首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial K + transport: effect of N-ethyl maleimide on 42 K flux   总被引:1,自引:0,他引:1  
The energy-linked flux of K+ into rat liver mitochondria is found to be stimulated by the sulfhydryl reagent, N-ethyl maleimide. The stimulation of K+ influx by N-ethyl maleimide is observed only at alkaline external pH. N-ethyl maleimide also stimulates efflux of K+ from the mitochondria. The stimulation by N-ethyl maleimide of K+ influx, but not K+ efflux, is dependent on the availability of metabolic energy. It is suggested that the effect of N-ethyl maleimide on K+ influx may be secondarily the result of an inhibition of phosphate-hydroxyl exchange. The dependence of energy-linked K+ influx on the external pH may be interpreted as evidence for a role of OH? as a counterion accompanying K+ through the mitochondrial pump mechanism.  相似文献   

2.
K+ transport into mitoplasts, prepared by digitonin disruption and removal of the outer membranes from rat liver mitochondria, has been studied. Unidirectional K+ influx has been measured by means of 42K, in the presence of the respiratory substrate succinate. K+ influx is inhibited by CN?, antimycin A and dicyclohexylcarbodiimide, but is insensitive to oligomycin. A linear dependence of the reciprocal of the K+-influx rate on the reciprocal of the external K+ concentration is observed. Under the conditions studied, the apparent Km for K+ of the transport mechanism is approx. 6 mM, while the Vmax of K+ influx is approx. 5 μ mol K+/g protein per min. The rate of K+ influx increases with increasing external pH over the range from 6.8 to 8.0. The observed kinetics, pH dependence and inhibitor sensitivity are essentially similar to previously reported characteristics of K+ transport into intact rat liver mitochondria. It is concluded that the outer mitochondrial membrane does not have a role in controlling K+ flux into rat liver mitochondria.  相似文献   

3.
Entry of β-hydroxybutyrate into erythrocytes and thymocytes is facilitated by a carrier (C), as judged from temperature dependence, saturation kinetics, stereospecificity, competition with lactate and pyruvate, and inhibition by moderate concentrations of methylisobutylxanthine, phloretin, or α-cyanocinnamate. We studied the dependence of influx and efflux on internal and external pH and [β-hydroxybutyrate]. Lowering external pH from 8.0 to 7.3 to 6.6 enhanced influx into erythrocytes by lowering entry Km from 29 to 16 to 10 mM, entry V being independent of external pH. Lowering external pH inhibited efflux. At low external pH, external β-hydroxybutyrate enhanced efflux slightly. At high external pH, external β-hydroxybutyrate inhibited efflux. Internal acidification inhibited influx and internal alkalization enhanced influx. Internal β-hydroxybutyrate (βHB) enhanced influx more in acidified than alkalized cells. These data are compatible with coupled βHB?/OH? exchange, βHB? and OH? competing for influx, C : OH? moving faster than C : βHB?, empty C being immobile. They are also compatible with coupled βHB?/H+ copermeation, empty C moving inward faster than H+ : C : βHB?, H+ : C being immobile, and C : βHB? (without H+) being so unstable as not to be formed in significant amounts (relative to C, H+ : C, and H+ : C : βHB?).  相似文献   

4.
TheV max of the uptake of choline was increased in nerve cell cultures by lowering (from 7.4 to 6.5) or increasing (from 7.4 to 8.1) the pH. In neurons no effect was observed on the value of theK m's of the uptake of either the apparent high or low affinity components. In glial cells only a low affinity component was measured at pH 6.5 and diffusion was observed at pH 8.1. An excess of K+ ions in the incubation medium reproduced the increase inV max observed with changes in pH suggesting a possible dependence of the uptake of choline upon the H+ and OH gradients. Taking into account the characteristics already known of the transport of choline into nerve cells, such a dependence adds new insight in the mechanisms underlying the transport and indicates another possible regulation of choline entry, eventually directed towards the synthesis of acetylcholine.  相似文献   

