首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Niu  Jianyi  Xiong  Jing  Hu  Dan  Zeng  Fei  Nie  Shuke  Mao  Shanping  Wang  Tao  Zhang  Zhentao  Zhang  Zhaohui 《Neurochemical research》2017,42(10):2996-3004

DNA polymerase-β (DNA pol-β) plays a crucial role in the pathogenesis of Parkinson’s disease (PD). The aim of this study was to investigate the neuroprotective effects of a DNA polymerase-β inhibitor 2′,3′-dideoxycytidine (DDC) in PD models. In the in vitro studies, primary cultured neurons were challenged with 1-methyl-4-phenylpyridinium ion (MPP+). The expression of DNA pol-β was assessed using western blot. The neuroprotective effect of DNA pol-β knockdown and DNA pol-β inhibitor DDC was determined using cell viability assay and caspase-3 activity assay. We found that MPP+ induced neuronal death and the activation of caspase-3 in a dose-dependent manner. The expression of DNA pol-β increased after the neurons were exposed to MPP+. DNA pol-β siRNA or DNA pol-β inhibitor DDC attenuated neuronal death induced by MPP+. In the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model of PD, MPTP treatment triggered behavioral deficits and nigrostriatal lesions. Pretreatment with DDC attenuated MPTP-induced behavioral deficits, dopaminergic neuronal death and striatal dopamine depletion in the MPTP mouse model. These results indicate that DNA pol-β inhibitors may present a novel promising therapeutic option for the neuroprotective treatment of PD.

  相似文献   

2.
The selective loss of dopaminergic neurons in the substantia nigra pars compacta is a feature of Parkinson’s disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity is the most common experimental model used to investigate the pathogenesis of PD. Administration of MPTP in mice produces neuropathological defects as observed in PD and 1-methyl-4-pyridinium (MPP+) induces cell death when neuronal cell cultures are used. AMP-activated protein kinase (AMPK) is a key regulator of energy homeostasis. In the present study, we demonstrated that AMPK is activated by MPTP in mice and MPP+ in SH-SY5Y cells. The inhibition of AMPK by compound C resulted in an increase in MPP+-induced cell death. We further showed that overexpression of AMPK increased cell viability after exposure to MPP+ in SH-SY5Y cells. Based on these results, we suggest that activation of AMPK might prevent neuronal cell death and play a role as a survival factor in PD.  相似文献   

3.
4.
The hematopoietic cytokines erythropoietin (Epo) and granulocyte-colony stimulating factor (G-CSF) provide neuroprotection in several in vitro and in vivo models of Parkinson’s disease (PD). The molecular mechanism by which Epo and G-CSF signals reduce the neuronal death in PD is not clear. Here, we show that in rat pheochromocytoma PC12 cells, Epo and G-CSF efficiently repressed the 1-methyl-4-phenylpyridinium (MPP+)-induced expression of the proapoptotic protein PUMA (p53 up-regulated modulator of apoptosis). Accordingly, Epo and G-CSF treatment reduced the PC12 cell fraction that underwent apoptosis by MPP+ treatment and thus improved cell viability. Downregulation of PUMA expression by Epo and G-CSF in MPP+-treated PC12 cells seems to be mediated by repression of p53, as the expression of p53 was increased by MPP+-treatment and reduced by Epo and G-CSF. Together, these results suggest that the neuroprotective activities of Epo and G-CSF in an experimental model of PD involve the repression of the apoptosis-inducing action of PUMA.  相似文献   

5.
To obtain direct evidence of the involvement of aldehyde oxidase (AO), a cytosolic molybdoflavoenzyme, in the metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), we investigated thein vitrometabolism of MPTP and the two-electron-oxidized 1-methyl-4-phenyl-2,3-dihydropyridinium species (MPDP+) by using mouse liver enzyme preparations. Incubation of MPTP with mitochondrial fraction gave exclusively 1-methyl-4-phenylpyridinium (MPP+); this reaction was inhibited by deprenyl, a monoamine oxidase (MAO)-B inhibitor, and KCN. When the mitochondrial fraction was combined with the cytosolic fraction, MPP+formation was markedly decreased, while a large amount of 1-methyl-4-phenyl-5,6-dihydro-2-pyridone (MPTP lactam) was newly formed. Incubation of MPDP+with the cytosolic fraction led to rapid formation of MPTP lactam with concomitant disappearance of the substrate. The cytosol-dependent formation of MPTP lactam was inhibited by known AO inhibitors, such as menadione, norharman, and KCN. The activity of cytosol in MPTP lactam formation was completely duplicated by purified mouse liver AO. These results indicate that AO catalyzes the metabolic conversion of MPDP+, produced from MPTP by MAO-B, to MPTP lactam. This metabolic pathway might be an important detoxification route, averting the formation of toxic MPP+.  相似文献   

