共查询到20条相似文献,搜索用时 0 毫秒
1.
Kurbannazarova RS Tashmukhamedov BA Sabirov RZ 《General physiology and biophysics》2003,22(2):221-232
Rat thymocytes displayed robust regulatory volume decrease (RVD) when suspended in NaCl-based hypotonic Ringer solutions. The RVD of thymocytes was completely abolished upon replacement of external Na+ ions with K+, indicating a role of coupled efflux of K+ and Cl- ions as a driving force of regulatory volume decrease. Osmotic water permeability (Pf) measured in KCl-based hypotonic solutions was (1.3 +/- 1.0 x 10(-4) cm/s at 25 degrees C and was temperature-dependent with low activation energy (Ea = 4.65 +/- 0.77 kcal/mol) characteristic to water transport through pores. HgCl2 and a sulfhydryl-blocking reagent, methyl methanethiosulphonate (MMTS), modulated the water permeability of thymocytes in a biphasic manner: inhibited at low dose (0.1-1 micromol/l) and restored or even enhanced at higher (10-100 micromol/l) concentrations. RVD paralleled the Pf: it was greatly suppressed at low dose of MMTS (sufficient to attenuate the water transport), but recovered at higher dose, when the water movement was restored. Therefore we suggest that thymocytes require the effective water transport for functional regulatory volume decrease. 相似文献
2.
Glutathione (GSH) content as well as GSH-peroxidase and GSH-reductase activity in isolated rat thymocytes X-irradiated in a dose of 4.5 Gy or treated with 0.1 mM H2O2 were studied in a period preceding the appearance of apoptosis morphological symptoms. The early adaptive response of thymocytes to radiation - increase of both GSH content and glutathione peroxidase and glutathione reductase activity was revealed. On the contrary the rapid fall of GSH level in H2O2-treated thymocytes was observed simultaneousely with glutathione reductase inhibition and enhanced GSH consumption by glutathione peroxidase, this disbalance of GSH-dependent antioxidant system probably facilitates mitochondrial way of apoptosis. 相似文献
3.
BACKGROUND: Techniques to measure apoptosis are used to study a wide spectrum of conditions, from acquired immune deficiency syndrome (AIDS) to cancer to autoimmune diseases. Therefore, a critical comparison of common assays for apoptosis is warranted. METHODS: The kinetics of apoptosis induction in dexamethasone (DEX)-exposed thymocytes was examined after 2, 4, 8, 12, 26-28, and 48-50 h of culture. An additional aim was to ascertain whether a similar thymic atrophy-inducing hormone, diethylstilbestrol (DES), also directly induces thymocyte apoptosis. Apoptosis was evaluated by flow cytometric examination of cells stained with propidium iodide (PI), 7-aminoactinomycin D (7-AAD), or fluorescein isothiocyante (FITC)-annexin; by forward-and side-scatter (FS, SS) analysis, cell-size analyzer; and through cytopathologic examination. RESULTS: After 4 h of DEX exposure, apoptosis was evident by 7-AAD, annexin, and cytopathological assays, but no cells with sub-diploid DNA content were evident by PI analysis. Maximal apoptosis was evident by all the above flow cytometric techniques at 12 h after DEX exposure. The 7-AAD and annexin assays, which allow discrimination between early apoptosis and late apoptosis/necrosis, were comparable and identified similar apoptotic populations. Appearance of a FSlow/SSincreased population was evident only after 12 h of DEX exposure. Apoptosis could not be detected by any of the above assays in thymocytes exposed to various doses of DES. CONCLUSION: Two of the six assays, 7-AAD and annexin, were similar in detecting apoptosis at an early kinetic time point. Results of both assays were comparable at all time points studied. Our studies imply that DEX and DES induce thymic atrophy, in vivo, by different mechanisms. 相似文献
4.
盐、碱胁迫下小冰麦体内的pH及离子平衡 总被引:13,自引:0,他引:13
通过混合两种中性盐(NaCl和Na2SO4)和两种碱性盐(NaHCO3和Na2CO3)分别模拟出不同强度的盐、碱胁迫条件,对小冰麦苗进行12 d胁迫处理,测定茎叶组织液的pH值及Na+、K+、Ca2+、Cl-、SO42-、NO3-、H2PO4-和有机酸等溶质的浓度,以探讨盐、碱两种胁迫下小冰麦体内的pH及离子平衡特点.结果表明:盐、碱胁迫下小冰麦茎叶内的pH值均稳定不变;随胁迫强度的增加,盐胁迫下小冰麦茎叶内有机酸浓度没有明显变化,Cl-浓度大幅度增加,而碱胁迫下有机酸浓度大幅度增加,Cl-浓度没有明显变化.盐、碱胁迫下小冰麦茎叶中的阳离子均以Na+和K+为主,但阴离子的来源明显不同.盐胁迫下无机阴离子对负电荷的贡献起主导作用,其贡献率达61.3%~66.7%;而碱胁迫下,随胁迫强度的增大,有机酸对负离子的贡献率从38.35%上升到61.60%,逐渐成为主导成分.实验结果表明,有机酸积累是小冰麦在碱胁迫下保持体内离子平衡和pH稳定的关键生理响应. 相似文献
5.