5.
Fan LM  Wang YF  Wu WH 《Protoplasma》2003,220(3-4):143-152
Summary.  Patch-clamp whole-cell and single-channel recording techniques were used to investigate the regulation of outward K+ channels by external and internal protons in Brassica chinensis pollen protoplasts. Outward K+ currents and conductance were insensitive to external pH (pHo) except at pH 4.5. Maximal conductance (G max) for the outward K+ currents was inhibited at acidic external pH. Half-activation voltage (E 1/2) for the outward K+ currents shifted to more positive voltages along with the decrease in pHo. E 1/2 can be described by a modified Henderson–Hasselbalch equation expected from a single titratable binding site. The activation kinetics of the outward K+ channels was largely insensitive to pHo. An internal pH (pHi) of 4.5 significantly increased outward K+ currents and conductance. G max for the outward K+ currents decreased with elevations in pHi. In contrast to the effect of pHo, E 1/2 was shifted to more positive voltages with elevations in pHi. The outward K+ currents, G max and E 1/2 can be described by the modified Henderson–Hasselbalch equation. Furthermore, acidifying pHi accelerated the activation of the outward K+ currents significantly. The differences in electro-physiological properties among previously reported and currently described plant outward K+ channels may reflect differences in the structure of these channels. Received May 7, 2002; accepted July 9, 2002; published online November 29, 2002  相似文献   

6.
Methanococcus voltae possesses a Na+-dependent transport system for isoleucine which requires for optimum rates a CO2/H2 atmosphere. The Km for the system is 4.5 μM with a Vmax of 1.5 nmol·min?1·mg dry wt?1. Approximately 75% of the label can be released from the cell pool following short-term experiments with gradients of isoleucine reaching 100 (in/out). Transport is inhibited by ionophores and N-ethyl maleimide. Only valine and leucine effectively compete with isoleucine for transport.  相似文献   

7.
Summary We have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (H i ) and external Na+ (Na o ) in red blood cells of normal subjects.Red blood cells with different cell Na+ (Na i ) and pH (pH i ) were prepared by nystatin and DIDS treatment of acid-loaded cells. Unidirectional and net Na+ influx were measured by varying pH i (from 5.7 to 7.4), external pH (pH o ), Na i and Na o and by incubating the cells in media containing ouabain, bumetanide and methazolamide. Net Na+ influx (Na i <2.0 mmol/liter cell, Na o = 150mm) increased sigmoidally (Hill coefficient 2.5) when pH i fell below 7.0 and the external pH o was 8.0, but increased linearly at pH o 6.0. The net Na+ influx driven by an outward H+ gradient was estimated from the difference of Na+ influx at the two pH o levels (pH o 8 and pH o 6). The H+-driven Na+ influx reached saturation between pH i 5.9 and 6.1. TheV max had a wide interindividual variation (6 to 63 mmol/liter cell · hr, 31.0±3, mean±sem,n=20). TheK m for H i to activate H+-driven Na+ influx was 347±30nm (n=7). Amiloride (1mm) or DMA (20 m) partially (59±10%) inhibited red cell Na+/H+ exchange. The stoichiometric ratio between H+-driven Na+ influx and Na+-driven H+ efflux was 11. The dependence of Na+ influx from Na o was studied at pH i 6.0, and Na i lower than 2 mmol/liter cell at pH o 6.0 and 8.0. The meanK m for Na o of the H+-gradient-driven Na+ influx was 55±7mm.An increase in Na i from 2 to 20 mmol/liter cell did not change significantly H+-driven net Na+ influx as estimated from the difference between unidirectional22Na influx and efflux. Na+/Na+ exchange was negligible in acid-loaded, DIDS-treated cells. Na+ and H+ efflux from acid-loaded cells were inhibited by amiloride analogs in the absence of external Na+ indicating that they may represent nonspecific effects of these compounds and/or uncoupled transport modes of the Na+/H+ exchanger.It is concluded that human red cell Na+/H+ exchange performs 11 exchange of external Na+ for internal protons, which is partially amiloride sensitive. Its kinetic dependence from internal H+ and external Na+ is similar to other cells, but it displays a larger variability in theV max between individuals.  相似文献   

