首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The influence of the synthetic sexual steroid levonorgestrel (LN) on rat liver in various doses and at different structural levels was investigated. A slight reactive hepatosis was found by histological examination after administration of LN in a dose of 10 mg per kg body wt. The same dose caused exclusively distinct lesions of the mitochondria, however, only in centrilobular parenchymal cells, whereas in the periportal hepatocytes only the lipid droplet content appears somewhat elevated. LN decreased the total glutathione content of the liver. The mitochondrial glutathione was decreased more intensively. One mg/kg body wt. of LN decreased the cytochrome P-450 content, but 10 mg/kg body wt. increased ethyl-morphine N-demethylation and 7-ethoxycoumarin O-deethylation activities. Distinct correlations could be shown between the biochemical changes and the ultrastructural findings.  相似文献   

2.
Alteration of ethanol self-administration by naltrexone   总被引:7,自引:0,他引:7  
The effect of naltrexone HC1 (NLTRX) on the reinforcing properties of ethanol (EtOH) was evaluated with intravenous self-administration (IVSA). Eight drug-naive, male, 3.5–5.0 Kg rhesus monkeys (M. mulatta) were selected for: spontaneous acquisition of EtOH IVSA, consumption of at least 1.0 gm/Kg/day of EtOH during daily 4 hr. IVSA test sessions, and extremely low daily variability (10%) of EtOH intake during a 30 day control period. The selected subject group received intramuscular injections of either saline (SAL) (1.0 ml) or NLTRX (1, 3, 5 mg/Kg) 30 minutes before each test session. SAL was administered for 10 consecutive days and each NLTRX dose for 15 consecutive days. SAL phases were alternated with the NLTRX phases. NLTRX pretreatment produced lower levels of EtOH IVSA than those observed during SAL pretreatment phases. The magnitude of the suppression of EtOH IVSA corresponded to the NLTRX dose and was statistically significant following both 3 mg/Kg (p<0.05) and 5 mg/Kg (p<0.01) doses. NLTRX pretreatment produced transient increases in EtOH IVSA during the first 5 days of treatment, followed by significant decreases for the next 10 days. These data suggest that the blockade of opiate receptors by NLTRX in rhesus monkeys apparently decreases the reinforcing effects of EtOH measured with IVSA techniques.  相似文献   

3.
Cardiovascular effects of cocaine in anesthetized and conscious rats   总被引:1,自引:0,他引:1  
D K Pitts  C E Udom  J Marwah 《Life sciences》1987,40(11):1099-1111
This study examined the cardiovascular and respiratory effects of cocaine and procaine in anesthetized and conscious rats. Intravenous cocaine (0.16-5 mg/Kg) elicited a rapid, dose dependent increase in mean arterial pressure of relatively short duration. In pentobarbital anesthetized (65 mg/Kg, i.p.) animals, the pressor phase was generally followed by a more prolonged depressor phase. These effects on arterial pressure were generally accompanied by a significant tachypnea and at larger doses (2.5 and 5 mg/Kg, i.v.), bradycardia. Procaine (0.31 and 1.25 mg/Kg, i.v.) produced similar cardiovascular and respiratory effects (depressor phase, tachypnea) in pentobarbital anesthetized animals. In conscious-restrained animals, both cocaine and procaine (1.25 mg/kg, i.v.) produced pressor responses. The subsequent depressor response was, however, absent in both cases. The cardiovascular effects of cocaine (0.25-1 mg/Kg, i.v.) in urethane anesthetized (1.25 g/Kg, i.p.) animals were essentially similar to those observed in conscious animals. Procaine (1mg/Kg) did not produce any significant cardiovascular effects in urethane anesthetized animals, but did elicit tachypnea. Reserpine pretreatment (10 mg/Kg, i.p.) did not significantly attenuate the pressor response in urethane anesthetized animals. Phentolamine pretreatment (3 mg/Kg, i.v.) did significantly antagonize the pressor effect in urethane anesthetized animals. These results suggest that: the depressor phase is likely due to a interaction between local anesthetic activity (cocaine and procaine) and barbiturate anesthesia, the cardiovascular effects of cocaine in conscious animals are more similar to those observed in urethane anesthetized rats than in pentobarbital anesthetized rats and the pressor effect in urethane anesthetized rats is apparently due to a reserpine resistant catecholaminergic mechanism.  相似文献   

