首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We recently established that an increased expression of alpha-D-mannose (Man)- and beta-D-galactose-rich plasma membrane glycoproteins (GPs) is characteristic for apoptotic cells in vitro [Bilyy, R.O., Stoika, R.S., 2003. Lectinocytochemical detection of apoptotic murine leukemia L1210 cells. Cytometry 56A, 89-95]. It was independent of cell line or apoptosis-inducing agent, and can therefore be considered as a selective marker for identification and isolation of apoptotic cells [Bilyy, R.O., Antonyuk, V.O., Stoika, R.S., 2004. Cytochemical study of role of alpha-D-mannose- and beta-D-galactose-containing glycoproteins in apoptosis. J. Mol. Histol. 35, 829-838]. The main goals of the present study were: (1) to determine whether an increased expression of specific GPs also takes place after apoptosis induction in vivo; and (2) to identify additional characteristics of the membrane GP markers of the apoptotic cells. To reach these goals, we studied the expression of alpha-Man-rich membrane GPs in murine leukemia L1210 cells inoculated into abdominal cavities of mice which were then subjected to the action of apoptosis inducer doxorubicin. Another experimental model used in the present work was splenocytes obtained from mice treated with dexamethasone. Lectin-affinity chromatography and PAGE electrophoresis, or PAGE electrophoresis and lectinoblot analysis were applied for isolation of plasma membrane GPs (34 kDa, and high M(W) of approximately 600 and 800 kDa) whose expressions were increased during apoptosis. Triton X-114 treatment of cell membrane samples showed that the apoptotic cell-specific GPs were localized in the peripheral and integral compartments of plasma membrane. Apoptosis in vitro and in vivo was accompanied by an increased expression of the same GP, identified by MALDI-TOF MS analysis as the microtubule-actin cross-linking factor 1. Other GPs, whose expressions were also increased at apoptosis, were similarly identified as G-protein beta-subunit like (Acc# BAA06185.1) and dystonin isoform beta.  相似文献   

