首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study was designed to characterize the cross-talk of parathyroid hormone (PTH)-responsive dual signal transduction systems (cAMP-dependent protein kinase (PKA) and calcium/protein kinase C [PKC]) and its participation in PTH-induced homologous desensitization of intracellular calcium ([Ca2+]i) in osteoblastic UMR-106 cells. Although our recent study revealed that prolonged (more than 2 h) pretreatment with PKC-activating phorbol ester, phorbol 12-myristate 13-acetate (PMA) significantly decreased the PTH-stimulated cAMP production, pretreatment with PMA (10?7 and 10?6 M) but not 10?6 M 4alphaphorbol 12,13-didecanoate (PDD), incapable of activating PKC for 30 min significantly augmented 10?7 M hPTH-(1-34)-stimulated cAMP production. H-7 (50 uM), a PKC inhibitor, significantly antagonized this PMA-induced effect. Pretreatment with 10?6 M PMA for 30 min did not affect PTH receptor binding but significantly augmented a cAMP responsiveness to 10?5 M forskolin and 1 ug/ml cholera toxin. Pertussis toxin (0.5 ug/ml) did not affect the PMA-induced augmentation of the PTH-stimulated cAMP production. PTH caused a complete homologous desensitization of [Ca2+]i response within 30 min. Pretreatment with 10?4 M dibutyryl cAMP for 30 min and 6 h significantly reduced and completely blocked the PTH-induced increase in [Ca2+]i, respectively. Pretreatment with 10?4 M Sp-cAMPS, a direct PKA activator, for 30 min completely blocked the PTH-induced increase in [Ca2+]i. Rp-cAMPS (10?4 M), an antagonist of PKA, slightly but significantly antagonized the PTH-induced homologous desensitization of [Ca2+]i response. The present study indicates that the time of exposure to PKC activation is a critical determinant in modulating the cAMP system, while PKA activation counterregulatorily acts on the [Ca2+]i system, and that PKA activation is linked to the PTH-induced homologous desensitization of [Ca2+]i response. © 1994 Wiley-Liss, Inc.  相似文献   

2.
The effect of the tumor promoter phorbol 12-myristate 13-acetate (PMA) on proliferation and differentiation of normal mammary epithelial cells from 50-day-old virgin rats was investigated using a model system that allows for full morphological and functional development of the cells. In this model, mammary epithelial cells are grown within a reconstituted basement membrane in a defined serum-free medium. PMA at a concentration of 10?6 M effected translocation of protein kinase C from cytosol to membrane. At the same concentration, it stimulated cell proliferation both in the presence and absence of EGF, and this stimulation was observed even when PMA exposure was limited to 15 min at the time of each media change. In contrast to the effect on proliferation, PMA at concentrations of 10?7 and 10?6 M inhibited functional differentiation as assessed by casein accumulation. Phorbol 12,13-dibutyrate at 10?6 M also stimulated proliferation and inhibited casein accumulation and was more effective than PMA in both cases. In contrast, the nonactive tumor promoter 4-α PMA had no effect on either proliferation or differentiation. One of the most striking effects of PMA was its ability to stimulate an atypical ductal morphogenesis, as manifested by the formation of intricate web-like colonies, and to inhibit the development of the well-differentiated alveolar-like multilobular colonies. PMA was also shown to completely suppress the growth of the squamous-like colonies that develop when EGF is absent or deficient. These effects of phorbol esters in mammary epithelial cells to stimulate proliferation, inhibit functional differentiation, and stimulate the development of ductal colonies are consistent with the suggestion that the signal transduction pathways evoked by PMA could act to stimulate the growth of initiated cells or render normal cells more sensitive to carcinogen. © 1994 Wiley-Liss, Inc.  相似文献   

