首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The results of a cooperative investigation on the Gram stain are reported. One hundred and twenty slides were made by a single technician in one laboratory and distributed to ten collaborators. Each of these slides bore smears of six organisms, which were known to differ considerably from one another in their behavior to the Gram reaction. Identical directions were sent to all those taking part in the work as to how to perform the staining technic.

In regard to four of the six cultures fairly consistent reports were received from all those taking part in the tests. The other two cultures, however, proved so variable in their reaction toward the staining method that it is impossible to consider them either Gram-positive or Gram-negative. Such organisms must be regarded as belonging to an intermediate group, and should be called Gram-variable.

It is pointed out that these results agree with recent work, such as that of Churchman and of Steam and Steam; also that according to the theory of the latter investigators as to the relation between Gram reaction and the isolectric point of the bacteria, no sharp distinction between Gram-positive and Gram-negative organisms could be expected.

These considerations are very important when interpreting results of the Gram technic in the study of pure cultures; but they do not invalidate its use in diagnostic work where it is ordinarily employed to distinguish strongly positive from strongly negative organisms.  相似文献   

2.
Dyes of all major types were tested for their suitability as the primary dye in the Gram stain. When a counterstain was not used, some dyes of all types were found to differentiate Gram-positive from Gram-negative organisms. When a counterstain was used, these dyes were found to vary greatly in their suitability. Those dyes found to be good substitutes for crystal violet were: Brilliant green, malachite green, basic fuchsin, ethyl violet, Hoffmann's violet, methyl violet B, and Victoria blue R. All are basic triphenylmethane dyes. Acid dyes were generally not suitable. Differences in the reaction of Gram-positive and Gram-negative cells to Gram staining without the use of iodine were observed and discussed but a practical differentiation could not be achieved in this manner. Certain broad aspects of the chemical mechanism of dyes in the gram stain are discussed.  相似文献   

3.
This study was undertaken to develop a new Gram-staining machine controlled by a micro-controller and to investigate the quality of slides that were stained in the machine. The machine was designed and produced by the authors. It uses standard 220 V AC. Staining, washing, and drying periods are controlled by a timer built in the micro-controller. A software was made that contains a certain algorithm and time intervals for the staining mode. One-hundred and forty smears were prepared fromEscherichia coli, Staphylococcus aureus, Neisseria sp., blood culture, trypticase soy broth, direct pus and sputum smears for comparison studies. Half of the slides in each group were stained with the machine, the other half by hand and then examined by four different microbiologists. Machine-stained slides had a higher clarity and less debris than the hand-stained slides (p<0.05). In hand-stained slides, some Gram-positive organisms showed poor Gram-positive staining features (p<0.05). In conclusion, we suggest that Gram staining with the automatic machine increases the staining quality and helps to decrease the work load in a busy diagnostic laboratory.  相似文献   

4.
Two hundred and thirty colonies from the caecal contents of six rabbits were picked up and, after a 2-d incubation, were microscopically characterized using Gram staining. Large Gram-negative (34%) and small Gram-negative (30%) irregular rods, Gram-negative (27%) and Gram-positive (8%) cocci were found. Eleven isolates (Bacteroides ovatus (6 strains),B. thetaiotamicron, B. caccae, B. stercoris, B. capillosus andCapnocytophaga ochracea) were identified using commercial tests for measuring their catalase activity, metabolite production,etc., and testing their growth in 20% bile. Bacteria belonging to the genusBacteroides were demonstrated to be the principal pectinolytic organisms in the rabbit caecum.  相似文献   

5.
A Gram staining technique was developed using monodisperse magnetic beads in concentrating bacteria in suspension for downstream application. The technique does not require heat fixation of organisms, electrical power, or a microscope. Gram-negative and Gram-positive bacteria were identified macroscopically based on the colour of the suspension. The bacteria concentrated on magnetic beads may also be identified microscopically.  相似文献   

6.
In perfecting the modification of the Gram-stain previously proposed, the following points are of interest:

1. Acetone is too strong a decolorizer for Gram-positive organisms and alcohol too weak for Gram-negative organisms. Consequently, it is now recommended that equal parts of acetone (100% c.p.) and ethyl alcohol (95%) be used as a decolorizing agent. The time of application should not ordinarily exceed 10 seconds.