3.
During efferocytosis, phagocytic cells recognize dying cells by receptors binding to ligands specifically exposed on apoptotic cells. Multiple phagocytic receptors and some of their signaling pathways have been identified. However, the downstream pathways of tethering receptors that secure apoptotic cells remain elusive. It is generally assumed that tethering receptors induce signaling to mediate engulfment via interacting with co-receptors or other engulfment receptors located nearby. However, it is poorly understood whether co-receptors for tethering receptors exist during efferocytosis, and, if they do, whether they are indispensable for this process. Here, we address this issue using glycophosphatidylinositol (GPI)-anchored annexin A5 (Anxa5-GPI), an artificial tethering receptor without a putative co-receptor. Phagocytes expressing Anxa5-GPI exhibited enhanced binding of apoptotic cells, resulting in promoted ingestion of apoptotic cells in a phosphatidylserine-dependent manner. Anxa5-GPI-induced phagocytosis of apoptotic cells relied on the known cytoskeletal engulfment machinery but partially depended on the Elmo-Dock-Rac module or the integrin pathway. In addition, Anxa5-GPI-mediated efferocytosis provoked anti-inflammatory responses. Taken together, our work suggests that co-receptors are dispensable for tethering receptor-induced efferocytosis and that tethering receptors mediate the engulfment of apoptotic cells through multiple engulfment signaling pathways.The removal of apoptotic cells, known as efferocytosis, is a series of arranged events from the recruitment of phagocytes to sites where apoptotic cells are generated to the digestion of apoptotic cells by phagocytes.1, 2, 3 One of the key steps during efferocytosis is the recognition of dying cells by phagocytes. Phagocytes can detect apoptotic cells by the direct or indirect association of multiple receptors on phagocytes with ligands on apoptotic cells.4, 5, 6, 7, 8, 9 Some receptors on the surface of phagocytic cells not only bind to apoptotic cells but also transduce apoptotic cell recognition signals into phagocytes in order to mediate the ingestion of apoptotic cells. For instance, brain-specific angiogenesis inhibitor 1 (BAI1) and stabilin-2, which are phosphatidylserine (PtdSer) receptors, recognize PtdSer on apoptotic cells and relay signals to the Elmo-Dock-Rac module and Gulp, respectively, via their cytoplasmic tails.8, 10, 11 By contrast, it has been suggested that other receptors, called tethering receptors, merely tether apoptotic cells to phagocytes without mediating downstream signal transduction, following which the internalization of apoptotic cells is mediated by the association of these receptors with co-receptors or other engulfment receptors located nearby.12, 13, 14, 15, 16 However, it is unclear whether co-receptors for tethering receptors exist in tethering receptor-mediated phagocytosis of apoptotic cells, and, if they do, whether they are indispensable for this process.One intriguing characteristic of tethering receptors is that they have cytoplasmic tails lacking any signaling motifs or are anchored via glycophosphatidylinositol (GPI) to the outer leaflet of the plasma membrane. For example, Tim-4, a PtdSer receptor with a short cytoplasmic tail that promotes the engulfment of apoptotic cells by the binding of its IgV domain to PtdSer on apoptotic cells, lacks signaling motifs in its cytoplasmic tail. It has been known that neither the cytoplasmic tail nor the transmembrane region of Tim-4 is essential for Tim-4-mediated engulfment of apoptotic cells. Accordingly, it functions as a tethering receptor to secure apoptotic cells on phagocytes.9, 14 CD14 is located at the exofacial leaflet of the plasma membrane through its GPI anchor, which rules out the possibility that it mediates direct signal transduction into phagocytes after binding to apoptotic cells. Consequently, it is also considered to be a tethering receptor.15Phospholipids such as PtdSer and phosphatidylcholine (PtdCho) are unequally distributed between the inner and outer leaflets of the plasma membrane in the normal state. For instance, uncharged phospholipids such as PtdCho and sphingomyelin are primarily located in the outer leaflet, whereas positively or negatively charged phospholipids (such as phosphatidylethanolamine or PtdSer, respectively) are restricted to the inner leaflet facing the cytosol.17, 18, 19 However, this asymmetric distribution of phospholipids in the plasma membrane is disrupted during apoptosis. In the plasma membrane of apoptotic cells, PtdSer is exposed to the outer leaflet of the plasma membrane by the activity of scramblases and flippases.18, 20, 21 Thus, exposed PtdSer is a hallmark of apoptotic cells and is the best characterized ligand on apoptotic cells for efferocytosis. PtdSer on the surface of apoptotic cells can be recognized by various PtdSer-sensing membrane proteins on phagocytes, collectively called PtdSer receptors, including tethering receptors.Besides PtdSer receptors, many PtdSer-binding proteins have been identified. These proteins are involved in various biological processes such as blood coagulation, synaptic vesicle fusion, membrane scaffolding, and signal transduction.22 One of the best known proteins is annexin A5, which has been extensively studied as a PtdSer-binding protein. Annexin A5 belongs to the family of annexins, which are characterized by their Ca2+-dependent ability to bind to negatively charged phospholipids and share structural properties. Annexins are considered to be cytosolic proteins because they lack a 5′ leader sequence; however, some annexins, including annexin A5, are also found on the cell surface and in the circulation. This and related properties imply that annexins participate in diverse biological events from membrane dynamics to cell differentiation and migration.23, 24, 25 However, the physiological significance of this family is poorly understood. Among annexins, annexin A5 binds to PtdSer with high affinity. Because of this property, annexin A5 has been harnessed as a molecular probe to distinguish apoptotic cells from live cells both in vivo and in vitro for decades.25, 26In this study, annexin A5 was expressed on the cell surface through a GPI anchor to delineate whether a tethering receptor without its co-receptor can promote efferocytosis. GPI-anchored annexin A5 (Anxa5-GPI) should not interact with any plasma membrane or extracellular protein, at least those involved in the engulfment of apoptotic cells. Thus, it is possible to exclude the effects of co-receptors on Anxa5-GPI-mediated phagocytosis of apoptotic cells. The expression of Anxa5-GPI in phagocytes promoted not only the binding but also the internalization of apoptotic cells. By contrast, phagocytosis of carboxylate beads and Escherichia coli was not affected by the expression of Anxa5-GPI in phagocytes. Anxa5-GPI-induced efferocytosis was not only partially dependent on a specific engulfment pathway but also relied on the generally known cytoskeletal engulfment machinery. Our observations suggest that co-receptors are dispensable for tethering receptor-mediated efferocytosis. In addition, tethering receptors could enhance efferocytosis through diverse engulfment machinery located nearby.  相似文献   