4.
The effect of various doses of sodium tellurite (0.4, 0.8, and 2.0 mg/kg body weight, orally) on the activity of antioxidant enzymes (glutathione peroxidase, glutathione reductase, glutathione-S-transferase, and catalase) and content of glutathione and thiobarbituric acid reactive substances (TBARSs) in the cerebrum, cerebellum, and brainstem of male albino mice was studied after 15 d of treatment. All of the doses of tellurium (0.4, 0.8, and 2.0 mg/kg body weight, orally) have depleted the activity of antioxidant enzymes and the content of glutathione dose dependently in the cerebrum, cerebellum, and brainstem and it was significant with the dose of 2.0 mg/kg. On the other hand, the 2.0-mg/kg dose of tellurium has significantly elevated the content of TBARSs in the cerebrum and cerebellum. The 0.8-mg/kg dose of tellurium has significantly depleted the activities of glutathione peroxidase in the cerebrum and brainstem, glutathione-S-transferase in the cerebrum and cerebellum, catalase in the brainstem, and the content of glutathione in the cerebrum and cerebellum. In contrast, this dose has significantly elevated the content of TBARSs in the cerebrum and cerebellum. However, the depletion in the activity of glutathione reductase with various doses of sodium tellurite was not significant in any brain part of mice. The result suggests that sodium tellurite differentially affects the antioxidant status within various parts of the mice brain.  相似文献   

5.
The motor effects of cholecystokinin 26-33-amide (CCK octapeptide; CCK-OP) and several purported CCK receptor antagonists on canine colonic circular muscle were determined in pentobarbital anesthetized dogs. Intravenous injections of CCK-OP had no effect on colonic motility at doses that contracted the gallbladder, stomach and duodenum. CCK-OP delivered by intraarterial injection to a small segment of the proximal colon produced a dose related increase in colonic motility with one-half maximum response at 12 ng/Kg and maximum response at 50 ng/Kg. The effects of intraarterial injections of several established CCK-receptor antagonists on proximal colonic responses to intraarterial injections of CCK-OP were determined. Proglumide, 10 mg/Kg, did not produce colonic contractions itself, but antagonized CCK-OP-induced responses. Carbobenzyloxy (CBZ)-CCK27-32-amide antagonized CCK-OP-induced colonic responses and also had no effect on basal colonic motility (0.1-1 and 5 micrograms/Kg). Neither compound antagonized acetylcholine- induced colonic responses. Butoxycarbonyl (BOC)-CCK31-33-amide increased basal colonic motility, but did not alter CCK-OP-induced responses at doses of 0.1 and 0.2 mg/Kg. Dibutyryl-cGMP at a dose of 0.1 mg/Kg did not affect basal motility or CCK-OP-induced contractions. At a dose of 1.0 mg/kg it increased basal colonic motility but did not affect CCK-OP-induced contractions. Pentagastrin increased colonic motor activity only at a dose of 5 micrograms/Kg, i.a., a much higher dose than effective doses of CCK-OP. The mechanism of CCK-OP-induced colonic motor effects also was determined. Atropine sulfate, 100 micrograms/Kg, i.v. significantly reduced both intraarterial acetylcholine-and CCK-OP-induced maximum colonic contractions. Tetrodotoxin, at intravenous doses that completely block neuronal activity, did not affect maximum acetylcholine-induced contractions but practically eliminated maximum CCK-OP-induced maximum colonic responses. In conclusion, intraarterial CCK-OP produces circular muscle contraction of the canine proximal colon that is mediated by stimulation of specific CCK receptors which produce the release of acetylcholine from cholinergic enteric neurons. Proglumide and CBZ-CCK27-32-amide are effective CCK receptor antagonists at these colonic neuronal receptors.  相似文献   