2. Aqueous basic fuchsin (0.1%) serves as a strongly contrasting counterstain. Prolonged application renders Gram-positive organisms doubtful or Gram-negative, while short application renders Gram-negative organisms doubtful or Gram-positive. Twenty (20) seconds is therefore recommended as the time of application of the counterstain.

3. The method here described, with due regard for its limitations, is of value in Gram-staining pure or mixed cultures as well as for organic materials, such as Acidophilus milk, feces, etc., either for research purposes or classroom use. The method is as follows:

Air-dry film and fix with least amount of heat necessary.

Flood with dye for 5 minutes. Previously mix 30 drops of a 1% aqueous solution of crystal violet or methyl violet 6B with 8 drops of a 5% solution of sodium bicarbonate. Allow the mixture to remain for 5 minutes or more.

Flush with iodine solution for 2 minutes. Two grams iodine dissolved in 10 cc. normal sodium hydroxide solution and 90 cc. water added.

Drain without blotting but do not allow film to dry.

Add a mixture of equal parts of acetone and alcohol drop by drop until the drippings are colorless. (10 seconds or less.)

Air-dry slide.

Counterstain for 20 seconds with 0.1% aqueous solution of basic fuchsin.

Wash off excess stain by short exposure to tap water and air-dry. If slide is not clear immersion in xylol is recommended.  相似文献   

7.
The exposure of heat-fixed bacterial smears to relative humidities of 0, 52 and 98%, following the iodine step in a dry Gram stain procedure, markedly influenced the rate of decolorization upon exposure to 95% ethyl alcohol. If a single decolorization time were used to give a proper Gram differentiation after exposure to 98% relative humidity, this decolorization time might not result in proper Gram differentiation following exposure to 0% relative humidity. Different organisms varied in the degree of their response to changes in humidity. Hence the “degree of Gram-positivity,” as compared with other organisms, differed with changes in relative humidity. When Neisseria catarrhalis was compared with strongly Gram-positive and Gram-negative organisms, it was always found to be in an intermediate position in its Gram characteristics regardless of the relative humidity used. Because of the intermediate position of this organism, its proper Gram differentiation would require a precise definition of both the decolorization time and the decolorization procedure to be used. The results for all organisms studied clearly indicated that the control of wetness or dryness of the smear before decolorization would be essential in any Gram procedure where a single decolorization time is to be used.  相似文献   

8.
Gram-negative bacteria stained with crystal violet are decolorized by 95% alcohol within 2 min, whereas Gram-positive bacteria require at least 3 min treatment. Aqueous solutions of safranin, neutral red, and fuchsin replace crystal violet from stained Gram-positive bacteria more quickly than alcohol alone, and alcoholic solutions of these counterstains are in most cases still more effective. Treatment of crystal viokt-stained organisms with alcoholic safranin (0.25%) for 15 scc will distinguish Gram-positive bacteria (viokt) from Gram-negative bacteria (pink).

Alcohol containing very low concentrations of iodine generally decolorizes crystal violet-stained Gram-positive bacteria more quickly than alcohol alone. Increasing concentrations of iodine in alcohol reduce the rate of decolorization of stained bacteria, but stained Gram-negative bacteria are still readily dccolorized. The addition of 0.1% iodine to alcohol increases the rate of extraction of crystal violet by alcohol from Gram-negative organisms, but delays extraction of dye from Gram-positive organisms, and this applies when counterstain is also present. A two-solution modification of Gram staining is described in which crystal violet-stained bacteria are treated with an alcoholic solution of safranin, fuchsin, and iodine.  相似文献   

