首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Induction of ermC requires translation of the leader peptide.   总被引:14,自引:1,他引:13       下载免费PDF全文
D Dubnau 《The EMBO journal》1985,4(2):533-537
ermC confers resistance to macrolide-lincosamide streptogramin B antibiotics by specifying a ribosomal RNA methylase, which results in decreased ribosomal affinity for these antibiotics. ermC expression is induced by exposure to erythromycin. We have previously proposed a translational regulation model in which erythromycin causes stalling of a ribosome, which is translating a leader peptide. Stalling causes a conformation shift in the ermC mRNA which in turn unmasks the methylase ribosomal binding site. A prediction of this translational attenuation model for ermC induction was tested by replacing the second codon of the putative ermC leader peptide coding region by TAA. As expected, the introduction of this mutation resulted in an uninducible phenotype which was suppressible by two ochre suppressor mutations in Bacillus subtilis. It is concluded that translation through the leader peptide coding region, in frame with the predicted leader peptide, is required for ermC induction.  相似文献   

4.
5.
Summary Plasmids were constructed containing the regulatory regions and N-terminal portions of ermC and of ermD, fused in phase with the coding sequence of the Escherichia coli lacZ gene. ermC and ermD are erythromycin (Em) inducible macrolide-lincosamide-streptogramin B resistance elements derived from Staphylococcus aureus and Bacillus licheniformis, respectively. The fusion plasmids were introduced into B. subtilis and used to study ermC and ermD regulation. In both cases, -galactosidase synthesis could be induced by low levels of Em. Induction was prevented by introduction of ole-2, a chromosomal mutation which decreases ribosomal affinity for Em. Induction also did not occur in the presence of intact copies of ermC, suggesting that prior or concomitant methylation of 23S rRNA, a treatment known to decrease ribosomal affinity for Em, was capable of interfering with ermC and ermD induction. These experiments are consistent with the translational attenuation model of ermC regulation, and together with other evidence, suggest that ermD is regulated by a similar mechanism.  相似文献   

6.
7.
8.
In Qβ RNA, sequestering the coat gene ribosome binding site in a putatively strong hairpin stem structure eliminated synthesis of coat protein and activated protein synthesis from the much weaker maturation gene initiation site, located 1300 nucleotides upstream. As the stability of a hairpin stem comprising the coat gene Shine–Dalgarno site was incrementally increased, there was a corresponding increase in translation of maturation protein. The effect of the downstream coat gene ribosome binding sequence on maturation gene expression appeared to have occurred only in cis and did not require an AUG start codon or initiation of coat protein synthesis. In all cases, no structural reorganization was predicted to occur within Qβ RNA. Our results suggest that protein synthesis from a relatively weak translational initiation site is greatly influenced by the presence or absence of a stronger ribosome binding site located elsewhere on the same RNA molecule. The data are consistent with a mechanism in which multiple ribosome binding sites compete in cis for translational initiations as a means of regulating protein synthesis on a polycistronic messenger RNA.  相似文献   

9.
10.
11.
Eleven structurally similar ketolide antibiotics were tested at a concentration of 1 μg/ml for their relative inhibitory effects on growth and ribosome activities in Staphylococcus aureus cells. Ten of the compounds examined had an inhibitory effect on protein synthesis at this concentration and eight of the 11 compounds were also effective inhibitors of the formation of the 50S ribosomal subunit. All of the drugs tested inhibited protein synthesis to a greater extent than they affected 50S subunit formation. The decline in growth rate and cell number was proportional to the effect on ribosome formation and function. The growth of an ermC erythromycin-resistant strain of S. aureus was also significantly inhibited by nine ketolide compounds, suggesting that they were not inducers of methylase gene expression. These inhibitory activities can be related to structural differences between these ketolide antibiotics. Received: 6 May 1998 / Accepted: 27 July 1998  相似文献   