6.
Vascular endothelial growth factor (VEGF), a specific pro-angiogenic peptide, has shown neuroprotective effects in the Parkinson’s disease (PD) models, but the underlying mechanisms remain elusive. In this study, the neuroprotective properties of VEGF on 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity in primary cerebellar granule neurons were investigated. Pretreatment of VEGF prevented MPP+-induced neuronal apoptosis in a concentration- and time-dependent manner. And this prevention was blocked by PTK787/ZK222584, a VEGF receptor-2 specific inhibitor. Both inhibition of the Akt pathway and activation of the extracellular signal-regulated kinase (ERK) pathway contribute to MPP+-induced neuronal apoptosis. VEGF reversed the inhibition of phosphoinositide 3-kinase (PI3-K)/Akt pathway caused by MPP+, but further enhanced the activation of ERK induced by MPP+. Interestingly, VEGF and PD98059 (an ERK kinase inhibitor) play a synergistic role in protecting neurons from MPP+-induced toxicity. Collectively, these findings suggest that the PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis. This finding offers not only a new and clinically significant modality as to how VEGF exerts its neuroprotective effects but also a novel therapeutic strategy for PD by differentially regulating PD-associated signaling pathways.  相似文献   

7.

Background

Recent attention has focused on understanding the role of the brain-renin-angiotensin-system (RAS) in stroke and neurodegenerative diseases. Direct evidence of a role for the brain-RAS in Parkinson's disease (PD) comes from studies demonstrating the neuroprotective effect of RAS inhibitors in several neurotoxin based PD models. In this study, we show that an antagonist of the angiotensin II (Ang II) type 1 (AT1) receptor, losartan, protects dopaminergic (DA) neurons against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) toxicity both in primary ventral mesencephalic (VM) cultures as well as in the substantia nigra pars compacta (SNpc) of C57BL/6 mice (Fig. 1).

Results

In the presence of exogenous Ang II, losartan reduced MPP+ (5 μM) induced DA neuronal loss by 72% in vitro. Mice challenged with MPTP showed a 62% reduction in the number of DA neurons in the SNpc and a 71% decrease in tyrosine hydroxylase (TH) immunostaining of the striatum, whereas daily treatment with losartan lessened MPTP-induced loss of DA neurons to 25% and reduced the decrease in striatal TH+ immunostaining to 34% of control.

Conclusion

Our study demonstrates that the brain-RAS plays an important neuroprotective role in the MPTP model of PD and points to AT1 receptor as a potential novel target for neuroprotection.  相似文献   

8.
Parkinson’s disease (PD) is the second most common neurodegenerative disease in the elderly. In central nervous system, astrocytes regulates neuronal function via the modulation of synaptic transmission and plasticity, secretion of growth factors, uptake of neurotransmitters and regulation of extracellular ion concentrations and metabolic support of neurons. Therefore, C6 astroglial cells have been used to study the in vitro PD model induced by 1-methyl-4-phenyl pyridinium (MPP+). In this study, pre-treatment of insulin inhibited MPP+-induced cell membrane damages on LDH and NO releases, which also inhibited the iNOS and Cox-2 levels. Insulin also up-regulated the PI3K and p-GSK-3β protein expressions in C6 cells. In addition, MPP+ and/or insulin enhanced the autophagy by increasing LC3-I to LC3-II conversion. Furthermore, MPP+-induced toxicity diminished the integrin β3, αV, syndecan-1 and -3. Insulin pre-treatment enhanced the phosphorylation of integrin-linked kinase and further induced the integrin and syndecan molecules. These findings suggest that insulin prevents MPP+-induced toxicity through activation of PI3K, p-GSK-3β, autophagy, integrins and syndecans pathways in C6 glial cells.  相似文献   

