首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
《Epigenetics》2013,8(5):273-276
Residue and degree-specific methylation of histone lysines along with other epigenetic modifications organizes chromatin into distinct domains and regulates almost every aspect of DNA metabolism. Identification of histone methyltransferases and demethylases, as well as proteins that recognize methylated lysines, has clarified the role of each methylation event in regulating different biological pathways. Methylation of histone H4 lysine 20 (H4K20me) plays critical roles in diverse cellular processes such as gene expression, cell cycle progression and DNA damage repair, with each of the three degrees of methylation (mono- di- and tri-methylation) making a unique contribution. Here we discuss recent studies of H4K20me that have greatly improved our understanding of the regulation and function of this fascinating histone modification.  相似文献   

5.
6.
7.
8.
Tudor, MBT and chromo domains gauge the degree of lysine methylation   总被引:15,自引:0,他引:15  
  相似文献   

9.
10.
11.
12.
13.
14.
《Epigenetics》2013,8(7):573-577
  相似文献   

15.
16.
17.
Various chemical modifications on histones and regions of associated DNA play crucial roles in genome management by binding specific factors that, in turn, serve to alter the structural properties of chromatin. These so-called effector proteins have typically been studied with the biochemist's paring knife--the capacity to recognize specific chromatin modifications has been mapped to an increasing number of domains that frequently appear in the nuclear subset of the proteome, often present in large, multisubunit complexes that bristle with modification-dependent binding potential. We propose that multivalent interactions on a single histone tail and beyond may have a significant, if not dominant, role in chromatin transactions.  相似文献   

18.
19.
Histone modifying enzymes catalyze the addition or removal of an array of covalent modifications in histone and non-histone proteins. Within the context of chromatin, these modifications regulate gene expression as well as other genomic functions and have been implicated in establishing and maintaining a heritable epigenetic code that contributes to defining cell identity and fate. Biochemical and structural characterization of histone modifying enzymes has yielded important insights into their respective catalytic mechanisms, substrate specificities, and regulation. In this review, we summarize recent advances in understanding these enzymes, highlighting studies of the histone acetyltransferases (HATs) p300 (also now known as KAT3B) and Rtt109 (KAT11) and the histone lysine demethylases (HDMs) LSD1 (KDM1) and JMJD2A (KDM4A), present overriding themes that derive from these studies, and pose remaining questions concerning their regulatory roles in mediating DNA transactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号