4.
Apoptosis is characterized by degradation of cell components but plasma membrane remains intact. Apoptotic microtubule network (AMN) is organized during apoptosis forming a cortical structure beneath plasma membrane that maintains plasma membrane integrity. Apoptotic cells are also characterized by high reactive oxygen species (ROS) production that can be potentially harmful for the cell. The aim of this study was to develop a method that allows stabilizing apoptotic cells for diagnostic and therapeutic applications. By using a cocktail composed of taxol (a microtubule stabilizer), Zn2+ (a caspase inhibitor) and coenzyme Q10 (a lipid antioxidant), we were able to stabilize H460 apoptotic cells in cell cultures for at least 72 h, preventing secondary necrosis. Stabilized apoptotic cells maintain many apoptotic cell characteristics such as the presence of apoptotic microtubules, plasma membrane integrity, low intracellular calcium levels and mitochondrial polarization. Apoptotic cell stabilization may open new avenues in apoptosis detection and therapy.Apoptosis, also known as programmed cell death, is central to homoeostasis and normal development and physiology in multicellular organisms, including humans.1 The dysregulation of apoptosis can lead to the destruction of normal tissues in a variety of disorders, including autoimmune and neurodegenerative diseases (increased apoptosis) or cancer (reduced apoptosis). In addition, effective therapy of tumors requires the iatrogenic induction of apoptosis by radiation, chemotherapy or both. In particular, many antineoplasic drugs such as campothecin, a topoisomerase I inhibitor, kill tumor cells by inducing apoptosis.Apoptosis is thought to be physiologically advantageous because apoptotic cells are removed by phagocytosis before they lose their permeability barrier, thus preventing induction of an inflammatory response to the dying cells and potential harmful secondary effects. However, when massive cell death overwhelms macrophage clearance, as for example in early postchemotherapy or viral infection,2 apoptotic cells may progress to secondary necrosis characterized by cell membrane degradation with spillage of intracellular contents to the extracellular milieu.3 Similarly, cells undergoing apoptosis in vitro cannot usually be cleared by phagocytes and undergo a late process of secondary necrosis.4In the execution phase of apoptosis, effector caspases cleave vital cellular proteins, leading to the morphological changes that characterize apoptosis. These changes include destruction of the nucleus and other organelles, DNA fragmentation, chromatin condensation, cell shrinkage, cell detachment and membrane blebbing.5 In apoptosis, all the degradative processes are isolated from the extracellular space by the plasma membrane that remains impermeable. However, the mechanisms involved in plasma membrane and associated protein protection from the action of caspases are not completely understood. In contrast, necrosis is accompanied by disruption of plasma membrane integrity with the subsequent release of all intracellular compounds to the intercellular space, thus inducing inflammation and more toxic effects to adjacent cells.6, 7To allow the dramatic morphological changes that accompany the execution phase, an apoptotic cell undergoes a series of profound cytoskeletal breakdowns/rearrangements. Previous evidence suggests that the actomyosin cytoskeleton plays an essential role in apoptotic cell remodeling during the early events of the execution phase, whereas all other cytoskeleton elements (microtubules and intermediate filaments) are dismantled.8 However, during the course of the execution phase and after actininomyosin ring contraction, the actomyosin filaments are also depolymerized by a caspase-dependent mechanism. In this situation, the apoptotic cell forms a network of apoptotic microtubules that becomes the main cytoskeleton element of the apoptotic cell. The presence of microtubules in apoptotic cells has previously been reported.9, 10 Moreover, more recent results indicate that microtubules during apoptosis assist in the dispersal of nuclear and cellular fragments,11, 12 and may help to preserve the integrity of plasma membrane of the dying cell.13Reactive oxygen species (ROS) are also important mediators of apoptosis. ROS have been shown to play a major role in apoptosis signaling.14, 15, 16 Electron leak in the presence of oxygen during the process of oxidative phosphorylation make mitochondria the major endogenous source of ROS in the cell. Although mitochondria have been identified as a key player, the mechanism connecting ROS and apoptosis remains unclear.17 It has been debated whether increased ROS during apoptosis is a cause or a consequence of impaired mitochondrial function, and whether ROS are a death signal to the mitochondria or are produced as effector molecules by the mitochondria in response to apoptosis signal.18, 19 Hyperproduction of ROS in execution stages of apoptosis is thought to be caused by the disruption of the mitochondrial respiratory chain after release of cytochrome c into the cytosol.20The main objective of this work was to develop a method for the stabilization of apoptotic cells for proper apoptosis detection or safer potential therapeutic applications. Our results show that apoptotic cells can be stabilized by a cocktail of a microtubule stabilizer (taxol), a caspase inhibitor such (Zn2+) and an antioxidant (coenzyme Q10 (CoQ)).  相似文献   

