首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been reported that tubular cells suffer an endoplasmic reticulum (ER) stress during the development of chronic kidney disease, which is a potent risk factor of cardiovascular disease. Moreover, under these conditions, reactive oxygen species are generated and induce cell injury. Extracellular-superoxide dismutase (EC-SOD) is a member of SODs and protects the cells from oxidative stress. Here, it is demonstrated that thapsigargin, an ER stress inducer, decreased EC-SOD expression, whereas the expression of Cu,Zn-SOD and Mn-SOD was not changed. On the other hand, another ER stress inducer, tunicamycin, did not affect the expression of EC-SOD. Further, it was shown that thapsigargin has the ability to activate extracellular-signal regulated kinase (ERK), but tunicamycin does not. Moreover, pre-treatment with U0126, an inhibitor of mitogen-activated protein kinase kinase (MEK)/ERK, suppressed thapsigargin-triggered EC-SOD reduction, suggesting that MEK/ERK signalling should play an important role in the regulation of EC-SOD in COS7 cells under ER stress conditions.  相似文献   

2.
《Free radical research》2013,47(9):1083-1092
Abstract

The aim of this study was to determine the reasons why the intravitreal level of extracellular-superoxide dismutase (EC-SOD) increases in proliferative diabetic retinopathy patients by the investigation of two possibilities: first, change of EC-SOD expression in the retina; and secondly, leakage of EC-SOD through the endothelial monolayer by the treatment with endoplasmic reticulum (ER) stress inducers because ER stress is known to be involved in the vascular impairment in diabetic retinopathy. Intravitreous injection of tunicamycin in mice increased the permeability of tracer dye across retinal blood vessels while the retinal EC-SOD mRNA level was not changed. The leakage of EC-SOD through the retinal endothelial cell layer was elevated by the treatment with thapsigargin or tunicamycin. The expression of claudin-5 was significantly decreased by the treatment with the ER stress inducers. These phenomena were significantly suppressed by the pre-treatment of endothelial cells with a chemical chaperone 4-phenylbutyric acid. Our observations suggest that ER stress leads to the down-regulation of claudin-5 among tight junction proteins and may induce the elevation of endothelial permeability and leakage of EC-SOD into the vitreous body.  相似文献   

3.
The aim of this study was to determine the reasons why the intravitreal level of extracellular-superoxide dismutase (EC-SOD) increases in proliferative diabetic retinopathy patients by the investigation of two possibilities: first, change of EC-SOD expression in the retina; and secondly, leakage of EC-SOD through the endothelial monolayer by the treatment with endoplasmic reticulum (ER) stress inducers because ER stress is known to be involved in the vascular impairment in diabetic retinopathy. Intravitreous injection of tunicamycin in mice increased the permeability of tracer dye across retinal blood vessels while the retinal EC-SOD mRNA level was not changed. The leakage of EC-SOD through the retinal endothelial cell layer was elevated by the treatment with thapsigargin or tunicamycin. The expression of claudin-5 was significantly decreased by the treatment with the ER stress inducers. These phenomena were significantly suppressed by the pre-treatment of endothelial cells with a chemical chaperone 4-phenylbutyric acid. Our observations suggest that ER stress leads to the down-regulation of claudin-5 among tight junction proteins and may induce the elevation of endothelial permeability and leakage of EC-SOD into the vitreous body.  相似文献   

4.
5.
《Cellular signalling》2014,26(2):287-294
Apoptosis triggered by endoplasmic reticulum (ER) stress is associated with rapid attenuation of the IRE1α and ATF6 pathways but persistent activation of the PERK branch of the unfolded protein response (UPR) in cells. However, melanoma cells are largely resistant to ER stress-induced apoptosis, suggesting that the kinetics and durations of activation of the UPR pathways are deregulated in melanoma cells undergoing ER stress. We show here that the IRE1α and ATF6 pathways are sustained along with the PERK signaling in melanoma cells subjected to pharmacological ER stress, and that this is, at least in part, due to increased activation of the MEK/ERK pathway. In contrast to an initial increase followed by rapid reduction in activation of IRE1α and ATF6 signaling in control cells that were relatively sensitive to ER stress-induced apoptosis, activation of IRE1α and ATF6 by the pharmacological ER stress inducer tunicamycin (TM) or thapsigargin (TG) persisted in melanoma cells. On the other hand, the increase in PERK signaling lasted similarly in both types of cells. Sustained activation of IRE1α and ATF6 signaling played an important role in protecting melanoma cells from ER stress-induced apoptosis, as interruption of IRE1α or ATF6 rendered melanoma cells sensitive to apoptosis induced by TM or TG. Inhibition of MEK partially blocked IRE1α and ATF6 activation, suggesting that MEK/ERK signaling contributed to sustained activation of IRE1α and ATF6. Taken together, these results identify sustained activation of the IRE1α and ATF6 pathways of the UPR driven by the MEK/ERK pathway as an important protective mechanism against ER stress-induced apoptosis in melanoma cells.  相似文献   