3.
To test the connection between S6 phosphorylation and the activation of protein and DNA synthesis, we compared the effects of serum, epidermal growth factor (EGF), prostaglandin F (PGF) and insulin (which is not mitogenic in these cells). Increasing concentrations of serum or EGF produced roughly parallel effects on all three processes, though the maximum response elicited by EGF (10?9 M) was only a portion of that caused by saturating levels of serum (7.5% to 10%). PGF (8.5 × 10?7 M) alone acted similarly to EGF (10?9 M) and with EGF produced a synergistic effect on all three processes. Insulin (10?9 M) alone stimulated both S6 phosphorylation and protein synthesis to approximately the same level as EGF or PGF, but had no effect on initiation of DNA synthesis. Thus neither stimulation of S6 phosphorylation nor activation of protein synthesis is sufficient for initiation of DNA synthesis. The requirement for S6 phosphorylation could not be dissociated from the activation of protein synthesis. Ribosomes containing the most highly phosphorylated forms of S6 appear to have a selective advantage in entering polysomes.  相似文献   

4.
D K Lee  C E Bird  A F Clark 《Steroids》1973,22(5):677-685
The inhibitory effects of a variety of estrogens on rat prostate testosterone Δ4–5α-reductase activity were measured by a specific in vitro assay. The conversion of 3H-testosterone (initial concentration 2.8 × 10?9 M) to labelled 5α-dihydrotestosterone and 5α-androstane-3α, 17β-diol was used as a measure of Δ4?5a-reductase activity. At a concentration of 1.8 × 10?6 M, estradiol was the most potent inhibitor (83.4%) of the estrogens tested. Various ester derivatives, e.g. 3-acetate, 3-phosphate, were effective inhibitors. The 17-glucuronide and 3-sulfate conjugates were less effective inhibitors. The estriol isomers exerted similar degrees of inhibition (40–60%). The 3-methoxy derivatives of estradiol and estriol were poor inhibitors. The introduction of certain groups into the steroid structure, e.g. 15α-hydroxy and 6-ketone, greatly decreased the inhibitory effect of estradiol. The nature of the oxygen function at carbon 17 did not greatly influence the inhibitory effects.  相似文献   

5.
Mouse calvaria were maintained in organ culture for 96 h and endogenous prostaglandin production and active bone resorption (45 Ca release) measured. After a lag phase of 12 h, active resorption increased over the 96 h period. The amounts of prostaglandins released into the culture medium (measured by radioimmunoassay) were highest in the first 24 h of culture. Unless these were removed by preculturing for 24 h, or suppressed by indomethacin, no response to exogenous PGE2, PGF or prostaglandin precursors could be demonstrated. Bone resorption was stimulated after preculture by both PGE2 and PGF in a dose-dependent manner (10?18M – 10?5M), with PGE2 being the more potent. Collagen synthesis was unaffected by PGF, whereas PGE2 (10?5M) had an inhibitory effect. Eicosatrienoic acid did not stimulate bone resorption at lower concentrations (10?7M – 10?5M_, but was inhibitory at 10?4M. Arachidonic acid also inhibited resorption at 10?4M, but at lower concentrations (10?7M – 10?5M0 increased active resorption. This was concomitant with a rise in PGE2 and PGF levels, PGE2 production being significantly higher than PGF. The effects of PGE2 (10?8M) and PGF (10M appeared additive: there was no evidence of synergistic or antagonistic effects when varying ratios of PGE2 : PGF2α were employed.  相似文献   

6.
Stimulation of hepatocytes by the tumor promoter phorbol 12-myristate 13-acetate (PMA) caused translocation of cytosolic Ca2+/phospholipid-dependent protein kinase C (PK-C). The major part of PK-C activity (greater than 80%) was associated with the membrane fraction after 30 min. During the following 6 h protein kinase C activity decreased to less than 10%. Minor amounts of Ca2+/phospholipid-independent PK-C activity were found in the cytosol fraction at all times; they temporarily increased 2.5-fold with PMA and decreased after 1 h. Cyclosporin A did not affect the translocation of PK-C from the cytoplasm to the membrane fraction, but the decrease of PK-C activity following translocation was blocked. No marked increase of Ca2+/phospholipid-independent PK-C activity was observed in the cytosol in the presence of cyclosporin A. Leupeptin, which is known to inhibit Ca2+-requiring non-lysosomal proteinases (e.g. calpain), showed an effect similar to cyclosporin A. Both agents reduced proteolytic degradation of cellular proteins observed in isolated hepatocytes after PMA treatment. Ca2+-ionophore A23187 in high doses (greater than 10(5) M) partly reversed cyclosporin A and leupeptin action.  相似文献   

