首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muhlenbergia sobolifera (Muhl.) Trin., a C4 grass, occurs in understory habitats in the northeastern United States. Plants of M. sobolifera were grown at 23 and 30°C at 150 and 700 μmol photons m−2 s−1. The photosynthetic CO2 compensation point, maximum CO2 assimilation, dark respiration and the absorbed quantum use efficiency (QUE) were measured at 23 and 30°C at 2 and 20% O2. Photosynthetic CO2 compensation points ranged from 4 to 14mm3 dm−3 CO2 and showed limited O2 sensitivity. The mean photosynthetic CO2 compensation point of plants grown at 30°C (4·5 mm3 dm−3) was 57% lower and 80% less inhibited by O2 than that of plants grown at 23°C. Photosynthesis was similarly affected by growth temperature, with 70% more O2 inhibition in plants grown at 23°C; suppression over all treatments ranging from 2 to 11%. Unlike typical C4 species, plants of M. sobolifera from both temperature regimes exhibited higher CO2 assimilation rates when grown at low light. Growth temperature and light also affected QUE; plants grown at low light and 23°C had the highest value (0·068 mol CO2/mol quanta). Measurement temperature and growth light regime significantly affected dark respiration; however, O2 did not affect QUE or dark respiration under any growth or measurement conditions. The results indicate that M. sobolifera is adapted to low PPFD, and that complete suppression of photorespiration is dependent upon high growth temperature.  相似文献   

2.
Ventilation was measured directly in the hagfish, Myxine glutinosa L., by means of an electro-magnetic blood flowmeter. Ventilatory flow and frequency increased from 0.86 ± 0.27 ml·min?, and 18.2 ± 5.1·min?, respectively, at 7°C to 1.70 ± 0.20 ml·min?, and 70.1 ± 9.5·min? at 15 ·C.Standard oxygen consumption,V?O2, was measured in non-buried hagfish. V?O2 was 0.57 ± 0.17μl O2·g?1·min?1 at 7°C, and 0.85 ± 0.12μl O2·g?1·min?1 at 15°C.  相似文献   

3.
W. Kaiser  W. Urbach 《BBA》1976,423(1):91-102
1. Dihydroxyacetone phosphate in concentrations ? 2.5 mM completely inhibits CO2-dependent O2 evolution in isolated intact spinach chloroplasts. This inhibition is reversed by the addition of equimolar concentrations of Pi, but not by addition of 3-phosphoglycerate. In the absence of Pi, 3-phosphoglycerate and dihydroxyacetone phosphate, only about 20% of the 14C-labelled intermediates are found in the supernatant, whereas in the presence of each of these substances the percentage of labelled intermediates in the supernatant is increased up to 70–95%. Based on these results the mechanism of the inhibition of O2 evolution by dihydroxyacetone phosphate is discussed with respect to the function of the known phosphate translocator in the envelope of intact chloroplasts.2. Although O2 evolution is completely suppressed by dihydroxyacetone phosphate, CO2 fixation takes place in air with rates of up to 65μ mol · mg?1 chlorophyll · h?1. As non-cyclic electron transport apparently does not occur under these conditions, these rates must be due to endogenous pseudocyclic and/or cyclic photophosphorylation.3. Under anaerobic conditions, the rates of CO2 fixation in presence of dihydroxyacetone phosphate are low (2.5–7 μmol · mg?1 chlorophyll · h?1), but they are strongly stimulated by addition of dichlorophenyl-dimethylurea (e.g. 2 · 10?7 M) reaching values of up to 60 μmol · mg?1 chlorophyll · h?1. As under these conditions the ATP necessary for CO2 fixation can be formed by an endogenous cyclic photophosphorylation, the capacity of this process seems to be relatively high, so it might contribute significantly to the energy supply of the chloroplast. As dichlorophenyl-dimethylurea stimulates CO2 fixation in presence of dihydroxyacetone phosphate under anaerobic but not under aerobic conditions, it is concluded that only under anaerobic conditions an “overreduction” of the cyclic electron transport system takes place, which is removed by dichlorophenyl-dimethylurea in suitable concentrations. At concentrations above 5 · 10?7 M dichlorophenyl-dimethylurea inhibits dihydroxyacetone phosphate-dependent CO2 fixation under anaerobic as well as under aerobic conditions in a similar way as normal CO2 fixation. Therefore, we assume that a properly poised redox state of the electron transport chain is necessary for an optimal occurrence of endogenous cyclic photophosphorylation.4. The inhibition of dichlorophenyl-dimethylurea-stimulated CO2 fixation in presence of dihydroxyacetone phosphate by dibromothymoquinone under anaerobic conditions indicates that plastoquinone is an indispensible component of the endogenous cyclic electron pathway.  相似文献   

