were phosphorylated at rates nearly equal to that of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase, while phosphorylation of fructose-1,6-bisphosphatase and 6-phosphofructo-1-kinase was barely detectable. Phosphorylation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase was not catalyzed by any other protein kinase tested. These results are consistent with a primary role of the cyclic AMP-dependent protein kinase in regulation of the enzyme in intact liver.  相似文献   

14.
Gastric mucosal membranes derived primarily from parietal cells were found to contain endogenous protein kinase systems as well as several phosphate-accepting substrates. One specific membrane protein with a molecular weight of 88 000 was phosphorylated only in the presence of calcium, while the degree of phosphorylation of three other membrane proteins was similarly increased. The activity of the calcium-dependent protein kinase was found to be totally inhibited in the presence of trifluoperazine, a phenothiazine known to specifically inactivate calmodulin. These results suggest that a calmodulin- and calcium-dependent phosphorylation system may be a component of the parietal cell membrane. Phosphorylation of the membrane proteins was not affected by either cyclic AMP or cyclic GMP. The heat-stable inhibitor protein of cyclic AMP-dependent protein kinase did not inhibit the endogenous protein kinase activity suggesting that the membrane enzyme is not similar to the cytosolic protein kinase. However, the catalytic subunit of the soluble enzyme was capable of phosphorylating a number of membrane proteins indicating that after maximal autophosphorylation of the gastric membranes, phosphate-acceptor sites are still available to the cytosolic cyclic AMP-dependent protein kinase.  相似文献   

15.
Hepatic ATP-citrate lyase prepared with a fluoride-free step to allow endogenous phosphatases to dephosphorylate the enzyme was phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase and [γ-32P]ATP. After electrophoresis the radioactive phosphate was located predominantly in the gel slice containing the Coomassie blue stained protein corresponding to ATP-citrate lyase. The Stoichiometry of phosphorylation of hepatic ATP-citrate lyase in vitro by the catalytic subunit was such that 0.53 ± 0.02 molecules of phosphate were incorporated per subunit. The degree of phosphorylation was independent of the amount of ATP-citrate lyase present as substrate in the concentration range 1.2–6.4 μm. In the absence of catalytic subunit there was very little labeled phosphate incorporated into ATP-citrate lyase. Phosphorylation of ATP-citrate lyase by catalytic subunit was abolished by the specific protein inhibitor of cyclic AMP-dependent protein kinase. When ATP-citrate lyase was subjected to electrophoresis under nondenaturing conditions, lyase activity was recovered from the gel slice corresponding to the Coomassie blue staining phosphoprotein of a stained gel run in parallel.  相似文献   

16.
We have examined endogenous cyclic AMP-stimulated phosphorylation of subcellular fractions of rat brain enriched in synaptic plasma membranes (SPM), purified synaptic junctions (SJ), and postsynaptic densities (PSD). The analyses of these fractions are essential to provide direct evidence for cyclic AMP-dependent endogenous phosphorylation at discrete synaptic junctional loci. Protein kinase activity was measured in subcellular fractions using both endogenous and exogenous (histones) proteins as substrates. The SJ fraction possessed the highest kinase activity toward endogenous protein substrates, 5-fold greater than SPM and approximately 120-fold greater than PSD fractions. Although the kinase activity as measured with histones as substrates was only slightly higher in SJ than SPM fractions, there was a marked preference of kinase activity toward endogenous compared to exogenous substrates in SJ fractions but in SPM fractions. Although overall phosphorylation in SJ fractions was increased only 36% by 5 micron cyclic AMP, there were discrete proteins of Mr = 85,000, 82,000, 78,000, and 55,000 which incorporated 2- to 3-fold more radioactive phosphate in the presence of cyclic AMP. Most, if not all, of the cyclic AMP-independent kinase activity is probably catalyzed by catalytic subunit derived from cyclic AMP-dependent kinase, since the phosphorylation of both exogenous and endogenous proteins was greatly decreased in the presence of a heat-stable inhibitor protein prepared from the soluble fraction of rat brain. The specific retention of SJ protein kinase(s) activity during purification and their resistance to detergent solubilization was achieved by chemical treatments which produce interprotein cross-linking via disulfide bridges. Two SJ polypeptides of Mr = 55,000 and 49,000 were photoaffinity-labeled with [32P]8-N3-cyclic AMP and probably represent the regulatory subunits of the type I and II cyclic AMP-dependent protein kinases. The protein of Mr = 55,000 was phosphorylated in a cyclic AMP-stimulated manner suggesting autophosphorylation as previously observed in other systems.  相似文献   

17.
The phosphorylation of keratin polypeptides was examined in calf snout epidermis. When slices of epidermis were incubated in the medium containing 32Pi, the radioactivity was incorporated into several proteins. The predominant phosphorylated proteins migrated in SDS-polyacrylamide gels with apparent molecular weights between 49000 and 69000 and coincided with keratin polypeptides. The extent of keratin phosphorylation was not altered in the presence of dibutyryl cyclic AMP or reagents which elevate intracellular cyclic AMP. When homogenates of epidermis were incubated with [gamma-32P]ATP, keratin polypeptides were the predominant species phosphorylated as was also observed in epidermal slices. The presence of cyclic AMP or heat-stable inhibitor of cyclic AMP-dependent protein kinase in the reaction mixture did not affect the phosphorylation of keratin polypeptides, although the phosphorylation of exogenously-added histone was stimulated and inhibited, respectively, by these additions. Keratin polypeptides extracted from calf snout epidermis by 8 M urea were phosphorylated by incubation with [gamma-32P]ATP and cyclic AMP-dependent protein kinase from calf snout epidermis or bovine heart. No proteins were phosphorylated without the addition of the enzymes. The presence of cyclic AMP in the reaction mixture stimulated the keratin phosphorylation, and further addition of heat-stable protein kinase inhibitor reduced this stimulation.  相似文献   