7.
Potential interactions between opiate peptides and catecholamines in mammalian heart were examined using isolated spontaneously beating rat atria as a test system. Methionine-enkephalin (ME), leucine-enkephalin (LE), phe-met-arg-phe amide (FMRFamide), D-ala2, N-methyl-phe4, met (O)5-ol-enkephalin (FK 33-834), methionine-enkephalin arg6 arg7 (ME arg6 arg7) and β-endorphin had no effect on basal beating rate of isolated atria at all concentrations up to 10?5 M. The positive chronotropic effect of norepinephrine (NE) on atrial rate is, however, significantly attenuated by enkephalin peptides. Thus, the maximal chronotropic effect of NE (an increase from 317±7.0 to 473±7.3 beats per minute (bpm) in 250 gm rats at a dose of 10?5 M NE) is decreased by 42% in the presence of 10?7 m ME. The action of ME is completely blocked by addition of 10?7 M naloxone, which by itself has no effect on NE-induced positive chronotropy or basal beating rate. The dose-effect curve for ME attenuation of NE-induced positive chronotropy is bell-shaped, i.e., both 10?8 M and 10?5 M ME have no significant effect on NE positive chronotropy. Other enkephalin peptides acted in a similar manner to ME; LE (10?7 M) and FK 33-834 (10?8 M) decreased maximal NE-induced positive chronotropy 42 and 27%, respectively. The molluscan cardioexcitatory peptide FMRFamide (10?7 M) also decreased maximal NE positive chronotropy, about 30%. In contrast, β-endorphin did not significantly affect NE stimulation of atrial rate. We conclude that enkephalins can modulate the noradrenergic responsiveness of rat atria in vitro. The possible physiological relevance of this interaction is discussed.  相似文献   

8.
A conjugate containing α2-macroglobulin and highly purified ricin A chain was made using N-succinimidyl-3-(2-pyridyldithio)propionate. Radioimmunoassay indicated that it contained 1.2 mol A chain per mol α2-macroglobulin. The conjugate inhibited polyuridylic-acid directed translation by rat liver ribosomes and protein synthesis in human fibroblasts. There was a 90 min lag period before the beginning of inhibition in fibroblasts, but complete inhibition could be achieved. By measuring protein synthesis as a function of protein concentration, it was demonstrated that 8.25·10?9M conjugate was required to inhibit 50% of protein synthesis in 6 h. To achieve the same level of inhibition, 165-times more (1.3·10?6M) unconjugated A chain was required, and 180-times less ricin (4.6·10?11M). Ricin was more than 28 000 times more inhibitory than A chain alone. The presence of α2-macroglobulin did not increase the cytotoxicity of unconjugated A chain, and it even protected the cells to a slight extent. The inhibitory action of the conjugate was blocked by antibodies specific for α2-macroglobulin or ricin, and it was not prevented by galactose or antibodies specific for ricin B chain. Electron microscopy of the conjugate indirectly labelled with ferritin demonstrated that it was internalized by receptor mediated endocytosis through coated pits. These data indicate that the A chain portion of the conjugate survives the conditions in the lysosomes to the extent that it retains its ability to inactivate cytoplasmic ribosomes.  相似文献   