Differential involvement of DNases in HeLa cell apoptosis induced by etoposide and long term-culture
Torriglia A Negri C Chaudun E Prosperi E Courtois Y Counis MF Scovassi AI 《Cell death and differentiation》1999,6(3):234-244
We have applied to human HeLa cells two different stimuli of apoptosis: the antitumoral drug etoposide, and a more 'physiological' death condition, obtained by growing cells in the same medium for long time periods, for up to 10 days. Analysis of different parameters demonstrated that in both experimental systems the same apoptotic features are visible. However, the DNA degradation pattern appeared to be different, suggesting the involvement of different DNases. In this view, we have analyzed the activity and expression of Ca2+-Mg2+-dependent and acid DNases. We have observed that DNase I is not modulated during apoptosis. In contrast, the acid L-DNase II (derived from Leukocyte Elastase Inhibitor by post-translational modification), recently identified in our laboratory, is mainly active in the apoptotic pathway induced by long term-culture. Furthermore, we have provided evidence that while caspase 3 is activated by both inducers, caspase 1 is essential only for the etoposide-induced apoptosis. 相似文献
6.
7.
The intracellular redox state is of importance for cell growth, differentiation, and apoptosis through reactive oxygen species (ROS) functioning as metabolic fine-tuner. Optimal levels of polyamines are necessary for growth, differentiation, and apoptotic cell death while they also protect cell from ROS accumulation. We have carried out studies to find out the interrelation between these two distant metabolic pathways. For that purpose, the glucocorticoid-triggered programmed cell death of rat thymocytes has been used. Our data confirm that SOD activity (which testifies both to the level of ROS generation and antioxidative defense state) changes in response to programmed cell death conditions and to alteration of intracellular polyamines level. Thymocytes death induced by dexamethasone is partially mediated by polyamines content. Our data prove that one of the molecular mechanisms of thymocytes population resistance after dexamethasone treatment is an enhanced level of antioxidant defense. It is evident that in dexamethasone-treated rat thymocytes polyamines modulate signal transduction processes to apoptosis development via changes in cellular redox status. 相似文献
8.
D Bernhard M L?ffler B L Hartmann M Yoshida R Kofler A Csordas 《Cell death and differentiation》1999,6(7):609-617
In thymocytes butyrate and trichostatin A are unable to augment dexamethasone-induced apoptosis. In cultured rat thymocytes the extent of apoptosis induced by dexamethasone alone did not increase by addition of 0.1 - 10 mM butyrate. Even more pronounced was the non-additive interrelationship between dexamethasone and trichostatin A, as trichostatin A-induced apoptosis was not only blocked by the presence of dexamethasone but dexamethasone-induced apoptosis was also partially inhibited in the presence of 0.1 - 0.5 microM trichostatin A. The fact that the non-additive relationship with dexamethasone for apoptosis induction was observed with both histone deacetylase inhibitors suggests that in thymocytes this phenomenon is related to histone acetylation. In contrast to this, in the human T cell-derived leukemia cell line CEM-C7H2, dexamethasone did not block butyrate- or trichostatin A-induced apoptosis; moreover, butyrate, in the concentration range of 0.1 - 1 mM, had a marked synergistic effect on dexamethasone-induced apoptosis. This synergism, however, was not mimicked by trichostatin A, indicating that the effect is not related to histone acetylation but rather due to a pleiotropic effect of butyrate. Furthermore, in CEM-C7H2 cells, at higher concentrations of butyrate (5 - 10 mM) or trichostatin A (0.4 - 0.8 microM), there was a minor but reproducible antagonistic effect of dexamethasone on apoptosis induced by each of the two histone deacetylase inhibitors, suggesting that this antagonistic effect too, is related to histone hyperacetylation. 相似文献
9.
