首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
[Purpose]The objective of this study was to investigate the effects of plyometric training on physical fitness and muscle damage in high school baseball players.[Methods]The participants in the study included 21 high school baseball players who are healthy and well-training. The participants were randomly allocated to the plyometric training (n=11) and control (n=10) groups. The plyometric training was applied 3 times a week for a total of 8 weeks and the control group took part in only regular baseball skills training without plyometric training. For physical fitness, measures included maximal strength (left and right hand-grip strength), muscle endurance (sit-up), agility (side-step), power (standing long jump), and balance (left and right Rhomberg test). For muscle damage, creatine kinase (CK) and lactate dehydrogenase (LDH) levels were measured.[Results]The results showed a significant interaction effect between time and groups in left hand-grip strength (P = 0.022), side-step (P = 0.004), and standing long jump (P < 0.001) after the 8-week plyometric training, with greater improvement in the plyometric training group than the control group. On the other hand, there was no significant interaction effect between time and groups in right hand-grip strength, situp, left and right Rhomberg test, CK level, and LDH level (P > 0.05).[Conclusion]In conclusion, 8-week plyometric training had a positive effect on improving physical fitness, such as maximal strength, agility, and power, in high school baseball players without causing additional muscle damage.  相似文献   

2.
《Free radical research》2013,47(12):1002-1008
Abstract

The purpose of the current study was to determine the frequency distribution of manganese superoxide dismutase (MnSOD) Val-9Ala polymorphism (rs1799725) among 195 trained endurance and power athletes and 240 healthy controls. Genomic DNA was extracted using a standard protocol. Genotyping of the MnSOD Val-9Ala polymorphism was performed using polymerase chain reaction (PCR). Results showed a higher proportion of the Val/Ala and Ala/Ala genotype, and a lower proportion of Val/Val genotype, in the athletes group compared with that of the controls. The Ala allele frequency was significantly higher (p < 0.001) in the athletes group (46%) compared with that in the control (29%). Interestingly, there was no difference between the endurance and power athletes. In addition, the frequency of Ala/Ala genotype was significantly higher (p < 0.05) among top (international and Olympic-level) athletes (29%) compared with that among national-level endurance and power athletes (17%). We conclude that 1) the Ala allele is more frequent in athletes than in controls; and 2) the higher frequency of the Ala allele was noted in both endurance and power athletes compared with that in controls, suggesting that the positive association between the Ala allele and athletic performance may be related to ROS-related angiogenesis, mitochondrial biosynthesis, and muscle hypertrophy, and not to MnSOD aerobic properties.  相似文献   

3.
The muscle creatine kinase (MCK) gene is expressed at high levels only in differentiated skeletal and cardiac muscle. The activity of the cloned enhancer–promoter has previously been shown to be dependent on the Trex element which is specifically bound by a yet unidentified nuclear factor, TrexBF. We have further characterized the function of the Trex site by comparing wild-type and Trex-mutated MCK transgenes in five mouse skeletal muscles: quadriceps, extensor digitorum longus (EDL), soleus, diaphragm, and distal tongue, as well as in heart ventricular muscle. Several types of statistical analysis including analysis of variance (ANOVA) and rank sum tests were used to compare expression between muscle types and between constructs. Upon mutation of the Trex site, median transgene expression levels decreased 3- to 120-fold in the muscles examined, with statistically significant differences in all muscles except the EDL. Expression in the largely slow soleus muscle was more affected than in the EDL, and expression in the distal tongue and diaphragm muscles was affected more than in soleus. Median expression of the transgene in ventricle decreased about 18-fold upon Trex mutation. Transfections into neonatal rat myocardiocytes confirmed the importance of the Trex site for MCK enhancer activity in heart muscle, but the effect is larger in transgenic mice than in cultured cells.  相似文献   

4.

[Purpose]

The purpose of the study was to investigate the relationship between CK variability and body composition and muscle damage markers following eccentric exercise.