9.
Abstract: The endothelins (ETs) and sarafotoxin are two structurally related classes of potently contractile peptides. To understand the mechanism of action of ETs, we have examined the effect of ETs and sarafotoxin on phosphoinositide (PI) hydrolysis in cultured canine tracheal smooth muscle cells (TSMCs). ET-1, ET-2, ET-3, and sarafotoxin caused dose-dependent accumulation of inositol phosphates (IPs) and tracheal smooth muscle contraction. BQ-123, an ETA receptor antagonist, had a high affinity to block the ET-1-induced IP accumulation and tracheal smooth muscle contraction with pKB values of 7.3 and 7.4, respectively. Pretreatment of TSMCs with cholera toxin impaired the ability of ET-1 and ET-2 to stimulate IP formation, whereas there was no effect by treatment with pertussis toxin. Stimulation of PI turnover by these peptides required the presence of extracellular Ca2+ and was blocked by treatment with EGTA. The addition of Ca2+(3–620 nM) to digitonin-permeabilized TSMCs directly stimulated IP accumulation. A further Ca2+-dependent increase in IP formation was obtained by inclusion of either GTPrS or ET-1. The combined presence of GTPrS and ET-1 elicited an additive effect on IP formation. Short-term exposure to phorbol 12-myristate 13-acetate (PMA, 1 μM) abolished the stimulation of PI hydrolysis induced by these peptides. The inhibitory effect of PMA on ET-induced response was reversed by staurosporine, a protein kinase C (PKC) inhibitor, suggesting that the inhibitory effect of PMA is mediated through the activation of PKC. Prolonged incubation of TSMCs with PMA resulted in a recovery of receptor responsiveness that may be due to down regulation of PKC. Inactive phorbol ester, 4α-phorbol 12, 13-didecanoate at 1 μM, did not inhibit this response. The site of this response was further investigated by examining the effect of PMA on AIF4?-induced IP accumulation in canine TSMCs. AIF4?-induced IP accumulation was inhibited by PMA treatment, suggesting that G protein(s) can be directly activated by AIF4?, which was uncoupled to phospholipase C by PMA treatment. These data conclude that ET-stimulated PI hydrolysis and tracheal smooth muscle contraction are mediated by the activation of ETAreceptors coupling to a G protein and dependent on the external Ca2+. The transduction mechanism of ETs is sensitive to feedback regulation by PKC.  相似文献   

10.
The effects of endothelin on intracellular pH (pHi) were examined in cultured rat vascular smooth muscle cells (VSMC) using the fluorescent probe BCECF. Endothelin induced biphasic changes in pHi: initial decrease followed by a subsequent increase above the basal level due to activation of the Na+/H+ exchange. The elevation of pHi was slow and sustained, but depended on the dose of endothelin: IC50 was about 3 x 10(-8) M. Na+/H+ exchange inhibition by EIPA (10(-7) M) or by equimolar replacement of external Na+ by choline abolished the pHi increase by enhancing the first phase of cytoplasm acidification. Effects of endothelin were compared with the action of protein kinase C (PK-C) activator phorbol 12-13 myristate ester (PMA). PMA induced a monophasic slow and sustained increase in pHi. The treatments of VSMC with H-7 and staurosporine (PK-C) inhibitors prevented the pHi response to endothelin and PMA. These results suggest that protein kinase C may play an important role in mediating the effects of endothelin on Na+/H+ exchange in VSMC.  相似文献   

11.
MBA-2, bone marrow-derived endothelial stromal cells, express platelet-derived growth factor (PDGF) A and B chain mRNAs and secrete PDGF activity that is induced by TGF-beta. Either chain of the PDGF molecule could modulate hematopoiesis and stromal cell growth. Intracellular pathways that regulate PDGF expression in the marrow microenvironment are unknown. In the present study, we examined the mechanisms that mediate PDGF A and B chain mRNA induction by TGF-beta and the role of protein kinase C (PKC) and cyclic AMP in PDGF regulation. TGF-beta was tested in parallel with PMA, an activator of phorbol ester-dependent PKC isoforms. Both PMA (10?7M) and TGF-beta (2.5 ng/ml) increased PDGF A and B chain mRNA levels. The serine/threonine protein kinase inhibitor, H7, blocked PDGF A and B chain mRNA induction in response to TGF-beta. However, down-regulation of PKC by prolonged incubation with PMA failed to abolish TGF-beta induction of PDGF A and B chain mRNAs. These findings indicate that induction of PDGF A and B chain mRNAs can be mediated via phorbol ester-dependent PKC pathway. In contrast, H7-sensitive protein kinase(s) other than phorbol ester-sensitive protein kinase C mediate the effect of TGF-beta. Agents that increase cAMP were also tested for their effect on PDGF gene expression. TGF-beta-mediated induction of PDGF A and B chain mRNAs was markedly inhibited by cAMP. cAMP also blocked stimulation of PDGF A chain mRNA by PMA. The positive and negative signaling mechanisms involved in modulating PDGF in the microenvironment may be important for determining hematopoietic and stromal cell responses in vivo. © 1995 Wiley-Liss, Inc.  相似文献   