18.
Pigeon heart microsomes contain three minor size protein kinase substrates of minimal molecular weights of 22 000, 15 000, and 11500, as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. When the microsomes were partially loaded with calcium oxalate and subjected to rate zonal and isopycnic centrifugations in sucrose density gradient columns, the 22 000 and the 15 000 dalton proteins settled in the heaviest fraction, which was composed mainly of vesicles of sarcoplasmic reticular membranes; the 11 500 dalton protein was concentrated in the lightest fractions, which consisted chiefly of vesicles of sarcolemmal origin. During incubation of the membrane fractions with Mg [gamma-32P]ATP significant amounts of 32P were incorporated into all these proteins. Incorporation of 32P into the 15 000 dalton protein was moderately and 32P incorporation into the 22 000 dalton protein was markedly enhanced in the presence of exogenous soluble cyclic AMP-dependent protein kinase and cyclic AMP. The phosphorylation of the three proteins was virtually unaffected by Ca2+ concentrations up to 0.1 mM and by ethyleneglycol-bis-(beta-aminoethyl-ether)-N,N'-tetraacetic acid in the absence of added Ca2+. Phosphorylation of the 22 000 and the 11 500 dalton proteins occurred mainly at serine residues. In the 15 000 dalton protein threonine residues were the main site of endogenous phosphorylation. Nearly equal amounts of [32P]-phosphate were incorporated into threonine and serine residues of this protein, when phosphorylation was supported by exogenous cyclic AMP-dependent protein kinase and cyclic AMP. The 15 000 dalton protein could be removed from its membrane attachment by extraction with an acidic chloroform/methanol mixture. This step opens the way for the purification of this membrane-bound protein kinase substrate.  相似文献   

19.
Ribosomal protein phosphorylation was investigated in isolated ribosomal subunits and polyribosomes from rat cerebral cortex in the presence of [gamma-32P]ATP and purified catalytic subunit of cyclic AMP-dependent protein kinase from the same tissue. Ribosomal proteins that were most readily phosphorylated in isolated cerebral ribosomal subunits included proteins S2, S3a, S6 and S10 of the 40 S subunit and proteins L6, L13, L14, L19 and L29 of the 60 S subunit. These proteins were also phosphorylated in cellular preparations of rat cerebral cortex in situ or in vitro [Roberts & Ashby (1978) J. Biol. Chem. 253, 288-296; Roberts & Morelos (1979) Biochem. J. 184, 233-244]. However, several additional ribosomal proteins were phosphorylated when isolated 40 S or 60 S subunits were separately incubated in the reconstituted system. Analogous results were obtained with an equimolar mixture of cerebral 40 S and 60 S subunits under comparable conditions. In contrast, extensive exposure of purified cerebral polyribosomes to the catalytic subunit resulted in phosphorylation of only those ribosomal proteins of the 40 S subunit that were most highly labelled after the administration of [32P]Pi in vivo: proteins S2, S6 and S10. Ribosomal proteins of 60 S subunits that were readily phosphorylated in isolated cerebral polyribosomes included proteins L6, L13 and L29. These results indicate that polyribosome formation markedly decreases the number of ribosomal protein sites available for phosphorylation by the catalytic subunit of cyclic AMP-dependent protein kinase. Moreover, the findings suggest that, of the ribosomal protein phosphorylations observed in rat cerebral cortex in vivo, proteins S2, S6, S10, L6, L13 and L29 can be phosphorylated in polyribosomes, whereas proteins S3a, S5, L14 and L19 may become phosphorylated only in free ribosomal subunits.  相似文献   

20.
1. Protein kinase activities in homogenates of rat islets of Langerhans were studied. 2. On incubation of homogenates with [gamma-32P]ATP, incorporation of 32P into protein occurred: this phosphorylation was neither increased by cyclic AMP nor decreased by the cyclic AMP-dependent protein kinase inhibitor described by Ashby & Walsh [(1972) J. Biol. Chem. 247, 6637--6642]. 3. On incubation of homogenates with [gamma-32P]ATP and histone as exogenous substrate for phosphorylation, incorporation of 32P into protein was stimulated by cyclic AMP (approx. 2.5-fold) and was inhibited by the cyclic AMP-dependent protein kinase inhibitor. In contrast, when casein was used as exogenous substrate, incorporation of 32P into protein was not stimulated by cyclic AMP, nor was it inhibited by the cyclic AMP-dependent protein kinase inhibitor. 4. DEAE-cellulose ion-exchange chromatography resolved four peaks of protein kinase activity. One species was the free catalytic subunit of cyclic AMP-dependent protein kinase, two species corresponded to 'Type I' and 'Type II' cyclic AMP-dependent protein kinase holoenzymes [see Corbin, Keely & Park (1975) J. Biol. Chem. 250, 218--225], and the fourth species was a cyclic AMP-independent protein kinase. 5. Determination of physical and kinetic properties of the protein kinases showed that the properties of the cyclic AMP-dependent activities were similar to those described in other tissues and were clearly distinct from those of the cyclic AMP-independent protein kinase. 6. The cyclic AMP-independent protein kinase had an s20.w of 5.2S, phosphorylated a serine residue(s) in casein and was not inhibited by the cyclic AMP-dependent protein kinase inhibitor. 7. These studies demonstrate the existence in rat islets of Langerhans of multiple forms of cyclic AMP-dependent protein kinase and also the presence of a cyclic AMP-independent protein kinase distinct from the free catalytic subunit of cyclic AMP-dependent protein kinase. The presence of the cyclic AMP-independent protein kinase may account for the observed characteristics of 32P incorporation into endogenous protein in homogenates of rat islets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号