5.
《Phytomedicine》2015,22(11):1009-1016
BackgroundAbietane diterpenes have attracted much attention because they display a wide range of biological activities, including antitumor activities. These compounds are the most diverse of the diterpenoids isolated from species of Plectranthus. Naturally occurring diterpene parvifloron D is the main phytochemical constituent of Plectranthus ecklonii. To examine the therapeutic potential of the plant, we evaluated whether parvifloron D displays cytotoxicity against human tumor cells.MethodsThe cytotoxicity was analyzed by colorimetric 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay. Apoptosis was evaluated by fluorescent microscopy, transmission electron microscopy, flow cytometric analysis of annexin V-FITC and propidium iodide-stained cells and DNA fragmentation. Protein expression and processing and release of mitochondrial proteins were analyzed by Western blot. Caspase activity was determined using colorimetric substrates. The membrane potential and intracellular reactive oxygen species were detected by flow cytometry.ResultsParvifloron D displays strong cytotoxic properties against leukemia cells (HL-60, U-937, MOLT-3 and K-562) and in particular P-glycoprotein-overexpressing K-562/ADR cells, but has only weak cytotoxic effects on peripheral blood mononuclear cells (PBMCs). Overexpression of the protective mitochondrial proteins Bcl-2 and Bcl-xL did not confer resistance to parvifloron D-induced cytotoxicity. Growth inhibition of HL-60 cells that was triggered by parvifloron D was found to be caused by a rapid induction of apoptotic cell death. This apoptosis was prevented by the non-specific caspase inhibitor z-VAD-fmk, and by the selective caspase-9 inhibitor z-LEHD-fmk. Cell death induced by parvifloron D was found to be (i) associated with the dissipation of the mitochondrial membrane potential and the release of cytochrome c, (ii) amplified by inhibition of extracellular signal-regulated kinases (ERKs) 1/2 signaling and (iii) caused by a mechanism dependent on intracellular reactive oxygen species generation.ConclusionParvifloron D is a potent cytotoxic compound against several human tumor cells and also a fast and potent apoptotic inducer in leukemia cells.  相似文献   

6.
7.
It has recently been shown that the microtubule cytoskeleton is reformed during the execution phase of apoptosis. We demonstrate that this microtubule reformation occurs in many cell types and under different apoptotic stimuli. We confirm that the apoptotic microtubule network possesses a novel organization, whose nucleation appears independent of conventional γ-tubulin ring complex containing structures. Our analysis suggests that microtubules are closely associated with the plasma membrane, forming a cortical ring or cellular “cocoon”. Concomitantly other components of the cytoskeleton, such as actin and cytokeratins disassemble. We found that colchicine-mediated disruption of apoptotic microtubule network results in enhanced plasma membrane permeability and secondary necrosis, suggesting that the reformation of a microtubule cytoskeleton plays an important role in preserving plasma membrane integrity during apoptosis. Significantly, cells induced to enter apoptosis in the presence of the pan-caspase inhibitor z-VAD, nevertheless form microtubule-like structures suggesting that microtubule formation is not dependent on caspase activation. In contrast we found that treatment with EGTA-AM, an intracellular calcium chelator, prevents apoptotic microtubule network formation, suggesting that intracellular calcium may play an essential role in the microtubule reformation. We propose that apoptotic microtubule network is required to maintain plasma membrane integrity during the execution phase of apoptosis. Electronic Supplementary Material Supplementary material is available in the online version of this article at .  相似文献   