9.
E Adams 《Stain technology》1975,50(4):227-231
Gram-negative bacteria stained with crystal violet are decolorized by 95% alcohol within 2 min, whereas Gram-positive bacteria require at least 3 min treatment. Aqueous solutions of safranin, neutral red, and fuschsin replace crystal violet from stained Gram-positive bacteria more quickly than alcohol alone, and alcoholic solutions of these counterstains are in most cases still more effective. Treatment of crystal violet-stained organisms with alcoholic safranin (0.25%) for 15 sec will distinguish Gram-positive bacteria (violet) from Gram-negative bacteria (pink). Alcohol containing very low concentrations of iodine generally decolorizes crystal violet-stained Gram-positive bacteria more quickly than alcohol alone. Increasing concentrations of iodine in alcohol reduce the rate of decolorization of stained bacteria, but stained Gram-negative bacteria are still readily decolorized. The addition of 0.1% iodine to alcohol increases the rate of extraction of crystal violet by alcohol from Gram-negative organisms, but delays extraction of dye from Gram-positive organisms, and this applies when counterstain is also present. A two-solution modification of Gram staining is described in which crystal violet-stained bacteria are treated with an alcoholic solution of safranin, fuchsin, and iodine.  相似文献   

10.
革兰氏染色三步法与质量控制   总被引:9,自引:0,他引:9  
革兰氏染色(Gram stain),是细菌学中一个经常使用和十分重要的方法,自从1884年微生物学家Gram氏发明著名的革兰氏染色法以后,100多年来虽然经过后来学者的几次改进,但都仍然沿用着Gram氏原来的四步法,基本原理也没有改变。最近Allen氏对Ziehl-Neelsen抗酸菌染色法的改进,是一个良好的启示,使我们开始了革兰氏染色三步法的研究并取得了成功。现将我们建立的革兰氏染色三步法与质量控制报告如下。 1 材料和方法 1.1 结晶紫染色液 甲液:结晶紫2g;95%乙醇20ml。 乙液:草酸铵0.8g;蒸馏水80ml。 甲乙二液先分别溶解,然后混合在一起,过滤除去残渣后装入滴瓶中备用。  相似文献   

11.
The general parallelism between the Gram reaction and normal selective bacteriostasis by the triphenylmethane dyes is well established, as is also the existence of a small number of organisms in each group which do not follow the rule. Reverse extrinsic bacteriostasis has been demonstrated, but only within a very limited field. The discovery of substances possessing reverse selective power, comparable in extent to normal selective power, would be of value. In the absence of such substances, the slight quantitative differences in the behavior toward dyes, of organisms belonging to the same Gram group, may be turned to account. The authors have determined with great accuracy the crystal violet coefficients of five Gram-positive and five Gram-negative organisms. These observations show that all known aerobic organisms could probably, on the basis of their triphenylmethane coefficients, be placed on a curve, which would on the whole, parallel the Gram reaction. The possibilities of separating Gram-negative organisms from Gram-positives by means of the dyes are well understood. The authors cite experiments to show that similar separations may be made within the Gram groups by making use of the quantitative differences in triphenylmethane coefficients.  相似文献   

12.
Gram staining applied to human spermatozoa from fertile donors is described. The stain revealed populations of Gram-positive and Gram-negative spermatozoa. Data showed a significant and progressive decrease in the percentage of Gram-positive spermatozoa at different times during the chromatin decondensation procedure (SDS-BSA and SDS-EDTA). No significant correlation could be found between Gram staining and other functional tests used for spermatozoa; only the aniline blue staining test showed a poor correlation. Our study demonstrates that normal spermatozoa with regular chromatin condensation appear Gram-positive, while spermatozoa with altered chromatin condensation appear Gramnegative.  相似文献   

13.
Y Noda  K T?ei 《Microbios》1992,70(282):49-55
In order to investigate the mechanism of Gram staining of bacteria, tests with anionic dyes followed by treatment with cationic octyltrimethylammonium (OTMA) were carried out. The study revealed that tetrabromophenolphthalein ethylester (TBPE) gave the most reliable staining of Gram-negative bacteria with negative staining of Gram-positive bacteria. Tests on many species of bacteria showed that TBPE positive bacteria were Gram-negative and vice versa, without exception.  相似文献   