[Methods]

Total 119 healthy male subjects were recruited to perform 50 eccentric contractions consisted of 2 sets of 25 contractions. Then, blood creatine kinase (CK) activity was analyzed to divide into three groups based on their CK activity levels. Maximum isometric strength (MIS), muscle soreness (SOR) and body composition data were obtained before and after exercise.

[Results]

The results showed that high CK responders had a significant decrease in MIS (p<0.001) and greater SOR (p<0.01) following eccentric exercise compared to low CK responders. Percent body fat was also higher in high responders compared to low responders (p=0.014). Peak CK activity was significantly correlated with MIS and SOR but no correlation with % body fat, muscle mass, and body mass index.

[Conclusion]

CK variability following eccentric exercise is closely related to MIS and SOR and % body fat may be a potent factor for CK variability.  相似文献   

5.
The aim of the study was to analyse the effect of Val 16Ala polymorphism in SOD2 gene on oxidative stress parameters and lipid profile of the blood during a three-month wrestling training. The study included 53 Polish young wrestlers. Blood samples were collected at the beginning of the programme and following three months of the training. The list of analysed parameters included erythrocyte and serum activities of superoxide dismutase (SOD), whole blood glutathione peroxidase (GPx) activity, total glutathione (tGSH) level, concentration of lipid hydroperoxides (LHs), total antioxidant capacity (TAC) and creatine kinase (CK) activity in the serum, as well as lipid profile parameters: triglycerides (TG), total cholesterol (TC), high-density (HDL-C), and low-density lipoprotein cholesterol (LDL-C). Three-month training resulted in a decrease in CK activity, an increase in serum SOD activity, as well as in unfavourable changes in serum lipid profile: an increase in TC, LDL-C, and TG, and a decrease in HDL-C. Aside from CK activity, all these changes seemed to be associated with presence of Val allele. Prior to the training programme, subjects with Ala/Ala genotype presented with lower levels of LHs, lower whole blood GPx activity, and lower serum concentrations of TC than the individuals with Ala/Val genotype. Both prior to and after three-month training, higher levels of tGSH were observed in Val/Val genotype as compared to Ala/Val genotype carriers. Moreover, multiple regression analysis demonstrated that SOD2 genotype was a significant predictor of pre-training whole blood GPx activity and erythrocyte SOD activity (Val/Val?>?Ala/Val?>?Ala/Ala). Altogether, these findings suggest that Val 16Ala polymorphism in SOD2 gene contributes to individual variability in oxidative stress status and lipid profile of the blood in young wrestlers, and may modulate biochemical response to training.  相似文献   

6.
This study assessed the influence of estrogen (E2) on muscle damage biomarkers [skeletal muscle - creatine kinase (CK); cardiac muscle - CK-MB] responses to prolonged aerobic exercise. Eumenorrheic women (n=10) who were physically active completed two 60-minute treadmill running sessions at ∼60-65% maximal intensity during low E2 (midfollicular menstrual phase) and high E2 (midluteal menstrual phase) hormonal conditions. Blood samples were collected prior to exercise (following supine rest), immediately post-, 30 min post-, and 24 hours post-exercise to determine changes in muscle biomarkers. Resting blood samples confirmed appropriate E2 hormonal levels Total CK concentrations increased following exercise and at 24 hours post-exercise were higher in the midfollicular low E2 phase (p<0.001). However, CK-MB concentrations were unaffected by E2 level or exercise (p=0.442) resulting in the ratio of CK-MB to total CK being consistently low in subject responses (i.e., indicative of skeletal muscle damage). Elevated E2 levels reduce the CK responses of skeletal muscle, but had no effect on CK-MB responses following prolonged aerobic exercise. These findings support earlier work showing elevated E2 is protective of skeletal muscle from exercise-induced damage associated with prolonged aerobic exercise.  相似文献   