8.
Apoptotic microtubule network (AMN) is organized during apoptosis, forming a cortical structure beneath the plasma membrane which plays a critical role in preserving cell morphology and plasma membrane integrity. The aim of this study was to examine the effect of cold/warming exposure on apoptotic microtubules and plasma membrane integrity during the execution phase of apoptosis. We demonstrated in camptothecin-induced apoptotic H460 cells that cold/warming exposure disorganized apoptotic microtubules and allowed the access of active caspases to the cellular cortex and the cleavage of essential proteins in the preservation of plasma membrane permeability. Cleavage of cellular cortex and plasma membrane proteins, such as α-spectrin, paxilin, focal adhesion kinase and calcium ATPase pump (PMCA-4) involved in cell calcium extrusion resulted in increased plasma permeability and calcium overload leading apoptotic cells to secondary necrosis. The essential role of caspase-mediated cleavage in this process was demonstrated because the addition of the pan-caspase inhibitor z-VAD during cold/warming exposure that induces AMN depolymerization avoided the cleavage of cortical and plasma membrane proteins and prevented apoptotic cells to undergo secondary necrosis. Likewise, apoptotic microtubules stabilization by taxol during cold/warming exposure also prevented cellular cortex and plasma membrane protein cleavage and secondary necrosis. Furthermore, microtubules stabilization or caspase inhibition during cold/warming exposure was also critical for proper phosphatidylserine externalization and apoptotic cell clearance by macrophages. These results indicate that cold/warming exposure of apoptotic cells induces secondary necrosis which can be prevented by both, microtubule stabilization or caspase inhibition.  相似文献   

9.
Ischemic diseases are characterized by the presence of pro-apoptotic stimuli, which initiate a cascade of processes that lead to cell injury and death. Several molecules and events represent detectable indicators of the different stages of apoptosis. Among these indicators is phosphatidylserine (PS) translocation from the inner to the outer leaflet of the plasma membrane, which can be detected by annexinV (ANXA5) conjugation. This is a widely used in vivo and in vitro assay marking the early stages of apoptosis. We report here on an original method that employs PS-ANXA5 conjugation to target stem cells to apoptotic cells. Mesenchymal stem cells (MSCs) from GFP-positive transgenic rats were biotinylated on membrane surfaces with sulfosuccinimidyl-6-(biotinamido) hexanoate (sulfo-NHS-LC-biot) and then bound to avidin. The avidin-biotinylated MSCs were labeled with biotin conjugated ANXA5. Bovine aortic endothelial cells (BAE-1 cells) were exposed to UVC to induce caspasedependent apoptosis. Finally, we tested the ability of ANXA5-labeled MSCs to bind BAE-1 apoptotic cells: suspended ANXA5-labeled MSCs were seeded for 1 hour on a monolayer of UV-treated or control BAE-1 cells. After washing, the number of MSCs bound to BAE-1 cells was evaluated by confocal microscopy. Statistical analysis demonstrated a significant increase in the number of MSCs tagged to apoptotic BAE-1 cells. Therefore, stem cell ANXA5 tagging via biotin-avidin bridges could be a straightforward method of improving homing to apoptotic tissues. A. Gerasimou, R. Ramella and A. Brero contributed equally to this paper.  相似文献   

10.
Rapid clearance of apoptotic cells by phagocytes is crucial for organogenesis, tissue homeostasis, and resolution of inflammation. This process is initiated by surface exposure of various ‘eat me’ ligands. Though phosphatidylserine (PS) is the best recognized general recognition ligand till date, recent studies have shown that PS by itself is not sufficient for clearance of apoptotic cells. In this study, we have identified a specific pleioform of GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) that functions as an ‘eat me’ signal on apoptotic cell surface. This specific form of GAPDH which is exposed on surface of apoptotic cells was found to interact with CD14 present on plasma membrane of phagocytes leading to their engulfment. This is the first study demonstrating the novel interaction between multifunctional GAPDH and the phagocytic receptor CD14 resulting in apoptotic cell clearance (efferocytosis).Subject terms: Cell biology, Apoptosis  相似文献   