12.
Induction of translation of the ermC gene product in Bacillus subtilis occurs upon exposure to erythromycin and is a result of ribosome stalling in the ermC leader peptide coding sequence. Another result of ribosome stalling is stabilization of ermC mRNA. The effect of leader RNA secondary structure, methylase translation, and leader peptide translation on induced ermC mRNA stability was examined by constructing various mutations in the ermC leader region. Analysis of deletion mutations showed that ribosome stalling causes induction of ermC mRNA stability in the absence of methylase translation and ermC leader RNA secondary structure. Furthermore, deletions that removed much of the leader peptide coding sequence had no effect on induced ermC mRNA stability. A leader region mutation was constructed such that ribosome stalling occurred in a position upstream of the natural stall site, resulting in induced mRNA stability without induction of translation. This mutation was used to measure the effect of mRNA stabilization on ermC gene expression.  相似文献   

13.
14.
15.
16.
17.
Maximal translation of the coat-protein gene from RNA bacteriophage MS2 requires a contiguous stretch of native MS2 RNA that extends hundreds of nucleotides upstream from the translational start site. Deletion of these upstream sequences from MS2 cDNA plasmids results in a 30-fold reduction of translational efficiency. By site-directed mutagenesis, we show that this low level of expression is caused by a hairpin structure centred around the initiation codon. When this hairpin is destabilized by the introduction of mismatches, expression from the truncated messenger increases 20-fold to almost the level of the full-length construct. Thus, the translational effect of hundreds of upstream nucleotides can be mimicked by a single substitution that destabilizes the structure. The same hairpin is also present in full-length MS2 RNA, but there it does not Impair ribosome binding. Apparently, the upstream RNA somehow reduces the inhibitory effect of the structure on translational initiation. The upstream MS2 sequence does not stimulate translation when cloned in front of another gene, nor can unrelated RNA segments activate the coat-protein gene. Several possible mechanisms for the activation are discussed and a function in gene regulation of the phage is suggested.  相似文献   

18.
19.
The key step in bacterial translation is formation of the pre-initiation complex. This requires initial contacts between mRNA, fMet-tRNA and the 30S subunit of the ribosome, steps that limit the initiation of translation. Here we report a method for improving translational initiation, which allows expression of several previously non-expressible genes. This method has potential applications in heterologous protein synthesis and high-throughput expression systems. We introduced a synthetic RNA stem–loop (stem length, 7 bp; ΔG0 = –9.9 kcal/mol) in front of various gene sequences. In each case, the stem–loop was inserted 15 nt downstream from the start codon. Insertion of the stem–loop allowed in vitro expression of five previously non-expressible genes and enhanced the expression of all other genes investigated. Analysis of the RNA structure proved that the stem–loop was formed in vitro, and demonstrated that stabilization of the ribosome binding site is due to stem–loop introduction. By theoretical RNA structure analysis we showed that the inserted RNA stem–loop suppresses long-range interactions between the translation initiation domain and gene-specific mRNA sequences. Thus the inserted RNA stem–loop supports the formation of a separate translational initiation domain, which is more accessible to ribosome binding.  相似文献   

20.
Escherichia coli ribosomal protein (r-protein) L20 is essential for the assembly of the 50S ribosomal subunit and is also a translational regulator of its own rpmI-rplT operon, encoding r-proteins L35 and L20 in that order. L20 directly represses the translation of the first cistron and, through translational coupling, that of its own gene. The translational operator of the operon is 450 nt in length and includes a long-range pseudoknot interaction between two RNA sequences separated by 280 nt. L20 has the potential to bind both to this pseudoknot and to an irregular hairpin, although only one site is occupied at a time during regulation. This work shows that the rpmI-rplT operon is regulated by competition between L20 and the ribosome for binding to mRNA in vitro and in vivo. Detailed studies on the regulatory mechanisms of r-protein synthesis have only been performed on the rpsO gene, regulated by r-protein S15, and on the alpha operon, regulated by S4. Both are thought to be controlled by a trapping mechanism, whereby the 30S ribosomal subunit, the mRNA, and the initiator tRNA are blocked as a nonfunctional preternary complex. This alternative mode of regulation of the rpmI-rplT operon raises the possibility that control is kinetically and not thermodynamically limited in this case. We show that the pseudoknot, which is known to be essential for L20 binding and regulation, also enhances 30S binding to mRNA as if this structure is specifically recognised by the ribosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号