The induction of rat thymocyte apoptosis by actinomycin D was associated with the increased caspase-3 activity and DNA fragmentation, the both effects were attenuated by alpha-tocopherol. Apoptosis was also decreased by alpha-tocopheryl acetate, but these suppressive effects were less than those of alpha-tocopherol. Tocopheryl quinone had no pronounced antiapoptotic effect. It was proposed that the difference in antiapoptotic effects of alpha-tocopherol derivatives is attributed to structure properties of the chroman head group and to the ability for scavenging reactive oxygen species but it is not excluded that antiapoptotic activity of alpha-tocopherol may exceed that of a mere antioxidant. 相似文献
10.
Effects of dexamethasone in rat neonatal model of axotomy-induced motoneuronal cell death. 总被引:1,自引:0,他引:1
D Prodanov G Mantchev A Iliev V Traykov K Yakimova R Kaneva I Krushkov 《Archives of physiology and biochemistry》1998,106(5):355-361
In this study the effect of dexamethasone on the motoneuronal cell death and the nuclear and somatic morphology changes occurring after peripheral nerve transection in the neonatal rats has been determined. The study was performed on 3 day old Wistar rats. Animals were divided into 3 groups--control, axotomised, and axotomised and dexamethasone-treated. The nerve transection was performed bilaterally. A dose of 0.5 mg/kg/24h dexamethasone, administered i.p., was used. On day 7 after the operation the animals were sacrificed and the motoneurons in segments L4 and L5 in the spinal cord were counted and their morphology was analysed. 25. 88% cell loss was found in the axotomised group (p<0.001 vs. control) versus 43.33% cell loss in the dexamethasone-treated and axotomised animals (p<0.01 vs. control). Dexamethasone significantly decreased the number of the surviving motoneurons (p<0.05 vs. axotomised). The axotomised group showed enlargement of the somatic area and the maximal and minimal diameters of the cell while the dexamethasone-treated and axotomised group showed soma shrinkage and decrease in the minimal cell diameter. Our results propose a possible hazard towards the application of dexamethasone in the treatment of new-borns with concomitant nerve injuries. 相似文献
11.
Neuropeptides bombesin and calcitonin induce resistance to etoposide induced apoptosis in prostate cancer cell lines 总被引:2,自引:0,他引:2
BACKGROUND: Neuroendocrine differentiation in prostatic carcinoma has been related to regulation of proliferation and metastatic potential and correlated with prognosis. More than 80% of prostate carcinomas initially respond to androgen ablation, but most relapse, due to the heterogeneous presence of androgen-dependent and independent clones. The pathways of cellular proliferation and apoptosis are inexorably linked to minimize the occurrence of neoplasia, and disfunction of apoptosis is proposed as a pathogenic process in malignant tumors. Androgen-dependent prostatic cancer cells undergo apoptosis after androgen deprivation, but not androgen-independent ones due to a defect in the initiation step. Anyway, they retain the basic cellular machinery to undergo apoptosis. We suggest a possible role of neuroendocrine differentiation in the onset and regulation of apoptosis in prostatic neoplasia. METHODS: LNCaP, PC-3 and DU 145 prostatic cancer cell lines were induced to undergo apoptosis after treatment with etoposide alone or plus androgen ablation. We tested the role of neuropeptides bombesin and calcitonin at modulating etoposide induced apoptosis. RESULTS: Etoposide-induced apoptosis in all cancer cell lines was achieved. In LNCaP androgen ablation was also required. Apoptosis is prevented in all three lines when bombesin was added. Calcitonin addition prevents apoptosis in PC-3, LNCaP and in an etoposide dose-dependent way in DU 145. CONCLUSION: Neuropeptides bombesin and calcitonin can modulate the apoptotic response of prostate cancer cells by inducing resistance to etoposide-induced apoptosis, suggesting that neuropeptides can be used as a target of therapeutical approach in prostatic carcinoma. 相似文献
12.
Cultures of dedifferentiated rat hepatoma Rab1-5-1 cells exhibit spontaneously a high level of mortality during the exponential growth phase. We demonstrate that these cells die by apoptosis, showing chromatin condensation and internucleosomal DNA fragmentation. Cells of the original H4II cell line and of its differentiated and dedifferentiated derivatives also die by apoptosis, but only in heavily confluent cultures. We evaluated mortality with time in Rab1-5-1 cultures by establishing growth curves, including quantification of floating cells, and conclude that up to half of the cells in a culture are lost to apoptosis. The production of apoptotic cells is abolished by the presence of 10(-6) M dexamethasone and this inhibition is reversible in 48 hours. Rab1-5-1 cells that spontaneously die by apoptosis with high frequency represent a novel model to investigate factors that regulate the spontaneous frequency of death, and to study the nature and the kinetics of commitment to the apoptotic pathway. 相似文献
13.