6.
Endoplasmic reticulum (ER) stress has increasingly come into focus as a factor contributing to neuronal injury. Although caspase-dependent mechanisms have been implicated in ER stress, the signaling pathways involved remain unclear. In this study, we examined the role of the extracellular signal-regulated kinase (ERK), a mitogen-activated protein (MAP) kinase pathway that is highly conserved in many systems for balancing cell survival and death. Prolonged treatment of the human neuroblastoma cell line SH-SY5Y with thapsigargin, an inducer of ER stress, increased cell death over 24-48 h, as measured by LDH release. Caspases were involved; increased levels of active caspase-3 and cleaved caspase substrate PARP were detected, and treatment with Z-VAD-FMK reduced thapsigargin-induced cytotoxicity. In contrast, inhibition of calpain was not protective, although calpain was activated following thapsigargin treatment. An early and transient phosphorylation of ERK1/2 occurred after thapsigargin-induced ER stress, and targeting this pathway with the MEK inhibitors U0126 or PD98059 significantly reduced cell death. Similar cytoprotection was obtained against brefeldin A, another ER stress agent. However, protection against ER stress via ERK inhibition was not accompanied by amelioration of caspase-3 activation, PARP cleavage, or DNA laddering. These data indicate that ERK may contribute to non-caspase-dependent pathways of injury after ER stress.  相似文献   

7.
内质网是真核细胞的重要细胞器。某些细胞内外因素如病原体感染等能引起从内质网到胞浆和胞核的信号传导途径活化,即内质网应激反应。但是,目前国内外尚无针对内质网应激反应的基因表达谱分析报道。本研究中,用3种已报道的内质网应激反应诱导剂,包括蛋白质糖基化抑制剂衣霉素(tunicamycin)、内质网Ca 2+-ATPases抑制剂毒胡萝卜素(thapsigargin)和乙脑病毒(Japanese encephalitis virus, JEV),分别处理小鼠颅腔和小鼠脑神经瘤细胞(Neuro-2a),试剂处理组与未处理组的第二代RNA测序分析发现,衣霉素、毒胡萝卜素和乙脑病毒在体外和体内均引起分子伴侣基因Hsp70表达上调,诱导内质网应激反应。衣霉素、毒胡萝卜素和乙脑病毒体外处理诱导的内质网应激反应信号通路中,基因差异表达相似性高于体内处理组。乙脑病毒和糖基化抑制剂衣霉素体内外处理,主要诱导内质网应激反应的非折叠蛋白质反应信号通路,引起相关基因Atf4、Bip、Edem和Perk等表达上调。内质网Ca 2+-ATPases抑制剂毒胡萝卜素主要诱导内质网超负荷反应,激活NF-κB信号通路。乙脑病毒诱导的内质网应激反应相关差异表达基因数量最多,体外与体内合计有40种。乙脑病毒体内外处理上调的基因包括Bax、Casp12、Atf4、Bip、Edem和Perk等,下调的基因包括Sec23/24、Nef、Svip和Jnk等。糖基化抑制剂衣霉素体内外处理上调基因包括Gadd34、Atf4、Ermani和Bip等,下调基因包括Grp94、Atf6、Sec23/24和Nef等。内质网Ca -2+-ATPases抑制剂毒胡萝卜素体内外处理上调的基因包括Sec61、Trap和Ask1等。衣霉素、毒胡萝卜素和乙脑病毒体内外处理也通过内质网应激反应,调控与炎症或凋亡相关的MAPK信号通路和P53信号通路。本研究首次通过使用3种内质网应激反应诱导剂分别处理小鼠和细胞,揭示了体内外内质网应激反应引起的基因表达谱变化,为内质网应激反应相关疾病的治疗提供了新思路。  相似文献   