6.
Methomyl carbamate is a pesticide widely used in the control of insects. The present work aims at studying the effect of selenium on the antioxidant system of methomyl-treated mice. Swiss albino mice were intraperitoneally administered a single dose of methomyl (7 mg/Kg body weight). Mice of another group were injected with sodium selenite (5 pmole/Kg b.wt.) 7 days before methomyl intoxication. After 24 hours, methomyl exposure resulted in significant increase in lactic dehydrogenase activity (LDH). The antioxidant capacity of hepatic cells in terms of the activities of superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferase (GST) and glutathione (GSH) content was diminished. It appears that methomyl exerts its toxic effect via peroxidative damage to hepatic, renal and splenic cell membranes. Also, methomyl induced DNA damage in these organs as detected by alkaline filter elution technique. The distribution of methomyl in different organs of mice was detected by HPLC. Selenium administration prior to methomyl injection produced pronounced protective action against methomyl effects. It is observed that selenium enhances the endogenous antioxidant capacity of the cells by increasing the activities of SOD, CAT, GR and GST as well as increasing GSH content. The activity of LDH was decreased in blood and the damage of DNA was suppressed comparable to controls. In conclusion, the adverse effects of methomyl in mice could be ameliorated by selenium.  相似文献   

7.
This study was designed to examine the effect of aqueous extract of Crocus sativus stigmas (CSE) and crocin (trans-crocin 4) on methyl methanesulfonate (MMS)-induced DNA damage in multiple mice organs using the comet assay. Adult male NMRI mice in different groups were treated with either physiological saline (10 mL/Kg, intraperitoneal [ip]), CSE (80 mg/Kg, ip), crocin (400 mg/Kg, ip), MMS (120 mg/Kg, ip), and CSE (5, 20, and 80 mg/Kg, ip) 45 min prior to MMS administration or crocin (50, 200, and 400 mg/Kg, ip) 45 min prior to MMS administration. Mice were sacrificed about 3 h after each different treatment, and the alkaline comet assay was used to evaluate the effect of these compounds on DNA damage in different mice organs. The percent of DNA in the comet tail (% tail DNA) was measured. A significant increase in the % tail DNA was seen in nuclei of different organs of MMS-treated mice. In control groups, no significant difference was found in the % tail DNA between CSE- or crocin-pretreated and saline-pretreated mice. The MMS-induced DNA damage in CSE-pretreated mice (80 mg/Kg) was decreased between 2.67-fold (kidney) and 4.48-fold (lung) compared to those of MMS-treated animals alone (p < 0.001). This suppression of DNA damage by CSE was found to be depended on the dose, which pretreatment with CSE (5 mg/Kg) only reduced DNA damage by 6.97%, 6.57%, 7.27%, and 9.90% in liver, lung, kidney, and spleen, respectively (p > 0.05 as compared with MMS-treated group). Crocin also significantly decreased DNA damage by MMS (between 4.69-fold for liver and 6.55-fold for spleen, 400 mg/Kg), in a dose-dependent manner. These data indicate that there is a genoprotective property in CSE and crocin, as revealed by the comet assay, in vivo.  相似文献   

8.
Chronic treatment with haloperidol is associated with complete tolerance to the decreasing effect of the neuroleptic on cerebellar cGMP content, vice versa chronic haloperidol causes hypersensitivity to the enhancing effect of apomorphine on cerebellar cGMP. Thus, the administration of 0.5 mg/Kg of haloperidol decreases cerebellar cGMP by 80% in control rats but fails to alter this nucleotide in rats chronically treated with haloperidol (0.5 mg/Kg twice daily for 20 days). A dose of 0.5 mg/Kg of apomorphine enhances cGMP by approximately 25 and 60 percent in control rats and in rats chronically treated with haloperidol, respectively. The results suggest that: a) There is a functional link between striatum and cerebellum; b) Cerebellar cGMP is a sensitive index of the state of activation of striatal dopamine receptors.  相似文献   

