首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dimethyl adipate (DMA) was synthesized by immobilized Candida antarctica lipase B-catalyzed esterification of adipic acid and methanol. To optimize the reaction conditions of ester production, response surface methodology was applied, and the effects of four factors namely, time, temperature, enzyme concentration, and molar ratio of substrates on product synthesis were determined. A statistical model predicted that the maximum conversion yield would be 97.6%, at the optimal conditions of 58.5°C, 54.0 mg enzyme, 358.0 min, and 12:1 molar ratio of methanol to adipic acid. The R2 (0.9769) shows a high correlation between predicted and experimental values. The kinetics of the reaction was also investigated in this study. The reaction was found to obey the ping-pong bi-bi mechanism with methanol inhibition. The kinetic parameters were determined and used to simulate the experimental results. A good quality of fit was observed between the simulated and experimental initial rates.  相似文献   

2.
l-Ascorbyl laurate is a fatty acid derivative of l-ascorbic acid which can be widely used as a natural antioxidant in both lipid containing food and cosmetic applications. To avoid any possible harmful effects from chemically synthesized product, the enzymatic synthesis appears to be the best way to satisfy the consumer demand for natural antioxidants. The ability of immobilized lipase from Candida antarctica (Novozym® 435) to catalyze the direct esterification between l-ascorbic acid and lauric acid was investigated. Response surface methodology (RSM) and 5-level-4-factor central composite rotatable design (CCRD) were employed to evaluate the effects of synthesis parameters, such as reaction time (2–10 h), temperature (25–65 °C), enzyme amount (10–50% w/w of l-ascorbic acid), and substrate molar ratio of l-ascorbic acid to lauric acid (1:1–1:5) on percentage molar conversion to l-ascorbyl laurate. Based on the analysis result of ridge max, the optimal enzymatic synthesis conditions were predicted as follows: reaction time 6.7 h, temperature 30.6 °C, enzyme amount 34.5%, substrate molar ratio 1:4.3; and the optimal actual yield was 93.2%.  相似文献   

3.
Immobilized Candida antarctica lipase B, Novozym® 435, was used in the esterification of adipic acid and alcohols with different chain lengths (C1–C18). Optimum conditions for the synthesis of adipate esters were obtained using response surface methodology (RSM) with respect to important reaction parameters including time, temperature, substrate molar ratio and amount of enzyme. Alcohol chain length specificity of the enzyme in the synthesis of adipate esters was also determined. Minimum reaction time (215 min) for achieving maximum ester yield was obtained for butyl alcohol. Methanol required an increased time (358 min) and enzyme amount (10.2%, w/w) for attaining maximum yield. The maximum required temperature and time of 65°C and 523 min, respectively, were obtained for the synthesis of dioctadecyl adipate. The results demonstrate that alcohol chain length is a determining parameter in optimization of the lipase-catalyzed synthesis of adipate esters. Reactions under optimized conditions yielded a high percentage of esterification (>97%). The optimum conditions can be used to scale up the process.  相似文献   

4.
In this study, the synthesis of 3-O-β-D-galactopyranosyl-sn-glycerol (GG) was performed by the reverse hydrolysis of D-galactose and glycerol using β-galactosidase from Kluyveromyces lactis. Four process variables, reaction temperature (30.0–45.0?°C), reaction time (24–48?h), enzyme concentration (150.00–350.00?U/mL), and substrate molar ratio (glycerol:D-galactose, 7.5:12.5?mmol/mmol) were investigated and optimized via response surface methodology (RSM) for optimal GG synthesis. Both quadratic equations and the optimal reaction conditions were established. Results showed that the four variables, i.e., reaction temperature, reaction time, enzyme concentration, and substrate molar ratio had significant (p?β-galactosidase concentration and 8.65:1.00 of substrate molar concentration ratio (glycerol: D-galactose) at 39.8?°C and 48?h of reaction. Under these conditions, the GG concentration was 140.03?g/L and GG yield was 55.71%, which both were close to the predicted values (143.26?g/L and 56.73%). This finding proves the RSM to be a useful tool in optimizing process conditions for GG synthesis.  相似文献   