12.
Arachidonic acid (AA) at 10?4M and 10?3M produced a phasic contraction in isolated canine basilar arteries that peaked rapidly and then slowly declined. This contraction was evidently due to the conversion of AA to prostanoids because it was blocked by cyclooxygenase inhibitors and because 11, 14, 17 eicosatrienoic acid (10?3M), which is not a cyclooxygenase substrate, failed to produce a contraction. When the artery was exposed to 10?3M AA for 20 min and washed, subsequent contractile responses to 10?6M serotonin (5-HT) were only 10% of control. Contractions produced by prostaglandin E2 (10?5M), uridine triphosphate (10?4M) and potassium (5.5×10?4M) were inhibited to a lesser degree than 5-HT, the response to potassium being the least affected (66% of control). This damaging effect of 10?3M AA did not occur if the artery was washed at peak contraction nor with 10?4M AA. Autooxidation products were evidently not responsible for the damage because prior oxygenation (90 min) of 10?4M AA had no such effect. Pretreatment with superoxide dismutase or ascorbate did not prevent the inhibition, suggesting that free radical reactions were not involved. Pretreatment with indomethacin (3×10?4M) or meclofenamate (10?4M) also failed to prevent the inhibitory phenomenon. Saponin, a detergent, produced similar inhibitory effects but 11, 14, 17 eicosatrienoic acid or oleate (10?3M) did not. The arteries partially recovered from the inhibition with time. In conclusion, AA produced contraction in basilar arteries by inducing prostaglandin synthesis but can produce secondarily by an unidentified mechanism an inhibition of the contractile responses evoked by various agonists that is both time and concentration dependent.  相似文献   

13.
Copper is necessary for all organisms since it acts as a cofactor in different enzymes, although toxic at high concentrations. ATP7B is one of two copper-transporting ATPases in humans, its vital role being manifested in Wilson disease due to a mutation in the gene that encodes this pump. Our objective has been to determine whether pathways involving protein kinase C (PKC) modulate ATP7B activity. Different isoforms of PKC (α, ɛ, ζ) were found in Golgi-enriched membrane fractions obtained from porcine liver. Cu(I)–ATPase activity was assessed in the presence of different activators and inhibitors of PKC signaling pathways. PMA (10−8 M), a PKC activator, increased Cu(I)–ATPase activity by 60%, whereas calphostin C and U73122 (PKC and PLC inhibitors, respectively) decreased the activity by 40%. Addition of phosphatase λ decreased activity by 60%, irrespective of pre-incubation with PMA. No changes were detected with 2 μM Ca2+, whereas PMA plus EGTA increased activity. This enhanced activity elicited by PMA decreased with a specific inhibitor of PKCɛ to levels comparable with those found after phosphatase λ treatment, showing that the ɛ isoform is essential for activation of the enzyme. This regulatory phosphorylation enhanced Vmax without modifying affinities for ATP and copper. It can be concluded that signaling pathways leading to DAG formation and PKCɛ activation stimulate the active transport of copper by ATP7B, thus evidencing a central role for this specific kinase-mediated mechanism in hepatic copper handling.  相似文献   