9.
Chloroacetonitrile (CAN) is detected in drinking-water supplies as a by-product of the chlorination process. Gastroesophageal tissues are potential target sites of acute and chronic toxicity by haloacetonitriles (HAN). To examine the mechanism of CAN toxicity, we studied its effect on glutathione (GSH) homeostasis and its impact on oxidative DNA damage in gastric mucosal cells of rats. Following a single oral dose (38 or 76 mg/Kg) of CAN, animals were sacrificed at various times (0-24 h), and mucosa from pyloric stomach were collected. The effects of CAN treatment on gastric GSH contents and the integrity of genomic gastric DNA were assessed. Oxidative damage to gastric DNA was evaluated by measuring the levels of 8-Hydroxydeoxyguanosine (8-OHdG) in hydrolyzed DNA by HPLC-EC. The results indicate that CAN induced a significant, dose- and time-dependent, decrease in GSH levels in pyloric stomach mucosa at 2 and 4 hours after treatment (56 and 39% of control, respectively). DNA damage was observed electrophoretically at 6 and 12 hours following CAN administration. CAN (38 mg/Kg) induced significant elevation in levels of 8-OHdG in gastric DNA. Maximum levels of 8-OHdG in gastric DNA were observed at 6 hours after CAN treatment [9.59+/-0.60 (8-OHdG/10(5)dG) 146% of control]. When a high dose of CAN (76 mg/Kg) was used, a peak level of 8-OHdG [11.59+/-1.30 (8-OHdG/10(5)dG) 177% of control] was observed at earlier times (2 h) following treatment. When CAN was incubated with gastric mucosal cells, a concentration-dependent cyanide liberation and significant decrease in cellular ATP levels were detected. These data indicate that a mechanism for CAN-induced toxicity may be partially mediated by depletion of glutathione, release of cyanide, interruption of the energy metabolism, and induction of oxidative stress that leads to oxidative damage to gastric DNA.  相似文献   

10.
11.
培养方式对富硒产朊假丝酵母性能的影响   总被引:1,自引:0,他引:1  
在摇瓶和5 L发酵罐水平上分别考察亚硒酸钠浓度及其添加方式对高性能(高有机硒含量和高谷胱甘肽含量)富硒产朊假丝酵母制备的影响.结果表明:亚硒酸钠添加质量浓度为15 mg/L时,产朊假丝酵母具有较好的富硒效果,但一次性添加对酵母细胞有较大的毒害作用.采用分批次添加亚硒酸钠的方法获得了较好的制备高性能富硒产朊假丝酵母的培养方式:发酵起始添加L-蛋氨酸10 mmol/L,并在发酵过程的12和15 h分别添加亚硒酸钠10和5 mg/L.在此培养方式下,产朊假丝酵母胞内谷胱甘肽和有机硒含量分别达到172.3 mg/L和1194 μg/g.  相似文献   

12.
Administration of simvastatin (80 mg/kg, po. evening dose) and gemfibrozil (600 mg/kg, po twice) for 30 days produced significant decrease in the level of reduced glutathione, superoxide dismutase, catalase and increase in the level of lipid peroxidation and various serum parameters (creatine phosphokinase, lactate dehydrogenase, serum glutamate oxaloacetate transaminase, creatinine, urea and blood urea nitrogen). This suggested involvement of oxidative stress in rhabdomyolysis. Increase in the level of reduced glutathione, superoxide dismutase, catalase and decrease in the level of lipid peroxidation and serum parameters after administration of antioxidant CoQ10 (10 mg/kg.ip) proved the protective effect of CoQ10 in rhabdomyolysis.  相似文献   

13.
Aluminium is one of the most studied neurotoxin, and its effects on nervous system are both structural and functional, involving various regions of brain. Aluminium toxicity is known to have multiple mechanisms of action in the central nervous system. Affinity of aluminium for thiol substrates is considered a possible molecular mechanism involved in aluminium neurotoxicity. The reduced glutathione (GSH) is especially important for cellular defence against aluminium toxicity. This study pertains to the modulatory action of Centrophenoxine on GSH status in aluminium exposed different brain regions of the female rats. Aluminium was administered orally at a dose of 40 mg/Kg. b.wt. /day for a period of eight weeks whereas, Centrophenoxine was administered intraperitoneally at a dose of 100 mg/Kg b.wt./day for a period of six weeks. The study was carried out in different regions of brain namely Cerebrum, Cerebellum, Medulla Oblongata and Hypothalamus. Animals exposed to aluminum, registered a significant decrease in the levels of reduced glutathione, and oxidized glutathione as well as in the activity of glutathione reductase in all the different regions studied when compared to normal control animals. Post-treatment with Centrophenoxine, showed a significant improvement in the thiol levels in different regions. Centrophenoxine when administered alone also had a profound effect on the levels of reduced glutathione as well as on the activity of glutathione reductase. From the present results, it can be stated that Centrophenoxine administration, as a thiol-antioxidant, arrests the aluminium induced cellular damage by improving the thiol status in brain regions.  相似文献   