9.
10.
Parkinson’s disease (PD) is a neurodegenerative disability caused by a decrease of dopaminergic neurons in the substantia nigra (SN). Although the etiology of PD is not clear, oxidative stress is believed to lead to PD. Catalase is antioxidant enzyme which plays an active role in cells as a reactive oxygen species (ROS) scavenger. Thus, we investigated whether PEP-1-Catalase protects against 1-methyl-4-phenylpyridinium (MPP+) induced SH-SY5Y neuronal cell death and in a 1-methyl-4-phenyl-1,2,3,6-trtrahydropyridine (MPTP) induced PD animal model. PEP-1-Catalase transduced into SH-SY5Y cells significantly protecting them against MPP+-induced death by decreasing ROS and regulating cellular survival signals including Akt, Bax, Bcl-2, and p38. Immunohistochemical analysis showed that transduced PEP-1-Catalase markedly protected against neuronal cell death in the SN in the PD animal model. Our results indicate that PEP-1-Catalase may have potential as a therapeutic agent for PD and other oxidative stress related diseases. [BMB Reports 2015; 48(7): 395-400]  相似文献   

11.
Eicosapentaenoic acid (EPA), a neuroactive omega‐3 fatty acid, has been demonstrated to exert neuroprotective effects in experimental models of Parkinson's disease (PD), but the cellular mechanisms of protection are unknown. Here, we studied the effects of EPA in fully differentiated human SH‐SY5Y cells and primary mesencephalic neurons treated with MPP+. In both in‐vitro models of PD, EPA attenuated an MPP+‐induced reduction in cell viability. EPA also prevented the presence of electron‐dense cytoplasmic inclusions in SH‐SY5Y cells. Then, possible mechanisms of the neuroprotection were studied. In primary neurons, EPA attenuated an MPP+‐induced increase in Tyrosine‐related kinase B (TrkB) receptors. In SH‐SY5Y cells, EPA down‐regulated reactive oxygen species and nitric oxide. This antioxidant effect of EPA may have been mediated by its inhibition of neuronal NADPH oxidase and cyclo‐oxygenase‐2 (COX‐2), as MPP+ increased the expression of these enzymes. Furthermore, EPA prevented an increase in cytosolic phospholipase A2 (cPLA2), an enzyme linked with COX‐2 in the potentially pro‐inflammatory arachidonic acid cascade. Lastly, EPA attenuated an increase in the bax:bcl‐2 ratio, and cytochrome c release. However, EPA did not prevent mitochondrial enlargement or a decrease in mitochondrial membrane potential. This study demonstrated cellular mechanisms by which EPA provided neuroprotective effects in experimental PD.  相似文献   

12.
Abstract: The effects of 2-deoxyglucose (2-DG), an inhibitor of the uptake and use of glucose, on ATP loss caused by the neurotoxicant 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) were determined in the mouse brain. 2-DG alone had no effect on brain ATP levels, but when administered 30 min before MPTP exposure, 2-DG significantly enhanced MPTP-induced ATP reduction. This was reflected as an increase in ATP loss in the striatum (from 15 to 27%) as well as a significant decrease in ATP in the cerebellar cortex, an area of the brain that was not affected after exposure to MPTP alone. In mice pretreated with 2-DG, striatal ATP levels remained significantly decreased for >8 h after MPTP administration. In contrast, ATP levels in the cerebellar cortex returned to normal values within 4 h from MPTP exposure. Mazindol, a catecholamine uptake blocker, completely protected against MPTP-induced loss of striatal ATP in the absence of 2-DG, but it only partially prevented striatal ATP decrease after administration of both 2-DG and MPTP; mazindol was also ineffective in protecting against ATP loss caused by 2-DG and MPTP in the cerebellar cortex. 2-DG/MPTP-induced ATP loss appeared to be associated with the presence of the 1 -methyl-4-phenylpyridinium (MPP+) metabolite because (1) the pattern of ATP recovery in the striatum and cerebellar cortex appeared to reflect the pattern of MPP+clearance from these areas of the brain (i.e., significant MPP+ levels persisted longer in the striatum than in the cerebellar cortex), and (2) ATP decrease was completely prevented by blocking the conversion of MPTP to MPP+with the monoamine oxidase B inhibitor deprenyl. Data indicate that impairment of glucose metabolism dramatically enhances the effects of MPTP/MPP+ on cerebral energy supplies, making these effects relatively nonselective for dopaminergic neurons of the nigrostriatal pathway.  相似文献   