14.
The changes in cAMP were followed in trout oocytes incubated in vitro after defolliculation performed by either enzymatic or manual dissection. Both defolliculation methods induced a highly significant rise in oocyte cAMP level (4.5 times the basal level of control [follicle-enclosed oocytes], after 6 h). Treatment of defolliculated oocytes with 17α-hydroxy,20β-dihydroprogesterone (17α,20β-OH-P) (10?6 M), which induced oocyte maturation (germinal vesicle breakdown [GVBD]) was able, first, to interrupt the increase of oocyte cAMP level promoted by defolliculation and then to lower this level significantly down to values that still remained higher than folliculated controls. Very low concentrations of 17α,20β-OH-P (1.38–55.6 10?9 M), or physiological doses of testosterone (0.35 10?6 M, in the range found in vivo before ovulation) were able to induce a similar decrease of oocyte cAMP level without inducing GVBD. Under the same experimental conditions estradiol (0.35 10?6 M) exhibited no action. These results suggest that some factor(s) originating in the follicle (FIF), inhibit the oocytes' tendency to accumulate cAMP before the final surge of 17α,20β-OH-P. This factor might be a follicular steroid such as testosterone or nonmaturing concentrations of 17α,20β-OH-P. Moreover our data favour the hypothesis that the final surge of 17α,20β-OH-P could induce distinct intraoocyte mechanisms: the first induces an irreversible blockage of cAMP level before the inhibitory action of the FIF is suppressed by ovulation, and the second mechanism leads to GVBD.  相似文献   

15.
Membranes of isolated adrenocortical cells have binding sites for [3H] d-α-tocopherol which exhibit specificity, saturability, time and temperature dependence, and reversibility of binding. The apparent equilibrium association constants (4 × 10?5M and 7 × 10?6M) for binding suggest that these binding sites are physiologically significant. Stability data indicate that binding sites are at least partly protein in constitution.  相似文献   

16.
Both the protein kinase C (PK-C) activator, phorbol 12-myristate 13-acetate (PMA), and the cyclic AMP-dependent protein kinase (PK-A) activator, 8-bromo-cyclic AMP (8-BR), have been shown to increase 32P incorporation into glial fibrillary acidic protein (GFAP) and vimentin in cultured astrocytes. Also, treatment of astrocytes with PMA or 8-BR results in the morphological transformation of flat, polygonal-shaped cells into stellate, process-bearing cells, suggesting the possibility that signals mediated by these two kinase systems converge at the level of protein phosphorylation to elicit similar changes in cell morphology. Therefore, studies were conducted to determine whether treatment with PMA and 8-BR results in the phosphorylation of the same tryptic peptide fragments on GFAP and vimentin in astrocytes. Treatment with PMA increased 32P incorporation into all the peptide fragments that were phosphorylated by 8-BR on both vimentin and GFAP; however, PMA also stimulated phosphorylation of additional fragments of both proteins. The phosphorylation of vimentin and GFAP resulting from PMA or 8-BR treatment was restricted to serine residues in the N-terminal domain of these proteins. Studies were also conducted to compare the two-dimensional tryptic phosphopeptide maps of GFAP and vimentin from intact cells treated with PMA and 8-BR with those produced when the proteins were phosphorylated with purified PK-C or PK-A. PK-C phosphorylated the same fragments of GFAP and vimentin that were phosphorylated by PMA treatment. Additionally, PK-C phosphorylated some tryptic peptide fragments of these proteins that were not observed with PMA treatment in intact cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
We showed, using the method of lysis of fibrin plates and five substrate proteins in a thin layer of agar gel, that inorganic orthophosphate (0.001–0.06 M) enhances by 50–250% the activatory functions of streptokinase, urokinase, and tissue plasminogen activator and, in general, by 1.2–12.0 times enhances protein lysis by trypsin, α-chymotrypsin, subtilisin, papain, bacterial metalloprotease, and even pepsin at a concentration < 4 mM. At higher concentrations, phosphate sharply inhibited pepsin activity and inhibited by 40–50% gelatin lysis by papain and gelatin (at a peak concentration) and casein lysis by metalloprotease. Inorganic pyrophosphate ions at concentrations of 10?8–10?1 M enhanced the cleavage of a number of proteins by serine proteinases and, at concentrations of 10?5–10?3 M, the activities of pepsin, plasminogen tissue activator, and streptokinase by 100 and 40%, respectively. The pyrophosphate concentrations of >10?3 and >10?4 M inhibited pepsinand metalloproteinase-catalyzed lysis of vritually all proteins. ATP increased casein lysis by serine proteinases, metalloproteinase, and pepsin by 20–60% at concentration of >10?3 M and by 30–260% at 10?2 M concentration. At concentrations of 10?2 M, it inhibited the cleavage of some proteins by trypsin, chymotrypsin, papain, and metalloproteinase by 20–100%, and, at concentrations of 10?3 M, lysis of albumin by pepsin and other proteins (except for fibrinogen) by metalloproteinase. A GTP concentration of 10?7–10?2 M increased protein degradation by serine proteinases, papain, and gelatin lysis by pepsin by 20–90%, whereas albumin lysis was inhibited by 40–70%. The presence of 10?6–10?5 M GTP led to a slightly increased degradation of hemoglobin and casein by bacterial metalloproteinase, while ≥10?3 M GTP induced a drop in the activity of the metalloproteinase by 20–50%. ADP enhanced gelatin lysis by trypsin, casein lysis by pepsin and papain, and inhibited metalloproteinase activity by 20–100% (at ≥10?3 M). Peculiarities of the effects of AMP and GD(M)P on gelatin lysis were found.  相似文献   