5.
Lipase-catalyzed synthesis of mono- and diesters of 3-O-β-D-galactopyranosyl-sn- glycerol (β-GG) with caproic acid was performed in acetone. The simultaneous production of 1(6’)-monoesters and 1,6’-diesters of β-GG was achieved in this reaction. In order to improve the yield of β-GG esters, four process parameters, enzyme concentration (15?~?25?mg/mL), and substrate molar ratio (caproic acid: β-GG=?1.60?~?2.00?mmol: 0.10?mmol), reaction temperature (40?~?60?°C), and reaction time (8?~?12?h), were optimized via response surface methodology (RSM) employing a three-level-four-variable central composite design. Results showed that enzyme concentration had the most significant (p?β-GG esters. The optimal reaction conditions in acetone were given as follows: Novozyme435 concentration 18.65?mg/mL, molar rate of caproic acid to β-GG 19.46:1, reaction temperature 48?°C, and reaction time 9.83?h. The yield of β-GG esters reached 88.08% under above optimized conditions, which was very close to the predicted value 87.95%. The molar ratio of monoester to diesters was 0.39:0.61. β-GG esters with other fatty acyl chains were synthesized based on the optimized conditions. In vitro antitumor activity indicated that the antitumor activity of β-GG esters was dependent on the nature of fatty acids, such as the length of acyl chain, the degree of saturation, as well as the number of acyl chain.  相似文献   

6.
Abstract

Enzymatic synthesis of ethyl lactate catalyzed by immobilized lipase has been investigated. The reaction variables (including the molar ratio of ethanol to acid, total substrate amount, temperature, reaction time and rotation speed) were selected in accordance with the Plackett–Burman design and were further optimized via response surface methodology. The molar ratio of ethanol to acid, total substrate amount and reaction time were screened out as significant variables for the optimization study. A 20-run, full-factorial, central composite design was used to construct the statistical model and the optimal conditions obtained were as follows: molar ratio of ethanol to acid of 8.3:1, total substrate amount of 0.4 g, reaction time of 26.87 h with temperature of 55°C and rotation speed of 150 rpm. Under the optimal conditions, the yield of ethyl lactate was up to 24.32%; close to the 25.13% obtained using the commercial lipase, Novozym 435. Due to the low cost and simple immobilization process, the lipase prepared in the present work could have great potential in enzymatic applications. Additionally, a kinetic model with inhibition by both ethanol and lactic acid following a ping-pong bi-bi mechanism was proposed.  相似文献   

7.
Kojic acid is widely used to inhibit the browning effect of tyrosinase in cosmetic and food industries. In this work, synthesis of kojic monooleate ester (KMO) was carried out using lipase-catalysed esterification of kojic acid and oleic acid in a solvent-free system. Response Surface Methodology (RSM) based on central composite rotatable design (CCRD) was used to optimise the main important reaction variables, such as enzyme amount, reaction temperature, substrate molar ratio, and reaction time along with immobilised lipase from Candida Antarctica (Novozym 435) as a biocatalyst. The RSM data indicated that the reaction temperature was less significant in comparison to other factors for the production of a KMO ester. By using this statistical analysis, a quadratic model was developed in order to correlate the preparation variable to the response (reaction yield). The optimum conditions for the enzymatic synthesis of KMO were as follows: an enzyme amount of 2.0 wt%, reaction temperature of 83.69°C, substrate molar ratio of 1:2.37 (mmole kojic acid:oleic acid) and a reaction time of 300.0 min. Under these conditions, the actual yield percentage obtained was 42.09%, which is comparably well with the maximum predicted value of 44.46%. Under the optimal conditions, Novozym 435 could be reused for 5 cycles for KMO production percentage yield of at least 40%. The results demonstrated that statistical analysis using RSM can be used efficiently to optimise the production of a KMO ester. Moreover, the optimum conditions obtained can be applied to scale-up the process and minimise the cost.  相似文献   

8.
The synthesis of wax ester using refined, bleached and deodorized (RBD) palm oil and oleyl alcohol catalyzed by lipozyme IM was carried out. Response surface methodology (RSM) based on a five-level, four-variable central composite rotatable design (CCRD) was used to evaluate the interactive effects of synthesis, of reaction time (2.5–10 h), temperature (30–70 °C), amount of enzyme (0.1–0.2 g) and substrate molar ratio (palm oil to oleyl alcohol, 1:1–1:5) on the percentage yield of wax esters. The optimum conditions derived via RSM were: reaction time 7.38 h, temperature 53.9 °C, amount of enzyme 0.149 g, and substrate molar ratio 1:3.41. The actual experimental yield was 84.6% under optimum condition, which compared well to the maximum predicted value of 85.4%.  相似文献   

9.
Esterification of succinic acid with oleyl alcohol catalyzed by immobilized Candida antarctica lipase B (Novozym 435) was investigated in this study. Response surface methodology (RSM) based on a five-level, four-variable central composite design (CCD) was used to model and analyze the reaction. A total of 21 experiments representing different combinations of the four parameters including temperature (35–65°C), time (30–450 min), enzyme amount (20-400 mg), and alcohol:acid molar ratio (1:1-8:1) were generated. A partial cubic equation could accurately model the response surface with a R2 of 0.9853. The effect and interactions of the variables on the ester synthesis were also studied. Temperature was found to be the most significant parameter that influenced the succinate ester synthesis. At the optimal conditions of 41.1°C, 272.8 min, 20 mg enzyme amount and 7.8:1 alcohol:acid molar ratio, the esterification percentage was 85.0%. The model can present a rapid means for estimating the conversion yield of succinate ester within the selected ranges.  相似文献   