7.
8.
The akirin 2 gene, located on chromosome 9 in cattle, was previously reported to be associated with nuclear factor‐kappa B (NF‐κB), involved in immune reactions and marbling of meat. To determine whether a single nucleotide polymorphism (SNP) in akirin 2 is associated with economically important traits of Korean native cattle, the c.*188G>A SNP DNA marker in the 3′‐UTR region of akirin 2 was analyzed for its association with carcass weight, longissimus muscle area and marbling. The c.*188G>A SNP was genotyped by polymerase chain reaction restriction fragment length polymorphism, and the frequency of the AA, AG, and GG genotypes were 6.82%, 71.29% and 21.88% respectively. This SNP was significantly associated with longissimus muscle area (Bonferroni corrected < 0.05), and marbling score (Bonferroni corrected < 0.01). These results suggest that the c.*188G>A SNP of akirin 2 might be useful as a DNA marker for longissimus muscle area and marbling scores in Korean native cattle.  相似文献   

9.
东方(鱼屯)生长激素基因内含子2的克隆与多态性分析   总被引:1,自引:0,他引:1  
黄军  严美姣  陈国宏  许盛海  鞠慧萍  程金花  吴云良 《遗传》2007,29(11):1378-1384
以暗纹东方鲀(Takifugu obscurus)、红鳍东方鲀(Takifugu rubripes)、星点东方鲀(Takifugu niphobles)共82个个体为对象,运用PCR产物电泳检测、单链构向多态性(SSCP)技术和克隆测序技术检测到生长激素(Growth Hormone, GH)基因内含子2的长度和序列多态性。结果表明,3个群体中GH基因内含子2存在9种长度类型,分别为A、B、C、D、E、F、G、H、I,变异频率达到24.22%。对这9种序列进行比对分析,(1)发现9种长度类型A、G、T、C的平均百分比为17.15%、20.77%、37.38%、24.70%,其中G+C(45.47%)含量与A+T(54.53%)的含量差异不显著;(2)9种序列分别长351 bp、327 bp、319 bp、303 bp、295 bp、291 bp、287 bp、283 bp和271 bp,引起长度变化的主要原因是短串联序列TCTG的重复 (重复次数从20到40不等); (3)发现4个突变位点,其中3个转换位点为83(C→T),101(A→G)296(G→A),一处颠换位点103(C→A)。用UPGMA法构建分子系统树,发现DD与II首先聚为一类,然后依次与GG、AA聚为一大类,BB与CC,EE与HH分别聚为一类,最后再与FF聚为一大类,由此可见GH基因内含子2在品种间的差异远大于品种内差异。  相似文献   

10.
The phosphocreatine content of smooth muscle is of similar magnitude to ATP. Thus the function of the creatine kinase system in this tissue cannot simply be regarded as an energy buffer. Thus an understanding of its role in smooth muscle behavior can point to CK function in other systems. From our perspective CK function in smooth muscle is one example of a more general phenomenon, that of the co-localization of ATP synthesis and utilization. In an interesting and analogous fashion distinct glycolytic cascades are also localized in regions of the cell with specialized energy requirements. Similar to CK, glycolytic enzymes are known to be localized on thin filaments, sarcoplasmic reticulum and plasma membrane. In this chapter we will describe the relations between glycolysis and smooth muscle function and compare and contrast to that of the CK system. Our goal is to more fully understand the significance of the compartmentation of distinct pathways for ATP synthesis with specific functions in smooth muscle. This organization of metabolism and function seen most clearly in smooth muscle is likely representative of many other cell types.  相似文献   

11.
以聚合酶链PCR法分析重庆市一般人群的5-HT2A基因C102T多态性(样本总数348人,其中高血压组:HT=137例,非高血压组:NT=211例)的临床指标间的相关性与频率分布。了解重庆地区汉族人群5-羟色胺受体2基因(5-hydroxytryptamine receptor gene,5-HT2A)C102T多态性与原发性高血压病(essential hypertension,EH)的关系。卡方检验结果显示5-HT2A的C102T基因多态性(P=0.549)与等位基因频率(P=0.263)在HT与NT之间没有显著性统计学差异;5-HT2A的C102T基因多态性与高血压logistic回归模型分析结果显示也未见显著性差异,卡方值(Wald)为0.399;比值比为0.884;95%的可信区间为0.603~1.296,P值为0.528。一般线性模型分析结果:5-HT2A基因C102T多态性与收缩压,舒张压之间没有显著性统计学差异,PSBP=0.868,PDBP=709。5-HT2A的C102T多态性可能与重庆汉族人群EH无关。  相似文献   