14.
The toxicity of the antineoplastic agent doxorubicin (DOX) has been shown to be moderated by the antioxidant enzyme glutathione peroxidase. It has been reported that acute doses of DOX can cause an inhibition of glutathione peroxidase in cardiac tissue, that may render this tissue especially susceptible to further prooxidant damage. In this study, multiple DOX treatments at a therapeutic dose were assessed for their effect on the antioxidant enzyme status of cardiac and kidney tissue. DOX was administered i.p. (5 mg/kg) once a week for two weeks to male balb/c mice. The activities of the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPOX) and glutathione reductase (GR) were measured 1, 2 and 7 days following the second DOX treatment in both heart and kidney. Levels of reduced glutathione (GSH) were also measured in cardiac tissue at these same times. Cardiac levels of GPOX and GR showed a time-dependent decrease in activity, with 10% and 12% inhibition for GPOX and GR, respectively, at 7 days post second treatment. Cardiac levels of GSH also showed a significant decrease, approximately 15%, at 7 days post second treatment. Cardiac levels of SOD and CAT as well as kidney levels of all four antioxidant enzymes were not affected by DOX treatment. These data suggest that DOX given in a therapeutic regimen, at a therapeutic dose, can cause decreases in cardiac levels of GPOX, GR and GSH that could render the heart especially susceptible to further oxidative challenge.  相似文献   

15.
The unprecedented ability of cyclosporin A, when given for six days at a dose of 25 mg/kg/d or 50 mg/kg/d, to cause a marked and sustained increase in renal glutathione (GSH) concentration in rat kidney is described. This response was particular to the kidney insofar as the GSH concentration in the liver was not increased in response to a lower dose of cyclosporin and was decreased in the liver of animals treated with the higher dose of the drug. The increase in kidney GSH concentration did not appear to be due to an increased rate of production or to an inhibition of the degradation of the tripeptide. This suggestion is based on the finding that the activities of the GSH synthesis pathways, GSSG-reductase and γ-glutamylcysteine synthetase, were unchanged or decreased, respectively, and those of the catabolic enzymes, GSH-peroxidase and γ-glutamyltranspeptidase, were unchanged or increased, respectively. It is suggested that the elevation of renal GSH content in the face of diminished synthetic capacity and an apparent increased utilization may result from an enhanced uptake of GSH as the result of alterations caused by cyclosporin in the renal transport system.  相似文献   

16.
C L Chik  A K Ho  M G Joshi  G M Brown 《Life sciences》1987,40(15):1451-1457
Adult male rats were subjected to 4 weeks of 50% food restriction under lighting regimen of 14 h light and 10 h dark. The pineal response to isoproterenol (ISO) was determined. In the time-course study, animals were injected with 0.5 mg/Kg ISO subcutaneously (SC) and killed at different times up to 180 min post injection. In the dose-response study, various doses of ISO (0.2 mg/Kg to 5.0 mg/Kg) were injected intraperitoneally (IP) and animals were killed 120 min post injection. Body weight, pineal N-acetyltransferase (NATase), pineal and serum melatonin (MT) were determined. After 4 weeks of restricted feeding, body weight was reduced by 40%. In the time-course study, peak pineal NATase occurred 120 min post injection in the ad libitum fed animals. By contrast, the food restricted animals showed a gradual increase of pineal NATase up to 180 min post injection. In the dose-response study, the ad libitum fed animals demonstrated a dose dependent increase of pineal NATase up to 5 mg/kg dose. The food restricted animals, however, achieved their maximal pineal NATase at 1 mg/Kg dose with no further increment at 5 mg/Kg dose. These differences in responsiveness were also reflected in pineal and serum MT levels. These results indicate that underfed animals have abnormal pineal NATase, pineal and serum MT responses to ISO stimulation.  相似文献   

17.
The effect of zinc on various pulmonary cell lines has been studied by measuring the depletion of total cellular glutathione after exposure to zinc(II) chloride at different concentrations. Total cellular glutathione (cGS) was measured at 31 ± 3 nmol/mg, 3.8 ± 0.6 nmol/mg, and 3.7 ±1.2 nmol/mg protein in A549, L2, and 11Lu cells, respectively. After treatment with buthionine sulfoximine (BSO), the cGS levels decreased by 20% in A549 cells and below 0.2 nmol/mg in L2 and 11Lu cells. Exposure of A549 cells to 25–200 μM ZnCl2 for 4 h alone decreased the cGS content to 60–80%. There was little additional effect in BSO-pretreated cells. In L2 and 11Lu cells, the decrease of cGS was 70–85% following exposure to 15–150 μM ZnCl2 for 2 h. If BSO was also used, the decrease in cGS was 85–95% in L2 cells and 75–85% in 11Lu cells. Exposure to 25–250 μM ZnCl2 for 2 h diminished protein synthesis as determined by radiolabeled methionine incorporation, with half-maximum inhibition (EC50) from 40–160 μM ZnCl2. To attain similar EC50 values in BSO-pretreated cells, only about half the zinc concentrations were required as compared to cells without pretreatment. The decrease of cGS was accompanied by an increased ratio of oxidized : reduced glutathione that was more pronounced in cells with low glutathione content.  相似文献   