8.
Potassium ion pool was studied in glycolyzing Enterococcus hirae, grown at high or low alkaline pH (pH 9.5 and 8.0, respectively). Energy-dependent increase of K+ pool was lower for the wild-type cells, grown at pH 9.5, than that for the cells grown at pH 8.0. It was inhibited by N,N′-dicyclohexylcarbodiimide (DCCD). The stoichiometry of DCCD-inhibited K+ influx to DCCD-inhibited H+ efflux for the wild-type cells, grown at pH 9.5 or 8.0, was fixed for different K+ external activity. DCCD-inhibited ATPase activity of membrane vesicles was significantly stimulated by K+ for the wild-type cells grown at pH 9.5, and required K+ for the wild-type cells grown at pH 8.0, while the levels of α and β subunits of the F1 and b subunit of the F0 were lower for the cells grown at pH 9.5 than that for the cells grown at pH 8.0. Such an ATPase activity was residual in membrane vesicles from the atpD mutant with a nonfunctional F0F1. ATPase activity of membrane vesicles from the mutant with defect in Na+-ATPase was higher for the cells grown at pH 9.5 than that for the cells grown at pH 8.0, and was inhibited by DCCD. An energy-dependent increase of K+ pool in this bacterium, grown at a high or low alkaline pH, is assumed to occur through a K+ uptaking system, most probably the Trk. The latter functions in a closed relationship with the H+-translocating ATPase F0F1. Received: 30 June 1997 / Accepted: 4 August 1997  相似文献   

9.
Effects on Mg++ transport in rat liver mitochondria of three reagents earlier shown to affect mitochondrial K+ transport have been examined. The sulfhydryl reactive reagent phenylarsine oxide, which activates K+ flux into respiring mitochondria, also stimulates Mg++ influx. The K+ analog Ba++, when taken up into the mitochondrial matrix, inhibits influx of both K+ and Mg++. The effect on Mg++ influx is seen only if Mg++, which blocks Ba++ accumulation, is added after a preincubation with Ba++. Thus the inhibition of Mg++ influx appears to require interaction of Ba++ at the matrix side of the inner mitochondrial membrane. Added Ba++ also diminishes observed rates of Mg++ efflux but not K+ efflux. This difference may relate to a higher concentration of Ba++ remaining in the medium in the presence of Mg++ under the conditions of our experiments. Pretreatment of mitochondria with dicyclohexylcarbodiimide (DCCD), under conditions which result in an increase in the apparentK m for K+ of the K+ influx mechanism, results in inhibition of Mg++ influx from media containing approximately 0.2 mM Mg++. The inhibitory effect of DCCD on Mg++ influx is not seen at higher external Mg++ (0.8 mM). This dependence on cation concentration is similar to the dependence on K+ concentration of the inhibitory effect of DCCD on K+ influx. Although mitochondrial Mg++ and K+ transport mechanisms exhibit similar reagent sensitivities, whether Mg++ and K+ share common transport catalysts remains to be established.Abbreviations used: DCCD, dicyclohexylcarbodiimide; PheAsO, phenylarsine oxide.  相似文献   