Retinoic acids inhibit activation-induced apoptosis in T cell hybridomas and thymocytes. 总被引:9,自引:0,他引:9
M Iwata M Mukai Y Nakai R Iseki 《Journal of immunology (Baltimore, Md. : 1950)》1992,149(10):3302-3308
Apoptosis is induced in immature thymocytes and T cell hybridomas upon stimulation via the TCR/CD3 complex. This phenomenon appears to be related to negative selection of T cell clones in the thymus. In T cell hybridomas, it has been shown that glucocorticoids inhibit TCR/CD3-mediated apoptosis, whereas glucocorticoids alone induce apoptosis. All-trans-retinoic acid (RA) at 0.1 to 10 microM also inhibited TCR/CD3-mediated apoptosis assessed by DNA fragmentation and cytolysis, but RA alone hardly induced apoptosis. RA enhanced the effects of glucocorticoids to induce apoptosis and to inhibit TCR/CD3-mediated apoptosis. TCR/CD3-mediated stimulation can be mimicked by the combination of ionomycin, a calcium ionophore, and PMA, an activator of protein kinase C, and the combination-induced DNA fragmentation was also inhibited by RA. RA, however, failed to inhibit the combination-induced increase in intracellular Ca2+ concentration or the combination-induced translocation of protein kinase C from the cytosolic fraction to the particulate fraction. Time course studies of RA addition into the culture indicated that a 3- to 6-h delay in the addition of RA did not reduce its inhibitory effect on anti-CD3-induced DNA fragmentation. These results suggest that RA interferes with the apoptotic process at some point after its initiation stage. It has been suggested that negative selection involves not only TCR/CD3-mediated signals but also LFA-1-mediated signals. RA at 0.01 to 1 microM significantly inhibited the induction of thymocyte apoptosis by co-immobilized mAb to CD3 and LFA-1 molecules. RA by itself hardly induced apoptosis, but enhanced glucocorticoid-induced apoptosis. The results suggest that thymic selection might be influenced by RA at near-physiologic concentrations. The receptors of glucocorticoids and RA belong to the erbA oncogene-related steroid hormone receptor superfamily. Thyroid hormones and 1 alpha,25-dihydroxy vitamin D3, whose receptors also belong to the superfamily, failed to modulate apoptosis in both T cell hybridomas and thymocytes. 相似文献
14.
Vereninov AA Goryachaya TS Moshkov AV Vassilieva IO Yurinskaya VE Lang F Rubashkin AA 《Cell biology international》2007,31(4):382-393
Unidirectional (22)Na, Li(+) and Rb(+) fluxes and net fluxes of Na(+) and K(+) were measured in U937 human leukemic cells before and after induction of apoptosis by staurosporine (1 microM, 4 h) to answer the question which ion transporter(s) are responsible for changes in cell ion and water balance at apoptosis. The original version of the mathematical model of cell ion and water balance was used for analysis of the unidirectional ion fluxes under the balanced distribution of major monovalent ions across the cell membrane. The values of all major components of the Na(+) and K(+) efflux and influx, i.e. fluxes via the Na(+),K(+)-ATPase pump, Na(+) channels, K(+) channels, Na/Na exchanger and Na-Cl symport were determined. It is concluded that apoptotic cell shrinkage and changes in Na(+) and K(+) fluxes typical of apoptosis in U937 cells induced by staurosporine are caused by a complex decrease in the pump activity, Na-Cl symport and integral Na(+) channel permeability. 相似文献
15.
JOHNACIDLOWSKI CARLDBORTNER MARIA-GOMEZANGELATS ALYSONSCOLTOCK NINASTOREY DAVIDARMSTRONG MONARAZIK 《Cell research》2002,(Z1)
During apoptosis cells undergo a series of evolutionary conserved biochemical and morphological changes that include the loss of cell volume or an apoptotic volume decrease (AVD). This AVD response distinguishes apoptosis from other forms of cell death such as necrosis. Experiments in our laboratory and others have shown that AVD is both an early and necessary component of apoptotic death. We have now investigated the molecular basis for the AVD response in Jurkat cells and Hepatoma cells induced to undergo apoptosis with a variety of death stimuli. Our data reveal significant alterations in the flux of both sodium and 相似文献
16.