14.
Results of a Gram staining procedure varied with modifications of each of the steps involved. The best Gram differentiation was obtained when crystal violet and iodine solutions of high concentrations were used, and when n-propyl alcohol was used as the decolorizer. The decolorization step must be carefully quantitated, and one of the most important variables observed was whether a slide was brought into the decolorizer wet, or dry. Dry slides took 6 to 12 times as long to decolorize as wet. Wash steps, following crystal violet, and following the decolorizer, also greatly influence results by causing Gram-positive organisms to appear to be Gram-negative. The results indicated that Gram-stain procedures should not be varied to suit the whims of individual operators, and that each step could be specifically defined both as to the reagent used, and the procedure to be followed.

The followng Gram procedure is recommended for heat-fixed bacterial smears on glass slides. Flood the slide with Hucker's crystal violet for 1 ruin. Wash for 5 sec by dipping into tap water running into a 250 ml beaker at a rate of 30 ml per sec Rinse off the excess water with Burke's iodine, flood the slide with this solution for 1 min, then wash 5 sec in tap water as above. Decolorize by passing the wet slide through 3 (75 × 25 mm) Coplin dishes containing n-propyl alcohol, decolorize 1 min in each dish for a total of 3 min. Wash 5 sec in tap water as above, rinse off the excess water with 0.25% safranin, then flood the slide with this solution for 1 min. Wash as above, blot dry, and examine. An alternate procedure for decolorization would be to use either 95% n-propyl alcohol or 95% ethyl alcohol, but shorten the decolorization time to 30 sec per dish for a total of 1.5 min. After 10 slides, the decolorizer in the first dish should be replaced by fresh. This dish is then placed last in the sequence, with dish No. 2 moved to the No. 1 position.  相似文献   

15.
M anafi , M. & K neifel , W. 1990. Rapid methods for differentiating Gram-positive from Gram-negative aerobic and facultative anaerobic bacteria. Journal of Applied Bacteriology 69 , 822–827.
Different tests based on lysis by KOH and on reaction with fluorogenic and chromogenic substrates, L-alanine-4-nitroanilide (LANA); L-alanine-4-methoxy-β-naphthylamide (MNA); 4-alanine-2-amidoacridone (AAA); L-alanine-7-amido-4-methylcoumarin (AAMC); 8-anilino-l-naphthalene-sulphonic acid (ANS) were compared for their suitability to distinguish Gram-positive from Gram-negative bacteria. A concentration of 100 μg/ml was chosen for incorporating LANA, AAA, AAMC and ANS into the growth medium, based on sensitivity tests. MNA did not show any detectable reaction over a concentration range from 50 to 200 μg/ml, and led to inhibition of all bacteria at 200 μ/ml. In the examination of a total of 146 bacterial strains, including Yersinia enterocoiitica, Bacillus cereus , and B. subtilis the KOH test was not comparable with the Gram staining. A good correlation with Gram staining was found between LANA, AAA and AAMC added to plate count agar on one hand, and LANA and AAMC impregnated paper strips on the other hand, thereby utilizing the aminopeptidase activity. Agar containing ANS showed detectable fluorescence with all Gram-negative strains, but with Staphylococcus aureus and Staph. epidermidis a weak reaction was also observed. AAMC was selected for a rapid paper strip test With this substrate a pronounced blue fluorescence was obtained with Gram-negative colonies.  相似文献   

16.
The interaction of bacteria belonging to several genera with the bladder epithelium was studied. An in vivo rat bladder model system was used to evaluate the cytopathic effects of members of eight representative genera of bacteria and six strains ofEscherichia coli on the bladder surface. Alterations were noted mainly with the Gram-negative bacteria (Escherichia, Klebsiella, Enterobacter, Proteus, Pseudomonas), although some strains were associated with more cytopathology than others. Foci of cytopathology consisted of swelling, exfoliated epithelial cells, strand formation, and ulceration. Aggregates of bacteria, epithelial cells, and debris were shed into the bladder lumen. In contrast, members of three genera of Gram-positive organisms (Lactobacillus, Streptococcus, Staphylococcus) caused little or no cytopathology. The study strongly suggests that the bladder responds in a relatively uniform manner to viable Gram-negative organisms, while the response to Gram-positive organisms is minimal.  相似文献   