10.
Summary In jejunal brush-border membrane vesicles, an out-wardly directed OH gradient (in>out) stimulates DIDS-sensitive, saturable folate (F) uptake (Schron, C.M., 1985).J. Clin. Invest. 76:2030–2033), suggesting carrier-mediated folate: OH exchange (or phenomenologically indistiguishable H+: folate cotransport). In the present study, the precise role of pH in the transport process was elucidated by examinin F uptake at varying pH. For pH gradients of identical magnitude, F uptake (0.1 M) was geater at lower (pHint/pHext:5.5/4.5) compared with higher (6.5/5.5) pH ranges. In the absence of a pH gradient, internal Ftrans stimulated DIDS-sensitive3H-folate uptake only at pH6.0. Since setepwise increments ininternal pH (4.57.5; pHext=4.5) stimulated F uptake, an inhibitory effect of higherinternal pH was excluded. In contrast, with increasing external pH(4.356.5; pHint=7.8), a 50-fold decrement in F uptake was observed (H+ K m =12.8±1.2m). Hill plots of these data suggest involvement of at least one H+ (OH) at high pH (divalent F–2 predominates). Since an inside-negative electrical potential did not affect F uptake at either pHext 4.55 or 5.8, transport of F and F–2 is electroneutral. Kinetic parameters for F and F–2 were calculated from uptake data at pHext 4.55 and 5.0. Comparision of predictedvs. experimentally determined kinetic parameters at pHext 5.8 (K m =1.33vs. 1.70 m;V max=12.8vs. 58.0 pmol/mg prot min) suggest that increasing external pH lowers theV max, but does not affect thatK m, for carrier-mediated F transport. These data are consistent with similarK i's for sulfasalazine (competitive inhibitor) at pHext 5.35 and 5.8 (64.7 and 58.5 m, respectively). In summary, the jejunal F carrier mediates electroneutral transport of mono- and divalen F and is sensitive to extermal pH with a H+ K m (or OH IC50) corresponding to pH 4.89. External pH affects theV max, but not theK m for carriermediated F uptake suggesting a reaction mechanism involving a ternary complex between the outward-facing conformation of the carrier and the transported ions (F and either OH or H+) rather than competitive binding that is mutually exclusive.  相似文献   

11.
Abstract: Kinetic studies of dopamine transport into suspensions of nucleus accumbens (NAcc) and effects of Na+ and Cl? as cosubstrates were performed using rotating disk electrode voltammetry. To mimic chemical neurotransmission, dopamine was added as a rapid pulse, and transporter-mediated clearance of dopamine was evaluated kinetically. This paradigm was shown to approximate a zero trans entry transport experiment. Dopamine was taken up with apparent Km and Vmax values of 1.3 µM and 375 pmol/s/g wet weight, respectively. Transport exhibited apparent trans acceleration. Substitution of Na+ with choline or Cl? with isethionate reduced dopamine transport with reaction orders of two and unity, respectively, accompanied by reductions in Vmax with no changes in Km. Apparent KNa and KCl values were 70.0 and 92.1 mM, respectively. Dopamine transport in NAcc was found to follow a partially random, sequential mechanism in which dopamine and Na+ bind randomly to the transporter followed by binding of Cl? before transport. Cocaine inhibited dopamine transport and the influences of the other substrates allosterically with an overall Ki of 0.30 µM. Thus, the general kinetic mechanism of the transport of dopamine in the NAcc is identical to that previously reported by this laboratory for dopamine transport in the striatum. However, the dopamine transporter in the NAcc is more tightly regulated by Na+, possesses a higher kinetic turnover rate, is four times more sensitive to cocaine than the striatal transporter, and exhibits cocaine inhibition independent of [substrate]. These findings suggest that cocaine modulates chemical signaling in NAcc differently than in striatum, providing down-regulation of function irrespective of [substrate], thereby enhancing dopaminergic signaling more robustly in the NAcc than in the striatum.  相似文献   