10.
Esterification of l-menthol by lipase is a highly selective method for the resolution of dl-menthol. The present work focuses on the reaction parameters that affect lipase-catalyzed synthesis of l-menthyl acetate in n-hexane using triacetin as acyl donor. Genetically engineered LIP2, an isoform of Candida rugosa lipase, was used as a biocatalyst in the present study. The main objectives of the work were to develop an approach that would enable a better understanding of relationships between the variables (reaction time, temperature, enzyme amount, substrate molar ratio) and the response (molar conversion) for l-menthyl acetate synthesis, and to obtain the optimum conditions for synthesis. By using central composite rotatable design (CCRD) and response surface methodology (RSM) analysis, we found that substrate molar ratio and enzyme amount were the most important variables for the reaction. Based on ridge max analysis, the optimum synthesis conditions were found to be: reaction time 2.2 days, temperature 34.3°C, enzyme amount 0.09 g and substrate molar ratio (dl-menthol:triacetin) 1:1.9, and molar conversion of dl-menthol to l-menthyl acetate was calculated to be 50%. An experiment under optimum conditions was carried out and molar conversion of 48.3% was obtained.  相似文献   

11.
Immobilized Candida antarctica lipase B-catalyzed esterification of xylitol and two fatty acids (capric and caproic acid) were studied in a solvent-free system. The Taguchi orthogonal array method based on three-level-four-variables with nine experiments was applied for the analysis and optimization of the reaction parameters including time, substrate molar ratio, amount of enzyme, and amount of molecular sieve. The obtained conversion was higher in the esterification of xylitol and capric acid with longer chain length. The optimum conditions derived via the Taguchi approach for the synthesis of xylitol caprate and xylitol caproate were reaction time, 29 and 18 h; substrate molar ratio, 0.3 and 1.0; enzyme amount, 0.20 and 0.05 g, and molecular sieve amount of 0.03 g, respectively. The good correlation between the predicted conversions (74.18% and 61.23%) and the actual values (74.05% and 60.5%) shows that the model derived from the Taguchi orthogonal array can be used for optimization and better understanding of the effect of reaction parameters on the enzymatic synthesis of xylitol esters in a solvent-free system.  相似文献   

12.
Immobilized lipase from Rhizomucor miehei (Lipozyme IM-20) was used to catalyze the esterification reaction between isovaleric acid and ethanol to synthesize ethyl isovalerate in n-hexane. Response surface methodology based on a four-variable, five-level, central composite rotatable design was employed to optimize four important reaction variables—enzyme/substrate (E/S) ratio, substrate concentration, incubation time, and temperature—affecting the synthesis of ethyl isovalerate. The optimum conditions predicted for achieving maximum ester yield (500 mM) are as follows: E/S ratio, 48.41 g/mol; substrate concentration, 1 M; reaction time, 60 h; and temperature, 60°C. The predicted value matched well with the experimentally obtained value of 487 mM.  相似文献   

13.
Lipase-catalyzed caffeic acid phenethyl ester (CAPE) synthesis in ionic liquid, 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide ([Emim][Tf2N]), was investigated in this study. The effects of several reaction conditions, including reaction time, reaction temperature, substrate molar ratio of phenethyl alcohol to caffeic acid (CA), and weight ratio of enzyme to CA, on CAPE yield were examined. In a single parameter study, the highest CAPE yield in [Emim][Tf2N] was obtained at 70 °C with a substrate molar ratio of 30:1 and weight ratio of enzyme to CA of 15:1. Based on these results, response surface methodology (RSM) with a 3-level-4-factor central composite rotatable design (CCRD) was adopted to evaluate enzymatic synthesis of CAPE in [Emim][Tf2N]. The four major factors were reaction time (36–60 h), reaction temperature (65–75 °C), substrate molar ratio of phenethyl alcohol to CA (20:1–40:1), and weight ratio of enzyme to CA (10:1–20:1). A quadratic equation model was used to analyze the experimental data at a 95 % confidence level (p < 0.05). A maximum conversion yield of 99.8 % was obtained under the optimized reaction conditions [60 h, 73.7 °C, substrate molar ratio of phenethyl alcohol to CA (27.1:1), and weight ratio of enzyme to CA (17.8:1)] established by our statistical method, whereas the experimental conversion yield was 96.6 ± 2 %.  相似文献   