12.
尿苷二磷酸葡萄糖醛酸基转移酶基因多态性的研究进展   总被引:1,自引:0,他引:1  
Guo D  Pang LF  Zhou HH 《生理科学进展》2010,41(2):107-111
尿苷二磷酸葡萄糖醛酸基转移酶(UDP-glucuronosyltransferase,UGT)是生物体内进行第Ⅱ相生物转化时最重要的一种酶。UGT广泛分布于人体的肝、肾和肠等不同组织,代谢大量的外源性毒性物质和内源性物质。研究发现,UGT1A基因多态性是个体间葡萄糖醛酸化活性差异的重要原因之一。本文就UGT1A基因多态性的研究现状予以综述。  相似文献   

13.
Interest in creatine (Cr) as a nutritional supplement and ergogenic aid for athletes has surged over recent years. After cellular uptake, Cr is phosphorylated to phosphocreatine (PCr) by the creatine kinase (CK) reaction using ATP. At subcellular sites with high energy requirements, e.g. at the myofibrillar apparatus during muscle contraction, CK catalyzes the transphosphorylation of PCr to ADP to regenerate ATP, thus preventing a depletion of ATP levels. PCr is thus available as an immediate energy source, serving not only as an energy buffer but also as an energy transport vehicle. Ingestion of creatine increases intramuscular Cr, as well as PCr concentrations, and leads to exercise enhancement, especially in sprint performance. Additional benefits of Cr supplementation have also been noticed for high-intensity long-endurance tasks, e.g. shortening of recovery periods after physical exercise.The present article summarizes recent findings on the influence of Cr supplementation on energy metabolism, and introduces the Cr transporter protein (CreaT), responsible for uptake of Cr into cells, as one of the key-players for the multi-faceted regulation of cellular Cr homeostasis. Furthermore, it is suggested that patients with disturbances in Cr metabolism or with different neuro-muscular diseases may benefit from Cr supplementation as an adjuvant therapy to relieve or delay the onset of symptoms. Although it is still unclear how Cr biosynthesis and transport are regulated in health and disease, so far there are no reports of harmful side effects of Cr loading in humans. However, in this study, we report that chronic Cr supplementation in rats down-regulates in vivo the expression of the CreaT. In addition, we describe the presence of CreaT isoforms most likely generated by alternative splicing.  相似文献   