12.
Summary In jejunal brush-border membrane vesicles, an outwardly directed OH gradient (in>out) stimulates DIDS-sensitive, saturable folate (F) uptake (Schron, C.M. 1985.J. Clin. Invest. 76:2030–2033), suggesting carrier-mediated folate: OH exchange (or phenomenologically indistinguishable H+: folate cotransport). In the present study, the precise role of pH in the transport process was elucidated by examining F uptake at varying pH. For pH gradients of identical magnitude, F uptake (0.1 M) was greater at lower (pHint/pHext: 5.5/4.5) compared with higher (6.5/5.5) pH ranges. In the absence of a pH gradient, internal Ftrans stimulated DIDS-sensitive3H-folate uptake only at pH6.0. Since stepwise increments ininternal pH (4.57.5; pHext=4.5) stimulated F uptake, an inhibitory effect of higherinternal pH was excluded. In contrast, with increasing external pH (4.356.5; pHint=7.8), a 50-fold decrement in F uptake was observed (H+ K m =12.8±1.2 M). Hill plots of these data suggest involvement of at least one H+ (OH) at low pH (monovalent F predominates) and at least 2 H+ (OH) at high pH (divalent F–2 predominates). Since an inside-negative electrical potential did not affect F uptake at either pHext 4.55 or 5.8, transport of F and F–2 is electroneutral. Kinetic parameters for F and F–2 were calculated from uptake data at pHext 4.55 and 5.0. Comparison of predictedvs. experimentally determined kinetic parameters at pHext5.8 (K m =1.33vs. 1.70 M;V max=123.8vs. 58.0 pmol/mg prot min) suggest that increasing external pH lowers theV max, but does not affect theK m for carrier-mediated F transport. These data are consistent with similarK i ' s for sulfasalazine (competitive inhibitor) at pHext 5.35 and 5.8 (64.7 and 58.5 M, respectively). In summary, the jejunal F carrier mediates electroneutral transport of mono- and divalent F and is sensitive to external pH with a H+ K m (or OH lC50) corresponding to pH 4.89. External pH effects theV max, but not theK m for carriermediated F uptake suggesting a reaction mechanism involving a ternary complex between the outward-facing conformation of the carrier and the transported ions (F and either OH or H+),rather than competitive binding that is mutually exclusive.  相似文献   

13.
The effects of extracellular Pi and Na+ on cellular Pi concentration and transport were studied. Steady-state Pi exchange flux was measured by 32P uptake in the presence and absence of Na+. Model experiments were also conducted to assess the possibility that hydrolysis of organic phosphate esters contributes to the chemically measured intracellular Pi concentration of Ehrlich ascites tumor cells. The results of these experiments indicate that hydroloysis of labile organic phosphate esters does not contribute to the measured intracellular pool of Pi. The Pi transport system exhibits an apparent Ks of 0.115 mM Pi and a maximal flux of 1.73 mmole min?1 (kg dry wt)?1. When incubated in a phosphate-buffered choline chloride medium (5 mM Pi) the intracellular Pi and the Pi influx fall by 65 and 88%, respectively. At 5 mM extracellular Pi, the Na+-dependent component of Pi transport fits Michaelis-Menten kinetics with the maximal flux equal to 2.46 mmole min?1 (kg dry wt)?1 and an apparent Ks of 35.4 mM Na+. In addition, a Na+-independent component of Pi transport, comprising about 12% of the total Pi flux, was identified. The data support the hypothesis that a Pi transport system, dependent on Na+, plays a principal role in the maintenance of intracellular Pi concentration.  相似文献   

14.
Previous squid-axon studies identified a novel K/HCO3 cotransporter that is insensitive to disulfonic stilbene derivatives. This cotransporter presumably responds to intracellular alkali loads by moving K+ and HCO 3 out of the cell, tending to lower intracellular pH (pHi). With an inwardly directed K/HCO3 gradient, the cotransporter mediates a net uptake of alkali (i.e., K+ and HCO 3 influx). Here we test the hypothesis that intracellular quaternary ammonium ions (QA+) inhibit the inwardly directed cotransporter by interacting at the intracellular K+ site. We computed the equivalent HCO 3 influx (J HCO3) mediated by the cotransporter from the rate of pHi increase, as measured with pH-sensitive microelectrodes. We dialyzed axons to pHi 8.0, using a dialysis fluid (DF) free of K+, Na+ and Cl. Our standard artificial seawater (ASW) also lacked Na+, K+ and Cl. After halting dialysis, we introduced an ASW containing 437 mm K+ and 0.5% CO2/12 mm HCO 3, which (i) caused membrane potential to become transiently very positive, and (ii) caused a rapid pHi decrease, due to CO2 influx, followed by a slower plateau-phase pHi increase, due to inward cotransport of K+ and HCO 3. With no QA+ in the DF, J HCO3 was ∼58 pmole cm−2 sec−1. With 400 mm tetraethylammonium (TEA+) in the DF, J HCO3 was virtually zero. The apparent K i for intracellular TEA+ was ∼78 mm, more than two orders of magnitude greater than that obtained by others for inhibition of K+ channels. Introducing 100 mm inhibitor into the DF reduced J HCO3 to ∼20 pmole cm−2 sec−1 for tetramethylammonium (TMA+), ∼24 for TEA+, ∼10 for tetrapropylammonium (TPA+), and virtually zero for tetrabutylammonium (TBA+). The apparent K i value for TBA+ is ∼0.86 mm. The most potent inhibitor was phenyl-propyltetraethylammonium (PPTEA+), with an apparent K i of ∼91 μm. Thus, trans-side quaternary ammonium ions inhibit K/HCO3 influx in the potency sequence PPTEA+ > TBA+ > TPA+ > TEA+≅ TMA+. The identification of inhibitors of the K/HCO3 cotransporter, for which no inhibitors previously existed, will facilitate the study of this transporter. Received: 21 November 2000/Revised: 14 May 2001  相似文献   