4.
5.
Oxygen consumption rates (QO2) of laboratory reared stage one zoeae of Pandalus borealis (Krøyer) at 1.5, 3, 4.5, 6, and 9°C were 1.5, 2.2, 2.6, 3.6 and 4.1μ O2 · mg?1 · h?1, respectively. These values of QO2 correspond to 0.26, 0.38, 0.44, 0.60, and 0.70 μl O2 · individual?1 · h?1. At 10.5 °C oxygen consumption rates decreased suggesting thermally induced respiratory stress.The equation log10QO2 = 0.55 log10T°C + 0.086 describes the relationship between QO2 (μl O2 · mg?1 · h?1) and sea-water temperature between 1.5 and 9°C. Corresponding values of QO2 for an individual (μl O2 · h?1) exhibited the relationship log10QO2 = 0.55 log10T°C ?0.686.The minimum daily metabolic caloric requirements for an individual zoea ranged from 0.04 at 3 °C to 0.07 calories per day at 8 °C. The number of calories ingested daily ranged from 0.4 to 0.5 at 3 to 8 °C.  相似文献   

6.
Differential cerebral hypothermia was induced in these experiments by isolating the cerebral circulation in the halothane-anesthetized goat. The brain was perfused through isolated cerebral branches of the internal maxillary artery using a height-adjusted reservoir system which provided a constant inflow pressure. Cerebral blood flow (CBF) and cerebral O2 metabolic rate (CMRO2) were measured continuously as brain temperatures were decreased from 38 to 28, 18 and 8 °C and during rewarming. Arterial blood gases were maintained constant. During hypothermia CBF decreased at brain temperatures of 28 °C and did decrease further at 18 or 8 °C. CMRO2 decreased linearly from 38 to 8 °C and was 7% control levels at 8 °C. CBF and CMRO2 returned to control levels upon rewarming. Cerebral lactate metabolism did not change significantly during hypothermia or rewarming. Evoked cortical potentials were abolished at 8 °C but recovered upon rewarming. These results indicate that if adequate brain perfusion is maintained during hypothermia and rewarming, recovery of CBF, metabolism, and brain neural activity can be obtained.  相似文献   

7.
Heatstroke is considered an important condition that may contribute to endothelial cell damage. The aim of this study was to assess temporal profiles of the cytokine (IL-6 and IL-8) and mRNA production when endothelial cells undergo higher temperature stimuli. In the first group, human umbilical vascular endothelial cells (HUVECs) were cultured at 4 different temperatures (37, 38, 39 or 40°C) for 1, 3 and 5 h. In the second group, HUVECs were cultured at 37°C for 4 h or 23 h, after stimulation by heating for one hour at the same culture temperatures used in the first group (37°C to 40°C). After culturing, IL-6 and IL-8 mRNA and protein levels were measured. It has been found the cytokine mRNA levels being significantly higher (p < 0.001) in all cells incubated at higher temperaturesthan those in the control (cultivation at 37°C). At the same time, the production of IL-6 and 8 at a higher temperature (39, 40°C) was significantly lower (p < 0.001) than at 37°C (control), and the decrease was temperature dependent. However, IL-6 and IL-8 levelswere significantly greater in the cells at 23 h after transient hyperthermic (40°C, 1 h) stimulation than in control ones (p < 0.001). After a transient hyperthermia, the production of the cytokinesin HUVECs is initially inhibited and then augmented. The results indicated that tissue injury might continue to develop after a hyperthermic event. There might be a potent risk for underestimation of cytokine induced tissue injury in the acute phase of a heatstroke.  相似文献   