14.
MUC7 gene expression and genetic polymorphism   总被引:3,自引:0,他引:3  
  相似文献   

15.
Volitional animal resistance training constitutes an important approach to modeling human resistance training. However, the lack of standardization protocol poses a frequent impediment to the production of skeletal muscle hypertrophy and the study of related physiological variables (i.e., cellular damage/inflammation or metabolic stress). Therefore, the purposes of the present study were: (1) to test whether a long‐term and low frequency experimental resistance training program is capable of producing absolute increases in muscle mass; (2) to examine whether cellular damage/inflammation or metabolic stress is involved in the process of hypertrophy. In order to test this hypothesis, animals were assigned to a sedentary control (C, n = 8) or a resistance trained group (RT, n = 7). Trained rats performed 2 exercise sessions per week (16 repetitions per day) during 12 weeks. Our results demonstrated that the resistance training strategy employed was capable of producing absolute mass gain in both soleus and plantaris muscles (12%, p < 0.05). Furthermore, muscle tumor necrosis factor (TNF‐α) protein expression (soleus muscle) was reduced by 24% (p < 0.01) in trained group when compared to sedentary one. Finally, serum creatine kinase (CK) activity and serum lactate concentrations were not affected in either group. Such information may have practical applications if reproduced in situations where skeletal muscle hypertrophy is desired but high mechanical stimuli of skeletal muscle and inflammation are not. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
DNA single-strand breaks (SSB) formation coordinates the myogenic program, and defects in SSB repair in post-mitotic cells have been associated with human diseases. However, the DNA damage response by SSB in terminally differentiated cells has not been explored yet. Here we show that mouse post-mitotic muscle cells accumulate SSB after alkylation damage, but they are extraordinarily resistant to the killing effects of a variety of SSB-inducers. We demonstrate that, upon SSB induction, phosphorylation of H2AX occurs in myotubes and is largely ataxia telangiectasia mutated (ATM)-dependent. However, the DNA damage signaling cascade downstream of ATM is defective as shown by lack of p53 increase and phosphorylation at serine 18 (human serine 15). The stabilization of p53 by nutlin-3 was ineffective in activating the cell death pathway, indicating that the resistance to SSB inducers is due to defective p53 downstream signaling. The induction of specific types of damage is required to activate the cell death program in myotubes. Besides the topoisomerase inhibitor doxorubicin known for its cardiotoxicity, we show that the mitochondria-specific inhibitor menadione is able to activate p53 and to kill effectively myotubes. Cell killing is p53-dependent as demonstrated by full protection of myotubes lacking p53, but there is a restriction of p53-activated genes. This new information may have important therapeutic implications in the prevention of muscle cell toxicity.  相似文献   

17.
Abstract

Toll-like receptors (TLRs), evolutionarily conserved innate, play important roles in the development of autoimmunity. TLRs proteins are localized on the cell surface or in endosomes and play critical roles in innate immune responses against different pathogens. Aberrant stimulation of the innate immune system through intracellular TLRs may lead to hyperactive immune responses and contribute to the pathogenesis of hepatocellular carcinoma (HCC). HCC is the seventh most common cancer and the third leading cause of cancer deaths worldwide, and innate immune takes a most important role in HCC. There was no review to sum up the role of TLRs gene polymorphism in HCC. This review was performed to sum up the role of TLRs gene polymorphism in HCC.  相似文献   

18.
Eccentric muscle actions are known to induce temporary muscle damage, delayed onset muscle soreness (DOMS) and muscle weakness that may persist for several days. The purpose of the present study was to determine whether DOMS-inducing exercise affects blood lactate responses to subsequent incremental dynamic exercise. Physiological and metabolic responses to a standardised incremental exercise task were measured two days after the performance of an eccentric exercise bout or in a control (no prior exercise) condition. Ten healthy recreationally active subjects (9 male, 1 female), aged 20 (SD 1) years performed repeated eccentric muscle actions during 40 min of bench stepping (knee high step; 15 steps · min−1). Two days after the eccentric exercise, while the subjects experienced DOMS, they cycled on a basket loaded cycle ergometer at a starting work rate of 150 W, with increments of 50 W every 2 min until fatigue. The order of the preceding treatments (eccentric exercise or control) was randomised and the treatments were carried out 2 weeks apart. Two days after the eccentric exercise, all subjects reported leg muscle soreness and exhibited elevated levels of plasma creatine kinase activity (P < 0.05). Endurance time and peak O2 during cycling were unaffected by the prior eccentric exercise. Minute volume, respiratory exchange ratio and heart rate responses were similar but venous blood lactate concentration was higher (P < 0.05) during cycling after eccentric exercise compared with the control condition. Peak blood lactate concentration, observed at 2 min post-exercise was also higher [12.6 (SD 1.4) vs 10.9 SD (1.3) mM; P < 0.01]. The higher blood lactate concentration during cycling exercise after prior eccentric exercise may be attributable to an increased rate of glycogenolysis possibly arising from an increased recruitment of Type II muscle fibres. It follows that determination of lactate thresholds for the purpose of fitness assessment in subjects experiencing DOMS is not appropriate. Accepted: 27 September 1997  相似文献   