11.
《Free radical research》2013,47(9):710-717
Abstract

The protecting ability of the Piper betle leaves-derived phenol, allylpyrocatechol (APC) against AAPH-induced membrane damage of human red blood cells (RBCs) was investigated. Compared to control, AAPH (50 mM) treatment resulted in significant hemolysis (55%, p < 0.01), associated with increased malondialdehyde (MDA) (2.9-fold, p < 0.001) and methemoglobin (6.1-fold, p < 0.001) levels. The structural deformation due to membrane damage was confirmed from scanning electron microscopy (SEM) images and Heinz bodies formation, while the cell permeability was evident from the K+ efflux (28.7%, p < 0.05) and increased intracellular Na+ concentration (8%, p < 0.05). The membrane damage, due to the reduction of the cholesterol/phospholipids ratio and depletion (p < 0.001) of ATP, 2,3-DPG by ?44–54% and Na+–K+ ATPase activity (43.7%), indicated loss of RBC functionality. The adverse effects of AAPH on all these biochemical parameters and the resultant oxidative hemolysis of RBCs were significantly reduced by pretreating the cells with APC (7 μM) or α-tocopherol (50 μM) for 1 h, prior to incubation with AAPH.  相似文献   

12.
13.
Abstract

We evaluated a number of lipophilic dyes and fluorochromes, including oxazone and thiazone derivatives of oxazine and thiazine dyes, scintillator agents, a carotenoid and a metal-porphyrin complex for visualization of lipid droplets within aldehyde fixed cultured HeLa and BGC-1 cells. Observation under ultraviolet, blue or green exciting light revealed selective fluorescence of lipid droplets, particularly after treatment with aqueous solutions of Nile blue and brilliant cresyl blue oxazones, toluidine blue thiazone, or propylene glycol solutions of canthaxanthin, ethyl-BAO, and ZnTPyP. Mounting in water was required to maintain the fluorescence of lipids; the use of glycerol, Mowiol or Vectashield was not adequate. The effect of dye structure on staining intensity was assessed with the aid of numerical structure parameters modeling lipophilicity (HI and log P), overall size (MW) and the size of the conjugated system (conjugated bond number; CBN). The best stains for lipid droplets were relatively lipophilic (HI > 4.0, log P > 5.0), of small size overall (MW < 370), with small conjugated systems (CBN < 24), and not significantly amphiphilic. The two hydrophobic-hydrophilic parameters (the classic log P and the hydrophobic index, HI; values calculated by molecular modeling software) were highly correlated; however, HI was a more suitable hydrophobicity index for the dyes studied here.  相似文献   

14.
Background: Induced pluripotent stem cells (iPSCs) are regarded as the best potential cell source for cell-based regenerative medicine. To develop a safe and efficient iPSC-based cell therapy, it is very important to avoid possible teratoma formation, which can arise from undifferentiated iPSCs (USCs) remaining among differentiated cell products. Dried bark of Magnolia officinalis (Magnolia cortex, MC) has long been used in traditional medicine to treat gastrointestinal ailments and allergic diseases, and has shown have various pharmacological activities, including anti-bacterial, anti-inflammatory, and anti-cancer effects. However, its effects on iPSCs have not yet been examined.Purpose: In this study, we investigated the selective cytotoxic effects of ethanol extract of MC (EEMC) on undifferentiated iPSCs and elucidated the underlying apoptotic mechanisms in detail. We also investigated the inhibitory effects of EEMC on teratoma formation via in ovo experiments.Results: We found that EEMC greatly reduced cell growth and induced apoptotic cell death in USCs, but not in differentiated or normal cells. EEMC caused G2/M cell cycle arrest, mitochondrial damage, and caspase activation of USCs, accompanied by p53 accumulation. In p53KO human iPSCs, EEMC had no cytotoxicity, reinforcing that EEMC-mediated apoptosis of USCs is p53-dependent. EEMC did not cause DNA damage in iPSC-derived differentiated cells. In ovo teratoma formation assay revealed that EEMC treatment before injection efficiently eliminated USCs and prevented teratoma formation.Conclusions: These results collectively indicate that EEMC has potent anti-teratoma activity, and therefore can be used for the development of safe iPSC-based therapy.  相似文献   