8.
Aims: To evaluate the efficacy of ultraviolet (UV) light (254 nm) combined with hydrogen peroxide (H2O2) to inactivate bacteria on and within fresh produce. Methods and Results: The produce was steep inoculated in bacterial cell suspension followed by vacuum infiltration. The inoculated samples were sprayed with H2O2 under constant UV illumination. The log count reduction (LCR) of Salmonella on and within lettuce was dependent on the H2O2 concentration, temperature and treatment time with UV intensity being less significant. By using the optimized parameters (1·5% H2O2 at 50°C, UV dose of 37·8 mJ cm?2), the surface Salmonella were reduced by 4·12 ± 0·45 and internal counts by 2·84 ± 0·34 log CFU, which was significantly higher compared with H2O2 or UV alone. Higher LCR of Escherichia coli O157:H7, Pectobacterium carotovora, Pseudomonas fluorescens and Salmonella were achieved on leafy vegetables compared with produce, such as cauliflower. In all cases, the surface LCR were significantly higher compared with the samples treated with 200 ppm hypochlorite. UV–H2O2‐treated lettuce did not develop brown discolouration during storage but growth of residual survivors occurred with samples held at 25°C. Conclusions: UV–H2O2 reduce the bacterial populations on and within fresh produce without affecting the shelf‐life stability. Significance of the Study: UV–H2O2 represent an alternative to hypochlorite washes to decontaminate fresh produce.  相似文献   

9.
This paper aims to determine the changes in reactive oxygen species (ROS) and the responses of the lily (Lilium longiflorum L.) antioxidant system to short-term high temperatures. Plants were exposed to three levels of heat stress (37°C, 42°C, 47°C) for 10 h when hydrogen peroxide (H2O2) and superoxide (O2) production rate along with membrane injury indexes, and changes in antioxidants were measured. Compared with the control (20°C), electrolyte leakage and MDA concentration varied slightly after 10 h at 37°C and 42°C, while increased significantly at 47°C. During 10 h at 37°C and 42°C, antioxidant enzyme activities, such as SOD, POD, CAT, APX and GR, were stimulated and antioxidants (AsA and GSH concentrations) maintained high levels, which resulted in low levels of O2 and H2O2 concentration. However, after 10 h at 47°C, SOD, APX, GR activities and GSH concentration were similar to the controls, while POD, CAT activities and AsA concentration decreased significantly as compared with the control, concomitant with significant increase in O2 and H2O2 concentrations. In addition, such heat-induced effects on antioxidant enzymes were also confirmed by SOD and POD isoform, as Cu/ZnSOD maintained high stability under heat stress and the intensity of POD isoforms reduced with the duration of heat stress, especially at 47°C. It is concluded that in lily plants, the oxidative damage induced by heat stress was related to the changes in antioxidant enzyme activities and antioxidants.  相似文献   