18.
T A Slotkin  F J Seidler 《Life sciences》1975,16(10):1613-1622
Nicotine (1 mg/kg or 10 mg/kg) was administered twice daily to rats and the adrenals were analyzed for catecholamines (CA), tyrosine hydroxylase (TH), dopamine β-hydroxylase (DBH), and for the ability of isolated storage vesicles to incorporate 3H-epinephrine. Four hours after the first dose, there were few alterations at 1 mg/kg, but at 10 mg/kg, there was 30% depletion of CA, accompanied by a slight reduction in DBH and a decline in the number of functional vesicles (determined by uptake). Chronic administration of either dose produced elevations in both TH and DBH; at 10 mg/kg, CA levels and functional vesicles continued to decline for at least 4 days, but were at or above normal after 2 weeks of treatment. At 1 mg/kg, CA levels were never significantly below normal, and were elevated after 2 weeks. After 2 weeks at either dose level, a defect appeared in the abilities of vesicles to incorporate exogenous epinephrine relative to endogeneous CA content; this alteration also appeared if nicotine was discontinued. These data suggest that chronic nicotine administration can produce long-term alterations in CA release, synthesis and storage, and that these alterations can occur even at a dose which has little or no acute effect.  相似文献   

19.
The protective effect of melatonin on lipopolysaccharide (LPS)-induced oxidative damage in phenobarbital-treated rats was measured using the following parameters: changes in total glutathione (tGSH) concentration, levels of oxidized glutathione (GSSG), the activity of the antioxidant enzyme glutathione peroxidase (GSH-PX) in both brain and liver, and the content of cytochrome P450 reductase in liver. Melatonin was injected intraperitoneally (ip, 4mg/kg BW) every hour for 4 h after LPS administration; control animals received 4 injections of diluent. LPS was given (ip, 4 mg/kg) 6 h before the animals were killed. Prior to the LPS injection, animals were pretreated with phenobarbital (PB), a stimulator of cytochrome P450 reductase, at a dose 80 mg/kg BW ip for 3 consecutive days. One group of animals received LPS together with Nw-nitro-L-arginine methyl ester (L-NAME), a blocker of nitric oxide synthase (NOS) (for 4 days given in drinking water at a concentration of 50 mM). In liver, PB, in all groups, increased significantly both the concentration of tGSH and the activity of GSH-PX. When the animals were injected with LPS the levels of tGSH and GSSG were significantly higher compared with other groups while melatonin and L-NAME significantly enhanced tGSH when compared with that in the LPS-treated rats. Melatonin alone reduced GSSG levels and enhanced the activity of GSH-PX in LPS-treated animals. Additionally, LPS diminished the content of cytochrome P450 reductase with this effect being largely prevented by L-NAME administration. Melatonin did not change the content of P450 either in PB- or LPS-treated animals. In brain, melatonin and L-NAME increased both tGSH levels and the activity of GSH-PX in LPS-treated animals. The results suggest that melatonin protects against LPS-induced oxidative toxicity in PB-treated animals in both liver and brain, and the findings are consistent with previously published observations related to the antioxidant activity of the pineal hormone.  相似文献   

20.
The effect of adenosine and the time response on adenine nucleotide and Pi levels in rat blood was investigated. an increase in adenine nucleotide with a concommitant decrease in Pi concentration 30, 60, and 90 minutes after the nucleoside administration were observed. Though the 100 mg/Kg dose showed the highest effect on nucleotide concentration, the maximal response on Pi content was achieved with the 50 mg/Kg dose. The results are discussed at the light of previous data obtained in hepatocytes, and using as indicators the energy charge and the phosphorylation potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号