8.
Abstract

Diabetic retinopathy (DR) is regarded as a disease of the retinal microvascular system and metabolic abnormalities that are characteristic of oxidative stress and endoplasmic reticulum (ER) stress have been identified in the retina. Pericytes are known to be susceptible to oxidative stress and selective dropout of pericytes is one of the earliest pathological changes in DR. Extracellular-superoxide dismutase (EC-SOD) is a major antioxidative enzyme and protects vascular cells from the damaging effects of superoxide. Treatment with own conditioned medium significantly decreased EC-SOD expression in pericytes, while the expression of vascular endothelial growth factor and tumor necrosis factor-α were elevated. The addition of chemical chaperone 4-phenyl butyric acid significantly suppressed the effects of conditioned medium on EC-SOD and GRP78, a prominent ER-resident chaperone. Moreover, the cell viability of pericytes changed in a manner similar to that of EC-SOD expression. These results suggest that the expressions of EC-SOD should be regulated, at least partially, through ER stress. Continuous flow of culture media neutralized the ER-stress triggered decrease of EC-SOD expression. The stagnation of factors related to ER-stress around pericytes might reduce EC-SOD expression under pathophysiological conditions such as retinal edema, and this could induce and/or promote the intraretinal microvascular impairment and development of pathogenesis in DR.  相似文献   

9.
There are several reports describing participation of small heat shock proteins (sHsps) in cellular protein quality control. In this study, we estimated the endoplasmic reticulum (ER) stress-induced response of Hsp27 and alphaB-crystallin in mammalian cells. Treatment targeting the ER with tunicamycin or thapsigargin induced the phosphorylation of Hsp27 but not of alphaB-crystallin in U373 MG cells, increase being observed after 2-10 h and decline at 24 h. Similar phosphorylation of Hsp27 by ER stress was also observed with U251 MG and HeLa but not in COS cells and could be blocked using SB203580, an inhibitor of p38 MAP kinase. Other protein kinase inhibitors, like G?6983, PD98059, and SP600125, inhibitors of protein kinase C (PKC), p44/42 MAP kinase, and JNK, respectively, were without major influence. Prolonged treatment with tunicamycin but not thapsigargin for 48 h caused the second induction of the phosphorylation of Hsp27 in U251 MG cells. Under these conditions, the intense perinuclear staining of Hsp27, with some features of aggresomes, was observed in 10%-20% of the cells.  相似文献   

10.
We investigated the role of the endoplasmic reticulum (ER) stress response in intracellular Ca2+ regulation, MAPK activation, and cytoprotection in LLC-PK1 renal epithelial cells in an attempt to identify the mechanisms of protection afforded by ER stress. Cells preconditioned with trans-4,5-dihydroxy-1,2-dithiane, tunicamycin, thapsigargin, or A23187 expressed ER stress proteins and were resistant to subsequent H2O2-induced cell injury. In addition, ER stress preconditioning prevented the increase in intracellular Ca2+ concentration that normally follows H2O2 exposure. Stable transfection of cells with antisense RNA targeted against GRP78 (pkASgrp78 cells) prevented GRP78 induction, disabled the ER stress response, sensitized cells to H2O2-induced injury, and prevented the development of tolerance to H2O2 that normally occurs with preconditioning. ERK and JNK were transiently (30-60 min) phosphorylated in response to H2O2. ER stress-preconditioned cells had more ERK and less JNK phosphorylation than control cells in response to H2O2 exposure. Preincubation with a specific inhibitor of JNK activation or adenoviral infection with a construct that encodes constitutively active MEK1, the upstream activator of ERKs, also protected cells against H2O2 toxicity. In contrast, the pkASgrp78 cells had less ERK and more JNK phosphorylation upon H2O2 exposure. Expression of constitutively active ERK also conferred protection on native as well as pkAS-grp78 cells. These results indicate that GRP78 plays an important role in the ER stress response and cytoprotection. ER stress preconditioning attenuates H2O2-induced cell injury in LLC-PK1 cells by preventing an increase in intracellular Ca2+ concentration, potentiating ERK activation, and decreasing JNK activation. Thus, the ER stress response modulates the balance between ERK and JNK signaling pathways to prevent cell death after oxidative injury. Furthermore, ERK activation is an important downstream effector mechanism for cellular protection by ER stress.  相似文献   