15.
Respiration-dependent K+ fluxes across the limiting membranes of isolated rat liver mitochondria, measured by means of42K, are stimulated by the oxidative phosphorylation inhibitor dibutylchloromethyltin chloride (DBCT). A lack of effect of Cl concentration indicates that the stimulation of K+ flux by DBCT is not attributable to Cl/OH exchange activity. The mercurial mersalyl was previously shown to stimulate respiration-dependent K+ influx. The combined presence of mersalyl plus DBCT results in a greater stimulation of K+ influx than is caused by either DBCT or mersalyl alone. The oxidative phosphorylation inhibitor oligomycin, which alone has no effect on respiration-dependent K+ influx, enhances the stimulatory effect of mersalyl on K+ influx. The data are consistent with, although not proof of, a direct interaction of the K+ transport mechanism with the mitochondrial energy transduction apparatus.Abbreviations used: DCCD,N,N-dicyclohexylcarbodiimide; DBCT, dibutylchloromethyltin chloride.  相似文献   

16.
Pathways of K+ movement across the erythrocyte membrane of frog Rana temporaria were studied using 86Rb as a tracer. The K+ influx was significantly blocked by 0.1 mmol·l-1 ouabain (by 30%) and 1 mmol·l-1 furosemide (by 56%) in the red cells incubated in saline at physiological K+ concentration (2.7 mmol·l-1). Ouabain and furosemide had an additive effect on K+ transport in frog red cells. The ouabain-sensitive and furosemide-sensitive components of K+ influx saturated as f(K+)e with apparent K m values for external K e + concentration of 0.96±0.11 and 4.6±0.5 mmol·l-1 and V max of 0.89±0.04 and 2.8±0.4 mmol·l cells-1·h-1, respectively. The residual ouabain-furosemide-resistant component was also a saturable function of K e + medium concentration. Total K+ influx was significantly reduced when frog erythrocytes were incubated in NO - 3 medium. Furosemide did not affect K+ transport in frog red cells in NO 3 - media. At the same K e + concentration the ouabain-furosemide-insensitive K+ influx in Cl- medium was significantly greater than that in NO - 3 medium. We found no inhibitory effect of 1 mmol·l-1 furosemide on Na+ influx in frog red cells in Cl- medium. K+ loss from the frog erythrocytes in a K+-free medium was significantly reduced (mean 58%) after replacement of Cl- with NO - 3 . Furosemide (0.5 mmol·l-1) did not produce any significant reduction in the K+ loss in both media. The Cl--dependent component of K+ loss from frog red cells was 5.7±1.2 mmol·l-1·h-1. These results indicate that about two-thirds of the total K+ influx in frog erythrocytes is mediated by a K–Cl cotransport which is only partially blocked by furosemide.Abbreviations DMSO dimethyl sulphoxide - K e + external concentration of K+ - K m apparent Michaelis constant for external - K+ K e + at V max/2 - RBC red blood cell(s) - V max maximal velocity of the unidirectional K+ influx - TRIS tris(hydroxymethyl)aminomethane  相似文献   