13.
Disturbances in Ca2+ homeostasis have been implicated in a variety of neuropathological conditions including Parkinson's disease (PD). However, the importance of store-operated Ca2+ entry (SOCE) channels in PD remains to be investigated. In the present study, we have scrutinized the significance of TRPC1 in 1-methyl-4-phenyl-1,2,3,6-tetrahyrdro-pyridine (MPTP)-induced PD using C57BL/6 animal model and PC12 cell culture model. Both sub-acute and sub-chronic treatments of MPTP significantly reduced TRPC1, and tyrosine hydroxylase levels, but not TRPC3, along with increased neuronal death. Furthermore, MPTP induces mitochondrial dysfunction, which was associated with reduced mitochondrial membrane potential, decreased level of Bcl2, Bcl-xl, and an altered Bcl-xl/Bax ratio thereby initiating apoptosis. Importantly, TRPC1 overexpression in PC12 cells showed significant protection against MPP+ induced neuronal apoptosis, which was attributed to the restoration of cytosolic Ca2+ and preventing loss of mitochondrial membrane potential. Silencing of TRPC1 or addition of TRPC1 channel blockers decreased mitochondrial membrane potential, whereas activation of TRPC1 restored mitochondrial membrane potential in cells overexpressing TRPC1. TRPC1 overexpression also inhibited Bax translocation to the mitochondria and thereby prevented cytochrome c release and mitochondrial-mediated apoptosis. Overall, these results provide compelling evidence for the role of TRPC1 in either onset/progression of PD and restoration of TRPC1 levels could limit neuronal degeneration in MPTP mediated PD.  相似文献   

14.
15.
Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of amines and neurotransmitters and inhibitors of MAO are useful as neuroprotectants. This work evaluates the human MAO-catalyzed oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a dopaminergic neurotoxin, to the directly-acting neurotoxic metabolites, 1-methyl-4-phenyl-2,3-dihydropyridinium (MPDP+) and 1-methyl-4-phenylpyridinium (MPP+) measured by High-Performance Liquid Chromatography (HPLC), and this approach is subsequently used as a new method for screening of MAO inhibitors and protective agents. Oxidation of MPTP by human MAO-B was more efficient than by MAO-A. R-Deprenyl, a known neuroprotectant, norharman (β-carboline), 5-nitroindazole and menadione (vitamin K3) inhibited MAO-B and reduced the formation of toxic pyridinium cations. Clorgyline and the β-carbolines, harman and norharman, inhibited the oxidation of MPTP by MAO-A. Cigarette smoke, as well as the naturally occurring β-carbolines (norharman and harman) isolated from smoke and coffee inhibited the oxidation of MPTP by MAO-B and/or MAO-A, suggesting protective effects against MPTP. The results show the suitability of the approach used to search for new MAO inhibitors with eventual neuroprotective activity.  相似文献   

16.
ObjectiveParkinson’s disease (PD) is a neurodegenerative disease that is associated with oxidative stress. Due to the anti-inflammatory and antioxidant functions of Selenium (Se), this molecule may have neuroprotective functions in PD; however, the involvement of Se in such a protective function is unclear.Methods1-methyl-4-phenylpyridinium (MPP+), which inhibits mitochondrial respiration, is generally used to produce a reliable cellular model of PD. In this study, a MPP+-induced PD model was used to test if Se could modulate cytotoxicity, and we further capture gene expression profiles following PC12 cell treatment with MPP+ with or without Se by genome wide high-throughput sequencing.ResultsWe identified 351 differentially expressed genes (DEGs) and 14 differentially expressed long non-coding RNAs (DELs) in MPP+-treated cells when compared to controls. We further document 244 DEGs and 27 DELs in cells treated with MPP+ and Se vs. cells treated with MPP+ only. Functional annotation analysis of DEGs and DELs revealed that these groups were enriched in genes that respond to reactive oxygen species (ROS), metabolic processes, and mitochondrial control of apoptosis. Thioredoxin reductase 1 (Txnrd1) was also identified as a biomarker of Se treatment.ConclusionsOur data suggests that the DEGs Txnrd1, Siglec1 and Klf2, and the DEL AABR07044454.1 which we hypothesize to function in cis on the target gene Cdkn1a, may modulate the underlying neurodegenerative process, and act a protective function in the PC12 cell PD model. This study further systematically demonstrated that mRNAs and lncRNAs induced by Se are involved in neuroprotection in PD, and provides novel insight into how Se modulates cytotoxicity in the MPP+-induced PD model.  相似文献   

17.
SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS) inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416 against MPP+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.  相似文献   