10.
The effects of treatment with jasmonic acid (JA) of wheat (Triticum aestivum L, cv. Elegia) coleoptiles on the generation of superoxide anion-radical (O 2 ·? ), the activity of extracellular peroxidase, enzymatic and non-enzymatic components of the antioxidant system were studied. During the first hour after the start of coleoptile treatment with 1 μM JA, the generation of O 2 ·? was enhanced and the extracellular peroxidase was activated. During following 23 h, these effects were gradually reduced. JA-enhanced O 2 ·? generation was partially suppressed by coleoptile treatment with the inhibitor of peroxidase salicylhydroxamic acid, the inhibitor of NADPH-oxidase imidazol, and also the calcium chelator EGTA. Under the influence of JA treatment, antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, and soluble guaiacol peroxidase) in wheat coleoptiles were activated. Treatment with JA improved coleoptile tolerance to damaging heating (10 min at 43°C); it favored the maintenance of the pools of enzymatic and non-enzymatic antioxidants. The inhibitors of NADPH-oxidase and peroxidase, and also calcium chelator reduced a positive JA influence on coleoptile thermotolerance. The role of changes in the pro-/antioxidant balance in plant tissues for the realization of stress-defensive JA effects is discussed.  相似文献   

11.
The effects of 1-min-long exposure to 42°C (hardening heating) on heat tolerance and dynamics of ROS (superoxide anion radical and hydrogen peroxide) generation were investigated in the wheat (Triticum aestivum L., cv. Elegiya) seedlings. During the initial 5–30 min after the onset of hyperthermia, ROS generation by roots and shoots was intensified, and superoxide dismutase (SOD) was activated. During the first hour after hardening heating, the seedling tolerance to injurious 10-min-long treatment with high temperature (46°C) decreased but subsequently it gradually rose, reaching maximum in 24 h. Transient accumulation of hydrogen peroxide induced by hardening was suppressed by seedling treatment with H2O2 scavenger dimethylthiourea, by inhibitors of NADPH-oxidase (imidazole) and DDC (sodium diethyldithiocarbamate). These compounds considerably reduced favorable effect of hardening on seedling heat tolerance. It was concluded that generation of a signal inducing the development of heat tolerance depended on NADPH-oxidase producing superoxide anion radical and SOD that transforms it into hydrogen peroxide (more stable ROS performing signaling functions).  相似文献   

12.
Oxygen consumption by ammocoetes of the lampreyGeotria australis in air   总被引:1,自引:0,他引:1  
 When covered by moistened lint-free gauze, the larvae (ammocoetes) of the lamprey Geotria australis survived, without apparent discomfort, for 4 days in water-saturated air at 10, 15 and 20 °C. In air, the mean standard rates of O2 consumption of medium to large ammocoetes of G. australis (xˉ=0.52 g) at 10, 15 and 20 °C were 14.5, 35.7 and 52.1 μl⋅g-1⋅h-1, respectively. At 15 °C, the slope of the relationship between log O2 consumption (μl O2⋅h-1) and log body weight for ammocoetes over a wide range in body weight was 0.987. The Q 10s for rate of O2 consumption between 10 and 15 °C, 15 and 20 °C and 10 and 20 °C were 4.9, 2.9 and 3.6, respectively. Our results and observations of the ammocoetes suggest that, when out of water, larval G. australis derives most of its O2 requirements from cutaneous respiration, particularly at lower temperatures. This would be facilitated by the small size and elongate shape (and thus a relatively high surface-to-volume ratio), low metabolic rate, thin dermis, extensive subdermal capillary network and high haemoglobin concentration of larval G. australis. Accepted: 28 March 1996  相似文献   