15.
Programmed cell death (apoptosis) functions as a mechanism to eliminate unwanted or irreparably damaged cells ultimately leading to their orderly phagocytosis in the absence of calamitous inflammatory responses. Recent studies have demonstrated that the generation of free radical intermediates and subsequent oxidative stress are implicated as part of the apoptotic execution process. Oxidative stress may simply be an unavoidable yet trivial byproduct of the apoptotic machinery; alternatively, intermediates or products of oxidative stress may act as essential signals for the execution of the apoptotic program. This review is focused on the specific role of oxidative stress in apoptotic signaling, which is realized via phosphatidylserine-dependent pathways leading to recognition of apoptotic cells and their effective clearance. In particular, the mechanisms involved in selective phosphatidylserine oxidation in the plasma membrane during apoptosis and its association with disturbances of phospholipid asymmetry leading to phosphatidylserine externalization and recognition by macrophage receptors are at the center of our discussion. The putative importance of this oxidative phosphatidylserine signaling in lung physiology and disease are also discussed.  相似文献   

16.
Background: A major mechanism underlying warm ischemia/reperfusion (I/R) injury during liver transplantation is the activation of the caspase chain, which leads to apoptosis. Recently, it was demonstrated that the release of cathepsin B, a cysteine protease, from the cytosol in liver injury induces mitochondrial release of cytochrome c and the activation of caspase-3 and -9, thereby leading to apoptosis. The aim of this study was to ascertain if cathepsin B inactivation attenuates the apoptotic injury due to I/R in mouse liver. Methods: A model of segmental (70%) hepatic ischemia was used. Eighteen mice were anesthetized and randomly divided into three groups: (1) Control group: sham operation (laparotomy); (2) Ischemic group: midline laparotomy followed by occlusion of all structures in the portal triad to the left and median lobes for 60 min (ischemic period); (3) Study group: like group 2, but with intraperitoneal administration of a pharmacological inhibitor of cathepsin B (4 mg/100 g) 30 min before induction of ischemia. Serum liver enzyme levels were measured by biochemical analysis, and intrahepatic caspase-3 activity was measured by fluorometric assay; apoptotic cells were identified by morphological criteria, the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) fluorometric assay, and immunohistochemistry for caspase-3. Results: Showed that at 6 h of reperfusion, there was a statistically significant reduction in liver enzyme levels in the animals pretreated with cathepsin B inhibitor (p < 0.05). On fluorometric assay, caspase-3 activity was significantly decreased in group 3 compared to group 2 (p < 0.0001). The reduction in postischemic apoptotic hepatic injury in the cathepsin B inhibitor -treated group was confirmed morphologically, by the significantly fewer apoptotic hepatocyte cells detected (p < 0.05); immunohistochemically, by the significantly weaker activation of caspase-3 compared to the ischemic group (p < 0.05); and by the TUNEL assay (p < 0.05). Conclusion: The administration of cathepsin B inhibitor before induction of ischemia can attenuate postischemic hepatocyte apoptosis and thereby minimize liver damage. Apoptotic hepatic injury seems to be mediated through caspase-3 activity. These findings have important implications for the potential use of cathepsin B inhibitors in I/R injury during liver transplantation.  相似文献   

17.
This study investigates the role of dysregulated cytosolic free calcium ([Ca2+]c) homeostasis on microtubule (MT) ring structure in apoptotic cervical cancer (HeLa) cells induced by trichosanthin (TCS), a type I ribosome inactivating protein (RIP). The TCS-induced decrease in cell viability was significantly enhanced in combination with the specific calcium chelator, EGTA-AM. Sequestration of [Ca2+]c markedly disrupted the special MT ring structure. Furthermore, TCS tended to increase LDH release, whereas no significant differences were observed until 48 h of the treatment. In contrast, combined addition of EGTA-AM or colchicine (an inhibitor of tubulin polymerization) significantly reinforced LDH release. The data suggest that TCS-elevated [Ca2+]c maintains plasma membrane integrity via the formation of the MT ring structure in apoptotic HeLa cells.  相似文献   