11.
Leukemic cell lines, such as U937, THP-1, and HL60 cells, can differentiate into macrophages following exposure to various agents including 12-O-tetradecanoylphorbol-13-acetate (TPA) in vitro. It is well known that TPA enhances reactive oxygen species (ROS) generation through the activation of NADPH oxidase (NOX), and ROS act as mediators in TPA signaling. Extracellular-superoxide dismutase (EC-SOD) is a major anti-oxidative enzyme that protects the cells from damaging effects of superoxide. Recently, the reduction of Cu/Zn-SOD and the induction of Mn-SOD by TPA in leukemic cells have been reported; however, the regulation of EC-SOD by TPA remains poorly understood. Here, we explored the regulation of EC-SOD during the monocytic differentiation of U937 cells by TPA. We observed the reduction of EC-SOD and Cu/Zn-SOD, whereas the induction of Mn-SOD during the differentiation of U937 cells. The reduction of EC-SOD and Cu/Zn-SOD was attenuated by pretreatments with GF109203X (an inhibitor of protein kinase C, PKC), diphenyleneiodonium (an inhibitor of NOX), and U0126 (an inhibitor of mitogen-activated protein kinase kinase, MEK/extracellular-signal regulated kinase, ERK). Interestingly, pretreatment with BAY11-7082 (an inhibitor of nuclear factor-κB, NF-κB) suppressed the reduction of Cu/Zn-SOD, but not of EC-SOD. Furthermore, we also determined the involvement of newly synthesized protein and the instability of mRNA in the reduction of EC-SOD. Overall, our results suggest that the expression of EC-SOD is decreased by TPA through intracellular signaling consisting of PKC, NOX-derived ROS and MEK/ERK, but not of NF-κB signaling.  相似文献   

12.
13.
Diabetic retinopathy (DR) is regarded as a disease of the retinal microvascular system and metabolic abnormalities that are characteristic of oxidative stress and endoplasmic reticulum (ER) stress have been identified in the retina. Pericytes are known to be susceptible to oxidative stress and selective dropout of pericytes is one of the earliest pathological changes in DR. Extracellular-superoxide dismutase (EC-SOD) is a major antioxidative enzyme and protects vascular cells from the damaging effects of superoxide. Treatment with own conditioned medium significantly decreased EC-SOD expression in pericytes, while the expression of vascular endothelial growth factor and tumor necrosis factor-α were elevated. The addition of chemical chaperone 4-phenyl butyric acid significantly suppressed the effects of conditioned medium on EC-SOD and GRP78, a prominent ER-resident chaperone. Moreover, the cell viability of pericytes changed in a manner similar to that of EC-SOD expression. These results suggest that the expressions of EC-SOD should be regulated, at least partially, through ER stress. Continuous flow of culture media neutralized the ER-stress triggered decrease of EC-SOD expression. The stagnation of factors related to ER-stress around pericytes might reduce EC-SOD expression under pathophysiological conditions such as retinal edema, and this could induce and/or promote the intraretinal microvascular impairment and development of pathogenesis in DR.  相似文献   

14.
Continuous intra- and extracellular stresses induce disorder of Ca2+ homeostasis and accumulation of unfolded protein in the endoplasmic reticulum (ER), which results in ER stress. Severe long-term ER stress triggers apoptosis signaling pathways, resulting in cell death. Neural epidermal growth factor-like like protein 2 (NELL2) has been reported to be important in protection of cells from cell death-inducing environments. In this study, we investigated the cytoprotective effect of NELL2 in the context of ER stress induced by thapsigargin, a strong ER stress inducer, in Cos7 cells. Overexpression of NELL2 prevented ER stress-mediated apoptosis by decreasing expression of ER stress-induced C/EBP homologous protein (CHOP) and increasing ER chaperones. In this context, expression of anti-apoptotic Bcl-xL was increased by NELL2, whereas NELL2 decreased expression of pro-apoptotic proteins, such as cleaved caspases 3 and 7. This anti-apoptotic effect of NELL2 is likely mediated by extracellular signal-regulated kinase (ERK) signaling, because its inhibitor, U0126, inhibited effects of NELL2 on the expression of anti- and pro-apoptotic proteins and on the protection from ER stress-induced cell death.  相似文献   

15.
《Free radical research》2013,47(5):637-644
Abstract

Extracellular-superoxide dismutase (EC-SOD) is a major SOD isozyme mainly present in the vascular wall. EC-SOD is also observed in monocytes/macrophages, and its high expression contributes to the suppression of atherosclerosis by scavenging superoxide. The molecular mechanisms governing cell-specific expression of EC-SOD are mostly unknown, while the anti-oxidative effect of EC-SOD is well recognized. In this study, we investigated the expression of EC-SOD during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced monocytic differentiation of THP-1 cells, which is not expressing its gene in the basal phase. We confirmed the significant induction of EC-SOD in a TPA time-dependent manner, and that induction was completely blocked by pre-treatment with GF109203X, an inhibitor of protein kinase C, U0126 and PD98059, inhibitors of mitogen-activated protein kinase kinase/extracellular-signal regulated kinase. Moreover, we determined the involvement of NADPH oxidase-derived reactive oxygen species in that induction. Overall, we considered that these results may contribute to clarify the cell-specific expression of EC-SOD.  相似文献   