17.
AIMS: To identify the role of oxidation-reduction (redox) potential in the premature growth inhibition and RpoS induction in Salmonella serotype Typhimurium in competitive growth experiments. METHODS AND RESULTS: Oxidation-reduction potential was measured throughout the growth of a minority population of Salm. Typhimurium in mixed cultures with other Gram-negative and Gram-positive organisms. A lux-based reporter was also used to evaluate RpoS activity in Salm. Typhimurium in competitor studies. In a mixed culture, the multiplication of a minority population of Salm. Typhimurium was inhibited when competing Gram-negative organisms entered the stationary phase. This was not seen when the competing flora was Gram-positive. The change in redox potential during growth in mixed cultures was closely linked to the inhibition of Salm. Typhimurium growth by Gram-negative competitors. An artificially induced drop in redox potential earlier during growth in mixed cultures with Gram-negative organisms reduced the time to RpoS induction in Salm. Typhimurium and thus inhibited its multiplication prematurely. In contrast, RpoS induction and growth inhibition were prevented under high redox potential conditions. CONCLUSIONS: This work shows that the inhibitory activity of competitive organisms can be mediated through their effect on redox potential-regulated RpoS induction. SIGNIFICANCE AND IMPACT OF THE STUDY: Redox potential is shown to be an important determinant of Salm. Typhimurium growth, an observation with practical implications both for its control and detection.  相似文献   

18.
Bacteria are fundamentally divided into two groups: Gram-positive and Gram-negative. Although the Gram stain and other techniques can be used to differentiate these groups, some issues exist with traditional approaches. In this study, we developed a method for differentiating Gram-positive and -negative bacteria using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt} (WST-8) via 2-methyl-1,4-napthoquinone with a selection medium. We optimized the composition of the selection medium to allow the growth of Gram-negative bacteria while inhibiting the growth of Gram-positive bacteria. When the colorimetric viability assay was carried out in a selection medium containing 0.5μg/ml crystal violet, 5.0 μg/ml daptomycin, and 5.0μg/ml vancomycin, the reduction in WST-8 by Gram-positive bacteria was inhibited. On the other hand, Gram-negative bacteria produced WST-8-formazan in the selection medium. The proposed method was also applied to determine the Gram staining characteristics of bacteria isolated from various foodstuffs. There was good agreement between the results obtained using the present method and those obtained using a conventional staining method. These results suggest that the WST-8 colorimetric assay with selection medium is a useful technique for accurately differentiating Gram-positive and -negative bacteria.  相似文献   

19.
In the course of about 7000 examinations of Gram-positive aerobic bacteria, it was found that two distinct groups of Gram-positive organisms could be recognized. One group was illustrated by Micrococcus freudenreichii, the other by Bacillus anthracis. All individuals in a smear of the former remained positive even when the time of exposure to stain was greatly diminished and the time of exposure to decolorizer was greatly increased. Similar changes of technic when B. anthracis was used showed that about 70% of the individuals in a given smear became Gram-negative. The writer accordingly distinguishes between stable and unstable Gram-positive bacteria.  相似文献   

20.
A modification of the Gram stain in which iodine-alcohol is substituted for 95% alcohol as a decolorizing agent has been found particularly useful in staining Gram-positive organisms in tissues and also for smears. The technic for tissue sections follows:
  1. Apply nuclear stain.
  2. Wash.
  3. Stain in Hucker's gentian violet 2 to 3 minutes (i. e. 1 part Sat. Alc. Sol. crystal violet to 4 parts 1% Aqu. Sol. ammonium oxalte).
  4. Wash in water.
  5. Stain in Gram's iodine 5 minutes.
  6. Wash in water.
  7. Decolorize in 95% alcohol to which enough tincture of iodine has been added to give a mahogany color.
  8. Counterstain.
  9. Dehydrate and mount.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号