18.
IntroductionSystemic lupus erythematosus is associated with a persistent circulation of modified autoantigen-containing apoptotic debris that might be capable of breaking tolerance. We aimed to evaluate apoptotic microvesicles obtained from lupus or control mice for the presence of apoptosis-associated chromatin modifications and for their capacity to stimulate dendritic cells (DC) from lupus and control mice.MethodApoptotic microvesicles were in vitro generated from splenocytes, and ex vivo isolated from plasma of both MRL/lpr lupus mice and normal BALB/c mice. Microvesicles were analyzed using flow cytometry. Bone marrow-derived (BM)-DC cultured from MRL/lpr or BALB/c mice were incubated with microvesicles and CD40 expression and cytokine production were determined as measure of activation.ResultsMicrovesicles derived from apoptotic splenocytes or plasma of MRL/lpr mice contained more modified chromatin compared to microvesicles of BALB/c mice, and showed enhanced activation of DC, either from MRL/lpr or BALB/c mice, and consecutively an enhanced DC-mediated activation of splenocytes. The content of apoptosis-modified chromatin in microvesicles of apoptotic splenocytes correlated with their potency to induce interleukin-6 (IL-6) production by DC. Microvesicle-activated MRL/lpr DC showed a significant higher production of IL-6 and tumor growth factor-β (TGF-β) compared to BALB/c DC, and were more potent in the activation of splenocytes.ConclusionApoptotic microvesicles from MRL/lpr mice are more potent activators of DC, and DC from MRL/lpr mice appear relatively more sensitive to activation by apoptotic microvesicles. Our findings indicate that aberrations at the level of apoptotic microvesicles and possibly DC contribute to the autoimmune response against chromatin in MRL/lpr mice.  相似文献   

19.
Surface determinants newly expressed by apoptotic cells that are involved in triggering potent immunosuppressive responses, referred to as “innate apoptotic immunity (IAI)” have not been characterized fully. It is widely assumed, often implicitly, that phosphatidylserine, a phospholipid normally cloistered in the inner leaflet of cells and externalized specifically during apoptosis, is involved in triggering IAI, just as it plays an essential role in the phagocytic recognition of apoptotic cells. It is notable, however, that the triggering of IAI in responder cells is not dependent on the engulfment of apoptotic cells by those responders. Contact between the responder and the apoptotic target, on the other hand, is necessary to elicit IAI. Previously, we demonstrated that exposure of protease-sensitive determinants on the apoptotic cell surface are essential for initiating IAI responses; exposed glycolytic enzyme molecules were implicated in particular. Here, we report our analysis of the involvement of externalized phosphatidylserine in triggering IAI. To analyze the role of phosphatidylserine, we employed a panel of target cells that either externalized phosphatidylserine constitutively, independently of apoptosis, or did not, as well as their WT parental cells that externalized the phospholipid in an apoptosis-dependent manner. We found that the externalization of phosphatidylserine, which can be fully uncoupled from apoptosis, is neither sufficient nor necessary to trigger the profound immunomodulatory effects of IAI. These results reinforce the view that apoptotic immunomodulation and phagocytosis are dissociable and further underscore the significance of protein determinants localized to the cell surface during apoptosis in triggering innate apoptotic immunity.  相似文献   

20.
One of the most prominent hallmarks of apoptotic cells is the altered characteristics of their plasma membrane, with its blebbing and exposure of the anionic phospholipid, phosphatidylserine (PS), in the outer leaflet of the lipid bilayer. The latter feature provides the basis of distinguishing apoptotic cells from most normal cells due to staining with fluorescently labeled annexin V, binding specifically to PS. In this article, we report on the binding to apoptotic leukemic T cells (Jurkat cell line, treated with different apoptotic inducers) of cationic liposomes (CLs) composed of the cationic gemini surfactant SS-1 ((2S,3S)-2,3-dimethoxy-1,4-bis(N-hexadecyl-N,N-dimethylammonium)butane dibromide), the fluorescent lipid analog DOPRho (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine rhodamine B sulfonyl)), and POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine). Control cells showed negligible and irregular binding patterns of CLs, whereas apoptotic cells revealed a strongly augmented staining of their plasma membrane. Morphological observations and comparison with standard procedures for detecting apoptotic cells further demonstrated the binding of CLs to be intense for cells undergoing apoptosis. In addition, some apoptotic cells with higher caspase-3 activity also revealed more pronounced staining by CLs. Our data suggest that the binding of CLs to apoptotic cells is mediated through an electrostatic interaction between the positively charged head group of SS-1 and the translocated anionic phospholipid PS in the plasma membrane. Because the fluorescent lipid tracer can be freely selected, this approach provides convenient and versatile means for the fluorescence detection of apoptotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号