17.
In isolated Elodea densa leaves, the relationships between H+ extrusion (-ΔH+), K+ fluxes and membrane potential (Em) were investigated for two different conditions of activation of the ATP-dependent H+ pump. The ‘basal condition’ (darkness, no pump activator present) was characterized by low values of-ΔH+ and K+ uptake (ΔK+), wide variability of the ?ΔH+/ΔK+ ratio, relatively low membrane polarization and Em values more positive than EK for external K+ concentrations (|K+]o of up to 2mol m?3. A net K+ uptake was seen already at [K+]o below 1 mol m?3, suggesting that K+ influx in this condition was a thermodynamically uphill process involving an active mechanism. When the H+ pump was stimulated by fusicoccin (FC), by cytosol acidification, or by light (the ‘high polarization condition’), K+ influx largely dominated K+ and C? efflux, and the ?ΔH+/ΔK+ ratio approached unity. In the range 50 mmol m?3?5 mol m?3 [K+]0, Em was consistently more negative than EK. The curve of K+ influx at [K+]0 ranging from 50 to 5000mmol m?3 fitted a monophasic, hyperbolic curve, with an apparent half saturation value = 0–2 mol m?3. Increasing |K+]0 progressively depolarized Em, counteracting the strong hyperpolarizing effect of FC. The effects of K+ in depolarizing Em were well correlated with the effects on both K+ influx and ?ΔH+, suggesting a cause-effect chain: K+0 influx → depolarization → activation of H+ extrusion. Cs+ competitively inhibited K+ influx much more strongly in the ‘high polarization’ than in the ‘basal’ condition (50% inhibition at [Cs+]/[K+]0 ratios of 1:14 and 1:2, respectively) thus confirming the involvement of different K+ uptake systems in the two conditions. These results suggest that in E. densa leaves two distinct modes of interactions rule the relationships between H+ pump, membrane polarization and K+ transport. At low membrane polarization, corresponding to a low state of activation of the PM H+-ATPase and to Em values more positive than EK, K+ influx would mainly  相似文献   

18.
Abstract: Various ocular tissues have a higher concentration of taurine than plasma. This taurine concentration gradient across the cell membrane is maintained by a high-affinity taurine transporter. To understand the physiological role of the taurine transporter in the retina, we cloned a taurine transporter encoding cDNA from a mouse retinal library, determined its biochemical and pharmacological properties, and identified the specific cellular sites expressing the taurine transporter mRNA. The deduced protein sequence of the mouse retinal taurine transporter (mTAUT) revealed >93% sequence identity to the canine kidney, rat brain, mouse brain, and human placental taurine transporters. Our data suggest that the mTAUT and the mouse brain taurine transporter may be variants of one another. The mTAUT synthetic RNA induced Na+- and Cl?-dependent [3H]taurine transport activity in Xenopus laevis oocytes that saturated with an average Km of 13.2 µM for taurine. Unlike the previous studies, we determined the rate of taurine uptake as the external concentration of Cl? was varied, a single saturation process with an average apparent equilibrium constant (KCl?) of 17.7 mM. In contrast, the rate of taurine uptake showed a sigmoidal dependence when the external concentration of Na+ was varied (apparent equilibrium constant, KNa+~54.8 mM). Analyses of the Na+- and Cl?-concentration dependence data suggest that at least two Na+ and one Cl? are required to transport one taurine molecule via the taurine transporter. Varying the pH of the transport buffer also affected the rate of taurine uptake; the rate showed a minimum between pH 6.0 and 6.5 and a maximum between pH 7.5 and 8.0. The taurine transport was inhibited by various inhibitors tested with the following order of potency: hypotaurine > β-alanine > l -diaminopropionic acid > guanidinoethane sulfonate > β-guanidinopropionic acid > chloroquine > γ-aminobutyric acid > 3-amino-1-propanesulfonic acid (homotaurine). Furthermore, the mTAUT activity was not inhibited by the inactive phorbol ester 4α-phorbol 12,13-didecanoate but was inhibited significantly by the active phorbol ester phorbol 12-myristate 13-acetate, which was both concentration and time dependent. The cellular sites expressing the taurine transporter mRNA in the mouse eye, as determined by in situ hybridization technique, showed low levels of expression in many of the ocular tissues, specifically the retina and the retinal pigment epithelium. Unexpectedly, the highest expression levels of taurine transporter mRNA were found instead in the ciliary body of the mouse eye.  相似文献   