13.
The lateral diffusion of the excimer-forming probe pyrene decanoic acid has been determined in erythrocyte membranes and in vesicles of the lipid extracts. The random walk of the probe molecules is characterized by their jump frequency, vj, within the lipid matrix. At T = 35°C a value of vj = 1.6 · 103 s?1 is found in erythrocyte membranes. A somewhat slower mobility is determined in vesicles prepared from lipid extracts of the erythrocyte membrane. Depending on structure and charge of the lipids we obtain jump frequencies between 0.8 · 108 s?1 and 1.5 · 108 s?1 at T = 35°C. The results are compared with jump frequencies yielded in model membranes.The mobility of molecules perpendicular to the membrane surface (transversal diffusion) is investigated. Erythrocyte ghosts doped with pyrene phosphatidylcholine were mixed with undoped ghosts in order to study the exchange kinetics of the probe molecule. A fast transfer between the outer layers of the ghost cells (τ12 = 1.6 min at T = 37°C) is found. The exchange process between the inner and the outer layer of one erythrocyte ghost (flip-flop process) following this fast transfer occurs with a half-life time value of t12 = 100 min at T = 37°C.The application of excimer-forming probes presumes a fluid state of the membrane. Therefore we investigated the phase transition behaviour using the excimer technique. Beside a thermotropic phase transition at T = 23°C and T = 33°C we observed an additional fluidity change at T = 38°C in erythrocyte ghosts. This transition is attached to a separation of the boundary lipid layer from the intrinsic proteins. No lipid phase transition is observed in liposomes from isolated extracts of the erythrocyte membrane with our methods.  相似文献   

14.
Frahry G  Schopfer P 《Planta》2001,212(2):175-183
 Using the tetrazolium salt XTT (Na,3′-[(phenylamino)-carbonyl]-3,4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate) as a sensitive and physiologically compatible probe for the determination of superoxide (O2 ·−) production in vivo, we have shown that maize (Zea mays L.) coleoptiles possess the capacity of generating O2 ·− in the apoplastic space. Our results are in agreement with the notion that this activity is localized at the plasma membrane and can be attributed to an O2 ·−-synthesizing enzyme with catalytic and kinetic properties similar to that of the NADPH oxidase of mammalian phagocytes, with the important exception that it utilizes NADH instead of NADPH as electron donor. When applied to the apoplastic space, NADH strongly increased the O2 ·−-producing activity of coleoptiles. The maize NADH-dependent O2 ·−-synthase activity could clearly be differentiated from peroxidase-mediated O2 ·−-synthesizing activity by its insensitivity to cyanide and azide, as well as by its much higher affinity to O2. Formation of O2 ·−, and concomitantly appearing H2O2, was preferentially localized in the outer epidermis of the coleoptile. The physiological significance of O2 ·− and H2O2 production in relation to the growth-controlling function of the epidermal cell wall is discussed. Received: 14 January 2000 / Accepted: 2 May 2000  相似文献   

15.
S K Orme  G A Kelly 《Life sciences》1977,20(4):597-608
Although hypothermic whole organ perfusion is widely used in attempts to preserve organs for transplantation and to preserve the myocardium during cardiac surgery, little is known about substrate metabolism during hypothermia. A knowledge of metabolism utilization during hypothermic whole organ perfusion might allow optimal substrate choice for preservation of energy stores and functional capacity. Separate groups of hearts from fed rats were perfused 30 minutes with Krebs Henseleit bicarbonate buffer containing 5mM glucose-U-14C, at 37°, 25°, 20°, 15° and 10°C. From 37° to 15°C, heart rate decreased 90% and coronary flow decreased 25%. Glucose uptake decreased 5 fold from 37° to 10°C while 14CO2 and lactate production decreased 50 fold and 28 fold, respectively. Myocardial glycogen was stable until 10°C at which point increased glycogenolysis occured. The incorporation of 14C in glycogen was stable at 37°, 30° and 25° but decreased progressively with lower temperatures. The percent recovery of glucose as 14CO2, lactate and 14C in glycogen decreased from 73% at 37° at 10°C. Our studies indicate that metabolism of glucose is greatly reduced but significant above 15°C.  相似文献   

16.
Amber mutations are efficiently and specifically suppressed during protein synthesis in vitro in an Su? S-30 extract at 25 °C, but not at 37 °C. Eight different amber mutations in three different genes have been tested, and all are suppressed. The efficiencies of suppression range from 20 to 35%, when protein synthesis is at the Mg2+ concentration optimal for β-galactosidase synthesis at 25 °C. The suppression efficiency increases to approximately 60% at higher Mg2+ concentrations, and is reduced to less than 5% at very low concentrations. Ochre and UGA mutations are not suppressed at all under these conditions. The amber suppression is inhibited by addition of a purified protein synthesis release factor to the reaction, or when the protein synthesis reaction takes place in extracts derived from bacteria which are streptomycin-resistant.  相似文献   