18.
Parkinson's disease (PD) is a progressive neurodegenerative disease, leading to tremor, rigidity, bradykinesia, and gait impairment. Salidroside has been reported to exhibit antioxidative and neuroprotective properties in PD. However, the underlying neuroprotective mechanisms effects of salidroside are poorly understood. Recently, a growing body of evidences suggest that silent information regulator 1 (SIRT1) plays important roles in the pathophysiology of PD. Hence, the present study investigated the roles of SIRT1 in neuroprotective effect of salidroside against N‐methyl‐4‐phenylpyridinium (MPP+)‐induced SH‐SY5Y cell injury. Our findings revealed that salidroside attenuates MPP+‐induced neurotoxicity as evidenced by the increase in cell viability, and the decreases in the caspase‐3 activity and apoptosis ratio. Simultaneously, salidroside pretreatment remarkably increased SIRT1 activity, SIRT1 mRNA and protein levels in MPP+‐treated SH‐SY5Y cell. However, sirtinol, a SIRT1 activation inhibitor, significantly blocked the inhibitory effects of salidroside on MPP+‐induced cytotoxicity and apoptosis. In addition, salidroside abolished MPP+‐induced the production of reactive oxygen species (ROS), the up‐regulation of NADPH oxidase 2 (NOX2) expression, the down‐regulations of superoxide dismutase (SOD) activity and glutathione (GSH) level in SH‐SY5Y cells, while these effects were also blocked by sirtinol. Finally, we found that the inhibition of salidroside on MPP+‐induced phosphorylation of p38, extracellular signal‐regulated kinase (ERK) and c‐Jun NH2‐terminal kinase (JNK) were also reversed by sirtinol in SH‐SY5Y cells. Taken together, these results indicated that SIRT1 contributes to the neuroprotection of salidroside against MPP+‐induced apoptosis and oxidative stress, in part through suppressing of mitogen‐activated protein kinase (MAPK) pathways.  相似文献   

19.
Hyoscyamus species is one of the four plants used in Ayurveda for the treatment of Parkinson’s disease (PD). Since Hyoscyamus niger was found to contain negligible levels of L-DOPA, we evaluated neuroprotective potential, if any, of characterized petroleum ether and aqueous methanol extracts of its seeds in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD in mice. Air dried authenticated H. niger seeds were sequentially extracted using petroleum ether and aqueous methanol and were characterized employing HPLC-electrochemistry and LCMS. Parkinsonian mice were treated daily twice with the extracts (125–500 mg/kg, p.o.) for two days and motor functions and striatal dopamine levels were assayed. Administration of the aqueous methanol extract (containing 0.03% w/w of L-DOPA), but not petroleum ether extract, significantly attenuated motor disabilities (akinesia, catalepsy and reduced swim score) and striatal dopamine loss in MPTP treated mice. Since the extract caused significant inhibition of monoamine oxidase activity and attenuated 1-methyl-4-phenyl pyridinium (MPP+)-induced hydroxyl radical (·OH) generation in isolated mitochondria, it is possible that the methanolic extract of Hyoscyamus niger seeds protects against parkinsonism in mice by means of its ability to inhibit increased ·OH generated in the mitochondria.  相似文献   

20.
S-Allylcysteine (SAC), the most abundant organosulfur compound in aged garlic extract, has multifunctional activity via different mechanisms and neuroprotective effects that are exerted probably via its antioxidant or free radical scavenger action. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse has been the most widely used model for assessing neuroprotective agents for Parkinson's disease. 1-Methyl-4-phenylpyridinium (MPP+) is the stable metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and it causes nigrostriatal dopaminergic neurotoxicity. Previous studies suggest that oxidative stress, via free radical production, is involved in MPP+-induced neurotoxicity. Here, we report on the neuroprotective effect of SAC against oxidative stress induced by MPP+ in the striatum of C57BL/6J mice. Mice were pretreated with SAC (125 mg/kg ip) daily for 17 days, followed by administration of MPP+ (0.72 mg/kg icv), and were sacrificed 24 h later to evaluate lipid peroxidation, different antioxidant enzyme activities, spontaneous locomotor activity and dopamine (DA) content. MPP+ administration resulted in a significant decrease in DA levels in the striatum. Mice receiving SAC (125 mg/kg ip) had significantly attenuated MPP+-induced loss of striatal DA levels (32%). The neuroprotective effect of SAC against MPP+ neurotoxicity was associated with blocked (100% of protection) of lipid peroxidation and reduction of superoxide radical production — indicated by an up-regulation of Cu-Zn-superoxide dismutase activity — both of which are indices of oxidative stress. Behavioral analyses showed that SAC improved MPP+-induced impairment of locomotion (35%). These findings suggest that in mice, SAC attenuates MPP+-induced neurotoxicity in the striatum and that an antioxidant effect against oxidative stress may be partly responsible for its observed neuroprotective effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号