18.
Amiloride in the mucosal fiuid (at concentrations of 5 · 10?6 M to 10?4 M) reversibly stimulates the HCO3?-dependent moiety of the short-circuiting current (Isc) in ouabain-treated turtle bladders bathed by Na-free Ringer solutions with or without Cl?.This effect is uniquely different from the known inhibitory effect of this agent on Na+ transport. Thus, any comprehensive hypothesis on the action of amiloride over a wide dosage-response fange should take into account its effect on HCO3? transport.  相似文献   

19.
On isolated rabbit mesenteric arteries pretreated with phenoxybenzamine (10-5M) and contracted with prostaglandin F (PGF) dopamine (10?6M to 3×10?4M) and isoprenaline (10-9M to 10-5M) caused a dose-related relaxation. Pindolol (10?7M) significantly suppressed the effects evoked by isoprenaline, but did not affect those produced by dopamine. The dopamine receptor antagonist metoclopramide (5×10?5 and 10?4M), however, shifted the dose-response curve for dopamine-induced relaxation significantly to the right in a concentration dependent manner without affecting relaxations caused by isoprenaline or papaverine. These results demonstrate for the first time a specific antagonism to dopamine-induced relaxation on rabbit mesenteric arteries in vitro. They support the hypothesis of the existence of specific dopamine receptors in vascular smooth muscles.  相似文献   

20.
Recently, a novel class of angiostatic steroids which block angiogenesis in several systems has been described. Since the elaboration of proteases is believed to be an important component of angiogenesis, we tested whether these steroids blocked the fibrinolytic response of endothelial cells to the angiogenic protein, basic fibroblast growth factor [bFGF]). Cultured bovine aortic endothelial (BAE) cells were incubated with bFGF and/or medroxyprogesterone acetate (MPA), an angio-static steroid which has been shown to inhibit vascularization, collagenolysis, and tumor growth. When bFGF (3 ng/ml) was added to confluent monolayers of BAE cells, plasminogen activator (PA) activity in the medium was increased threefold. In contrast, MPA at 10?6 M, 10?7 M, 10?8 M, and 10?9 M decreased PA levels in the medium by 83%, 83%, 75%, and 39%, respectively. The stimulation of PA levels in BAE cells by bFGF (3 ng/ml) was abrogated by the presence of 10?6 M MPA. This decrease in PA activity was found to be mediated by a significant increase in plasminogen activator inhibitor type-1 (PAI-1) production. MPA, therefore, negated one of the important enzymatic activities associated with the angiogenic process. In contrast to the decreased levels of secreted PA in cultures exposed simultaneously to MPA and bFGF, cell-associated PA levels remained high, consistent with earlier observations indicating that PAI-1 does not inhibit cell-associated PA. Thus, angiostatic steroids may exert their inhibitory effects on angiogenesis by increasing the synthesis of PAI-1. This, in turn, inhibits PA activity and, therefore, plasmin generation, which is essential for the invasive aspect of angiogenesis. © 1993 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号