17.
Nine species from the tribe Triticeae – three crop, three pasture and three ‘wild’ wetland species – were evaluated for tolerance to growth in stagnant deoxygenated nutrient solution and also for traits that enhance longitudinal O2 movement within the roots. Critesion marinum (syn. Hordeum marinum) was the only species evaluated that had a strong barrier to radial O2 loss (ROL) in the basal regions of its adventitious roots. Barriers to ROL have previously been documented in roots of several wetland species, although not in any close relatives of dryland crop species. Moreover, the porosity in adventitious roots of C. marinum was relatively high: 14% and 25% in plants grown in aerated and stagnant solutions, respectively. The porosity of C. marinum roots in the aerated solution was 1·8–5·4‐fold greater, and in the stagnant solution 1·2–2·8‐fold greater, than in the eight other species when grown under the same conditions. These traits presumably contributed to C. marinum having a 1·4–3 times greater adventitious root length than the other species when grown in deoxygenated stagnant nutrient solution or in waterlogged soil. The length of the adventitious roots and ROL profiles of C. marinum grown in waterlogged soil were comparable to those of the extremely waterlogging‐tolerant species Echinochloa crus‐galli L. (P. Beauv.). The superior tolerance of C. marinum, as compared to Hordeum vulgare (the closest cultivated relative), was confirmed in pots of soil waterlogged for 21 d; H. vulgare suffered severe reductions in shoot and adventitious root dry mass (81% and 67%, respectively), whereas C. marinum shoot mass was only reduced by 38% and adventitious root mass was not affected.  相似文献   

18.
Hypothermia, Metabolic Stress, and NMDA-Mediated Excitotoxicity   总被引:2,自引:2,他引:0  
Abstract: Isolated embryonic retinas were metabolically stressed by inhibition of glycolysis either with iodoacetate (IOA) or by glucose withdrawal plus 10 mM 2-deoxy-D-glucose, and the effects of hypothermia were examined. Incubation at 30 versus 37°C during 30 min of hypoglycemia with IOA completely reduced the rapid swelling-related GABA release [6 ± 2 vs. 68 ± 10 nmol/100 mg of protein (mean ± SEM) for 30 and 37°C, respectively]. Histology of the retina immediately following 30 min of metabolic stress at 30°C appeared normal, whereas that at 37°C showed a pattern of acute edema, characteristic of NMDA-mediated acute excitotoxicity. Coincubation with a competitive or noncompetitive NMDA antagonist, respectively, CGS-19755 (10 μM) or MK-801 (1 μM), during 30 min of hypoglycemia at 37°C completely prevented tissue swelling, whereas extracellular GABA content remained at basal levels, indicating that the cytotoxic effects of IOA treatment for 30 min at 37°C were NMDA receptor mediated. Longer periods of hypoglycemia at 37° C produced acute toxicity that was only partially NMDA receptor mediated. Hypothermia delayed the onset of NMDA-mediated toxicity by 30–60 min. At 30°C, the rate of loss of ATP was slowed during the first several minutes of hypoglycemia (82 and 58% of maximal tissue levels at 30 and 37° C, respectively, at 5 min), but by 10 min, ATP levels were comparably reduced. After a transient exposure of retina to 50 μM NMDA in Mg2+-free medium, hypothermia significantly attenuated acute GABA release by 30%. At 24 h of recovery, lactate dehydrogenase release was decreased by 37%. Hypothermia had no effect when the exposure was done in medium containing physiological concentrations of Mg2+. The above results suggest that the protective effect of hypothermia during the metabolic insult is predominately directed at the cellular events that lead up to NMDA receptor involvement. Reduction in the rate of loss of ATP, however, does not fully account for the delay in involvement of NMDA receptors during metabolic stress at 30°C. The attenuation of direct NMDA-mediated toxicity in Mg2+-free medium further suggests that decreased temperature may result in altered channel properties during situations when the Mg2+ block is lifted.  相似文献   