16.
The glucose regulated proteins (GRPs) are major structural components of the endoplasmic reticulum (ER) and are involved in the import, folding, and processing of ER proteins. Expression of the glucose regulated proteins (GRP78 and GRP94) is greatly increased after cells are exposed to stress agents (including A23187 and tunicamycin) which inhibit ER function. Here, we demonstrate that three novel inhibitors of ER function, thapsigargin (which inhibits the ER Ca(2+)-ATPase), brefeldin A (an inhibitor of vesicle transport between the ER and Golgi) and AIF4-, (which inhibits trimeric G-proteins), can increase the expression of both GRP78 and 94. The common characteristic shared by activators of GRP expression is that they disrupt some function of the ER. The increased levels of GRPs may be a response to the accumulation of aberrant proteins in the ER or they may be increased in response to structural/functional damage to the ER. The increased accumulation of GRP78 mRNA after exposure of cells to either thapsigargin, brefeldin A, AIF4-, A23187, or tunicamycin can be blocked by pre-incubation in cycloheximide. In contrast, accumulation of GRPs after exposure to hypoxia was independent of cycloheximide. In addition, the protein kinase inhibitor genistein blocked the thapsigargin induced accumulation of GRP78 mRNA, whereas the protein phosphatase inhibitor okadaic acid caused increased accumulation of GRP78 mRNA. The data indicates that there are at least 2 mechanisms for induced expression of GRPs, one of which involves a phosphorylation step and requires new protein synthesis (e.g., thapsigargin, A23187) and one which is independent of both these steps (hypoxia).  相似文献   

17.
We previously reported that nicotine protected against tunicamycin (Tm)-induced ER stress-mediated apoptosis, but not thapsigargin (Tg)-induced apoptosis in PC12 cells. In the present study, we report that the expression of glucose-regulated protein 78 (GRP78) was suppressed by nicotine in Tm-treated PC12 cells. Interestingly, the GRP78 expression was not changed by nicotine in Tg-treated cells. Moreover, nicotine reduced the activation of caspase-12 in Tm-treated cells, but not in Tg-treated cells. These results suggest that nicotine prevented Tm-induced ER stress-mediated apoptosis by attenuating an early stage of Tm-induced ER stress. It was possible that the suppression of GRP78 expression by nicotine was achieved through the suppression of the Ire1-XBP1 and/or ATF6 pathways. We observed that nicotine suppressed the Tm-induced, but not Tg-induced, splicing of XBP1 mRNA, and also suppressed the Tm-induced, but not Tg-induced, production of cleaved ATF6 in PC12 cells. These results indicate that the suppression of Ire1-XBP1 and ATF6 pathways contributes to the suppression of GRP78 expression by nicotine in Tm-treated PC12 cells, suggesting that nicotine suppresses a common step upstream of both the Ire1-XBP1 and ATF6 pathways which are required for the expression of GRP78 during Tm-induced ER stress.  相似文献   

18.
Along with other endoplasmic reticulum (ER) Ca2+-binding proteins, notably the glucose-response proteins grp78 and grp94, expression of calreticulin is induced in response to perturbation of normal ER function. It has yet to be clearly defined how this stress is signaled from the ER to the nucleus in mammalian cells, particularly with regard to its initiation. Using a GFP-calreticulin fusion protein, we have generated and selected stably transfected HeLa cells that overexpress calreticulin to investigate whether the protein might be involved in signaling its own induction. Basal levels of endogenous calreticulin mRNA and protein were unaffected in these cells, indicating that overexpression alone does not induce a stress response. ER stress induced calreticulin expression in response to either thapsigargin or tunicamycin was equivalent in these cells to that seen in control, nontransfected cells, leading us to conclude that calreticulin is unlikely be involved in its own induction. Levels of the mRNA encoding the fusion protein were also increased by tunicamycin, but not thapsigargin, suggesting that, in agreement with our previous observations, inhibition of N-linked glycosylation may increase the stability of calreticulin mRNA. This indicates that in mammalian cells, there is more than one signaling pathway for the ER stress response.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号