19.
Summary The role of transmembrane pH gradients on the ouabain, bumetanide and phloretin-resistant Na+ transport was studied in human red cells. Proton equilibration through the Jacobs-Stewart cycle was inhibited by the use of DIDS (125 m) and methazolamide (400 m). Red cells with different internal pH (pH i =6.4, 7.0 and 7.8) were prepared and Na+ influx was measured at different external pH (pH o =6.0, 7.0, 8.0). Na+ influx into acid-loaded cells (pH i =6.4) markedly increased when pH o was raised from 6.0 to 8.0. Amiloride, a well-known inhibitor of Na+/H+ exchange systems blocked about 60% of the H+-induced Na+ entry, while showing small inhibitory effects in the absence of pH gradients. When pH0 was kept at 8.0, the amiloride-sensitive Na+ entry was abolished as pH i was increased from 6.4 to 7.8. Moreover, measurements of H+ efflux into lightly buffered media indicated that the imposition of an inward Na+ gradient stimulated a net H+ efflux which was sensitive to the amiloride analog 5-N-methyl-N-butyl-amiloride. Furthermore, in the absence of a chemical gradient for Na+ (Na i + =Na 0 + =15mm,Em=+6.7 mV), an outward H+ gradient (pH i =6.4, pH0=8.0) promoted a net amiloride-sensitive Na+ uptake which was abolished at an external pH of 6.0. These findings are consistent with the presence of an amiloride-sensitive Na+/H+ exchange system in human red cells.  相似文献   

20.
With 3-O-methylfluorescein phosphate (3-OMFP) as substrate for the phosphatase reaction catalyzed by the (Na+ + K+)-ATPase, a number of properties of that reaction differ from those with the common substratep-nitrophenyl phosphate (NPP): theK m is 2 orders of magnitude less and the Vmax is two times greater, and dimethyl sulfoxide (Me2SO) inhibits rather than stimulates. In addition, reducing the incubation pH decreases both theK m and Vmax for K+-activated 3-OMFP hydrolysis as well as theK 0.5 for K+ activation. However, reducing the incubation pH increases inhibition by Pi and the Vmax for 3-OMFP hydrolysis in the absence of K+. When choline chloride is varied reciprocally with NaCl to maintain the ionic strength constant, NaCl inhibits K+-activated 3-OMFP hydrolysis modestly with 10 mM KCl, but stimulates (in the range 5–30 mM NaCl) with suboptimal (0.35 mM) KCl. In the absence of K+, however, NaCl stimulates increasingly over the range 5–100 mM when the ionic strength is held constant. These observations are interpreted in terms of (a) differential effects of the ligands on enzyme conformations; (b) alternative reaction pathways in the absence of Na+, with a faster, phosphorylating pathway more readily available to 3-OMFP than to NPP; and (c) a (Na+ + K+)-phosphatase pathway, most apparent at suboptimal K+ concentrations, that is also more readily available to 3-OMFP.Abbreviations Et3N triethyl amine - FITC fluorescein isothiocyanate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - MES 2-(N-morpholino)ethanesulfonate - Me2SO dimethyl sulfoxide - NPP p-nitrophenyl phosphate - 3-OMFP 3-O-methylfluorescein phosphate - TNP-ATP 2, (or 3)-O-(2,4,6-trinitrophenyl)-ATP  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号