19.
The effects of kinetin (6-furfurylaminopurine) on viability during storage of recalcitrant sal (Shorea robusta Gaertn. f.) seeds at low temperature (15°C) were investigated. The freshly mature sal seeds showed an absolute loss of viability within 6–7 dah (days after harvest) when stored at ambient or at 15°C (control). Storage of these seeds at 15°C after kinetin (10 ppm) treatment prolonged the viability period up to 35 days with 20% germination. The kinetin-treated seeds exhibited 100% germination up to 10 days compared with 3 days in controls. Measurements of leachate conductivity, ·O 2 and lipid peroxidation registered gradual increases from 0 dah onward to 35 dah with significantly low levels compared with controls. On the other hand, an enormous increase in superoxide dismutase activity was discernible for a longer duration (0–35 dah) in kinetin-treated seeds than in control seeds where it remained for 3 dah. The role of kinetin in prolonging seed viability by reducing the loss of leachates, lipid peroxidation, ·O 2, and enhancing of superoxide dismutase is discussed. Received October 7, 1997; accepted January 27, 1998  相似文献   

20.
Methods were developed for obtaining highly viable mouse hepatocytes in single cell suspension and for maintaining the hepatocytes in adherent static culture. The characteristics of transferrin binding and iron uptake into these hepatocytes was investigated. (1) After attachment to culture dishes for 18–24 h hepatocytes displayed an accelerating rate of iron uptake with time. Immediately after isolation mouse hepatocytes in suspension exhibited a linear iron uptake rate of 1.14·105molecules/cell per min in 5 μM transferrin. Iron uptake also increased with increasing transferrin concentration both in suspension and adherent culture. Pinocytosis measured in isolated hepatocytes could account only for 10–20% of the total iron uptake. Iron uptake was completely inhibited at 4°C. (2) A transferrin binding component which saturated at 0.5 μM diferric transferrin was detected. The number of specific, saturable diferric transferrin binding sites on mouse hepatocytes was 4.4·104±1.9·104 for cells in suspension and 6.6·104±2.3·104 for adherent cultured cells. The apparent association constants were 1.23·107 1·mol?1 and 3.4·106 1·mol?1 for suspension and cultured cells respectively. (3) Mouse hepatocytes also displayed a large component of non-saturable transferrin binding sites. This binding increased linearly with transferrin concentration and appeared to contribute to iron uptake in mouse hepatocytes. Assuming that only saturable transferrin binding sites donate iron, the rate of iron uptake is about 2.5 molecules iron/receptor per min at 5 μM transferrin in both suspension and adherent cells and increases to 4 molecules iron/receptor per min at 10 μM transferrin in adherent cultured cells. These rates are considerably greater than the 0.5 molcules/receptor per min observed at 0.5 μM transferrin, the concentration at which the specific transferrin binding sites are fully occupied. The data suggest that either the non-saturable binding component donates some iron or that this component stimulates the saturable component to increase the rate of iron uptake. (4) During incubations at 4°C the majority of the transferrin bound to both saturable and nonsaturable binding sites lost one or more iron atoms. Incubations including 2 mM α,α′-dipyridyl (an Fe11 chelator) decreased the cell associated 59Fe at both 4 and 37°C while completely inhibiting iron uptake within 2–3 min of exposure at 37°C. These observations suggest that most if not all iron is loosened from transferrin upon interaction of transferrin with the hepatocyte membrane. There is also greater sensitivity of 59Fe uptake compared to transferrin binding to pronase digestion, suggesting that an iron acceptor moiety on the cell surface is available to proteolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号