Changes in cell volume and ion content of a Halobacterium species are described in terms of the NaCl concentration (0.5--3.5M) and pH(4-8) of the suspending medium. Cell volume, per unit content of protein of bacteria in stationary phase cultures, rose as the [NaCl] of the growth medium was increased. Logarithmic-phase bacteria shrank as the pH fell from 7 to 5.5. These changes are characteristic of bacteria with a moderate or rapid rate of O2 consumption. Starving (i.e. nonmetabolizing) bacteria, on the other hand, did not change in size within the above ranges of [NaCl] and pH. At lower values, however, such bacteria swelled and eventually lysed. Effects of low pH on cell ions are compared in metabolizing and starving bacteria, and it is shown that changes in the state of the cell K are correlated with movements of cell Na. It appears that the cell K is used to maintain cell [Na] below the NaCl concentration of the medium. The results are explained in terms of a model involving interactions between polyelectrolytes, salts and water in the concentrated cytoplasm of these halophilic organisms. 相似文献
17.
It has been established that alpha-tocopherol prevented rat thymocytes apoptotic death induced by low concentration (250 nM) of calcium ionophore A23187. When necrotic cell death was induced high concentration (10 microM) of calcium ionophore A23187 alpha-tocopherol was able to alter necrosis to apoptosis. It was proposed that such effect can be explained by the ability of alpha-tocopherol to prevent the mitochondrial permeability transition--a key event in apoptosis and necrosis induction. 相似文献
18.
Heidrun Olsen Frank ter Veld Ulrike Herbrand Mohammad R Ahmadian Rolf K-H Kinne Frank Wehner 《Cellular physiology and biochemistry》2007,19(5-6):259-268
In confluent primary cultures of rat hepatocytes,hypertonic stress leads to cell shrinkage and activates non-selective cation channels as the main mechanism of regulatory cell volume increase. The process is found to employ the exocytotic insertion of channels into the plasma membrane and (in addition to PKC) PLC, tyrosine kinases and G proteins, but not PI 3-kinase are part of the signalling network. Furthermore, hypertonic stress leads to the formation of stress fibres and significantly alters the activity of RhoA, Rac and Cdc42. These latter effects, however, are likely to reflect the restoration of cell shape rather than the regulation of cell volume, both most probably converging at the level of focal adhesions and integrins. 相似文献
19.
We have quantified the emergence of early chromatin breaks during the signal transduction phase of apoptosis in mouse thymocytes after treatment with either ionizing radiation or dexamethasone. Dexamethasone at 1 microM can induce significant levels of DNA breaks (equivalent to the amount induced directly by 7.5 Gy ionizing radiation) within 0.5 h of treatment. The execution phase of apoptosis was not observed until 4-6 h after the same treatment. The presence of the Bcl2 transgene under the control of the p56lck promoter almost completely inhibited apoptosis up to 24 h after treatment, but it had virtually no effect on the early chromatin cleavage occurring in the first 6 h. Ionizing radiation induced chromatin cleavage both directly by damaging DNA and indirectly with kinetics similar to the induction of chromatin cleavage by dexamethasone. The presence of the Bcl2 transgene had no effect on the direct or indirect radiation-induced cleavage in the first 6 h, but after the first 6 h, the Bcl2 gene inhibited further radiation-induced chromatin cleavage. These results suggest that endonucleases are activated within minutes of treatment with either dexamethasone or ionizing radiation as part of the very early signal transduction phase of apoptosis, and prior to the irreversible commitment to cell death. 相似文献
20.
31P NMR has been used to study the effects of dexamethasone on phosphorus metabolism in one dexamethasone (dex)-sensitive (CEM-C7) and three different dex-resistant (CEM-C1, CEM-4R4, and CEM-ICR27) human leukemic cell lines. The use of these cell lines, containing widely varying amounts of glucocorticoid receptors, made it possible to evaluate the receptor-mediated contributions to the modes of action of dexamethasone in these cells. To evaluate the effects of dexamethasone without any significant contribution from experimental conditions, all the experiments were done with parallel controls. Results obtained showed: (1) significantly different levels of phosphorylethanolamine (PE) and phosphorylcholine (PC) among cell lines, suggesting significant differences in phospholipid metabolism; (2) the dexamethasone induced reduction of phosphomonoester (PE + PC), ATP, and metabolic rates probably through glucocorticoid receptor mediated mechanisms; (3) the dexamethasone induced stimulation of cellular metabolism in a process which seems to be independent of glucocorticoid receptors; and (4) the dexamethasone induced alkaline shift of intracellular pH in all the cell lines except ICR27. The reduction in PME levels seems to be an earlier step in dexamethasone-induced apoptosis than the reduction in ATP. The degree of alkaline shift was found to correlate with the number of glucocorticoid receptors present. The possible involvement of phospholipid metabolites as second messengers in dexamethasone-induced apoptosis is discussed. © 1994 Wiley-Liss, Inc. 相似文献