19.
After discussing approaches to the modelling of mitochondrial regulation in muscle, we describe a model that takes account, in a simplified way, of some aspects of the metabolic and physical structure of the energy production/usage system. In this model, high-energy phosphates (ATP and phosphocreatine) and low energy metabolites (ADP and creatine) diffuse between the mitochondrion and the myofibrillar ATPase, and can be exchanged at any point by creatine kinase. Creatine kinase is not assumed to be at equilibrium, so explicit account can be taken of substantial changes in its activity of the sort that can now be achieved by transgenic technology in vivo. The ATPase rate is the input function. Oxidative ATP synthesis is controlled by juxtamitochondrial ADP concentration. To allow for possible functional coupling between the components of creatine kinase associated with the mitochondrial adenine nucleotide translocase and the myofibrillar ATPase, we define parameters and that set the fraction of the total flux carried by ATP rather than phosphocreatine out of the mitochondrial unit and into the ATPase unit, respectively. This simplification is justified by a detailed analysis of the interplay between the mitochondrial outer membrane porin proteins, mitochondrial creatine kinase and the adenine nucleotide translocase. As both processes of possible coupling are incorporated into the model as quantitative parameters, their effect on the energetics of the whole cell model can be explicitly assessed. The main findings are as follows: (1) At high creatine kinase activity, the hyperbolic relationship of oxidative ATP synthesis rate to spatially averaged ADP concentration at steady state implies also a near-linear relationship to creatine concentration, and a sigmoid relation to free energy of ATP hydrolysis. At high creatine kinase activity, the degree of functional coupling at either the mitochondrial or ATPase end has little effect on these relationships. However, lowering the creatine kinase activity raises the mean steady state ADP and creatine concentrations, and this is exaggerated when or is near unity (i.e. little coupling). (2) At high creatine kinase activity, the fraction of flow at steady state carried in the middle of the model by ATP is small, unaffected by the degree of functional coupling, but increases with ADP concentration and rate of ATP turnover. Lowering the creatine kinase activity raises this fraction, and this is exaggerated when or is near unity. (3) Both creatine and ADP concentrations show small gradients decreasing towards the mitochondrion (in the direction of their net flux), while ATP and phosphocreatine concentration show small gradients decreasing towards the myosin ATPase. Unless = 0 (i.e. complete coupling), there is a gradient of net creatine kinase flux that results from the need to transform some of the adenine nucleotide flux at the ends of the model into creatine flux in the middle; the overall net flux is small, but only zero if = . A reduction in cytosolic creatine kinase activity decreases ADP concentration at the mitochondrial end and increases it at the ATPase end. (4) During work-jump transitions, spatial average responses exhibit exponential kinetics similar to those of models of mitochondrial control that assume equilibrium conditions for creatine kinase. (5) In response to a step increase in ATPase activity, concentration changes start at the ATPase end and propagate towards the mitochondrion, damped in time and space. This simplified model embodies many important features of muscle in vivo, and accommodates a range of current theories as special cases. We end by discussing its relationship to other approaches to mitochondrial regulation in muscle, and some possible extensions of the model.  相似文献   

20.
Gastric carcinoma is a major cause of cancer death worldwide and, like most human cancers, probably develops after environmental insults acting on normal individuals and/or individuals with increased genetic susceptibility. Mucins are attractive molecules to study the relationship between genetics and environment because they play an important role in the protection of gastric mucosa against environmental insults and exhibit a highly polymorphic genetic variation. We performed a case-control study using Southern blot analysis to evaluate the MUC1 gene polymorphism in a series of blood donors (n=324) and in patients with gastric carcinoma (n=159). We found that the distribution of MUC1 alleles is significantly different in the two populations and that small MUC1 alleles and small MUC1 genotypes are significantly more frequent in patients with gastric carcinoma than in controls. Individuals with small MUC1 genotypes are at increased risk for gastric carcinoma development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号