14.
Response surface methodology (RSM) and five-level, five-variable central composite rotatable design (CCRD) were used to evaluate the effects of synthetic variables, such as reaction time (1-9 h), temperature (25-65 degrees C), enzyme amount (10-50%), substrate molar ratio of geraniol to tributyrin (1:0.33-1:1), and added water amount (0-20%) on molar percent yield of geranyl butyrate, using lipase AY from Candida rugosa. Reaction time and temperature were the most important variables and substrate molar ratio had no effect on percent molar conversion. Based on contour plots, optimum conditions were: reaction time 9 h, temperature 35 degrees C, enzyme amount 50%, substrate molar ratio 1:0.33, and added water 10%. The predicted value was 100% and actual experimental value was 96.8% molar conversion. (c) 1996 John Wiley & Sons, Inc.  相似文献   

15.
Abstract

The asymmetric acylation of (R, S)-3-n-butylphthalide could be efficiently catalyzed by Novozyme 435. The effect of various reaction parameters such as water activity, temperature, molar ratio of acetic anhydride to (R, S)-3-n-butylphthalide, and reaction time on the asymmetric acylation were studied. The optimums of the reaction parameters were water activity 0.62, temperature 30°C, molar ratio of acetic anhydride to (R, S)-3-n-butylphthalide 8:1, and reaction time 48 h, respectively. Under the optimum conditions, enantiopure 3-n-butylphthalide with an optical purity of 95.7% enantiomeric excess and 49.1% yield could be obtained. Furthermore, the enantiomeric excess of product was over 98%.  相似文献   

16.
The present paper demonstrates application of biocatalysis to the synthesis of n-butyl palmitate, a cosmetic emollient ester in a solvent-free system (SFS). Fermase CALB?10000, a commercial Candida antarctica lipase B was used to accomplish the synthesis. In order to evaluate the effect of various process parameters on the synthesis, one factor at a time methodology (OFAT) and response surface methodology (RSM) complimented with central composite design (CCD) were employed. On the basis of the results obtained in one factor at one time studies, temperature, enzyme dose, and molar ratio were chosen as significant parameters and their range was selected for RSM study. The optimized factors suggested by RSM model were, temperature –60.12?°C, enzyme dose –5% w/w, and alcohol: acid ratio –2.25:1. Under these optimized factors, the experimental conversion observed was 91.25% which was in close agreement to the model predicted conversion of 92% and the enzymes were reusable up to four cycles. A separate study was carried out in order to study the effect of palmitic acid on n-butyl palmitate synthesis and to understand the kinetic profile of n-butyl palmitate synthesis reaction. Ordered bi-bi model showed a good experimental fit to the kinetic data.  相似文献   

17.
Fatty acid sugar esters are non-ionic detergents with multiple uses in the cosmetic, food, and pharmaceutical industries. Of the many different sugar esters synthesized, lactose, a by-product of cheese manufacture, has not been investigated. The objective of this research was to investigate the synthesis of novel lactose monolaurate (LML) and sucrose monolaurate (as a comparison) (SML) using four different immobilized lipases in three different solvents at constant sugar, vinyl laurate, temperature, and enzyme concentrations. Overall, the solvent 2-methyl-2-butanol gave the highest yields and reactions rates for the synthesis of both LML and SML. Of the immobilized lipases, those from Pseudomonas cepacia, Mucor miehei and Thermomyces lanuginosus were effective depending on the sugar/solvent combination. Higher overall yields were obtained for the synthesis of LML with the differences in yields presumably due to the decreased solubility of sucrose as compared to lactose in 3 of the solvents used. Response surface methodology was used to determine the optimal temperature, enzyme concentration and ratio of reactants for LML synthesis using the immobilized lipase from M. miehei in 2-methyl-2-butanol. Based on the analysis of ridge max, the optimal synthesis conditions were predicted to occur at 61 °C, with an enzyme amount of 32 mg/mL, and a molar ratio of lactose to vinyl laurate of 1:3.8; and the optimal actual yield was 99.3%.  相似文献   

18.
Synthesis of 3beta-O-phthalic esters from betulinic acid and its esters and synthesis of phthalic esters from betulin and its monoacetates using classical acylation procedure with phthalic anhydride. The evaluation of cytotoxicity of the prepared compounds was using numbers of tumor cell lines in MTT test. It was discovered that hemiphthalic esters had better cytotoxicity than starting compounds as betulinic acid or quite inactive betulin.  相似文献   

19.
Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60°C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.  相似文献   

20.
Enzymatic synthesis of glyceryl monoundecylenate (GMU) was performed using indigenously immobilized Candida anatarctica lipase B preparation (named as PyCal) using glycerol and undecylenic acid as substrates. The effect of molar ratio, enzyme load, reaction time, and organic solvent on the reaction conversion was determined. Both batch and continuous processes for GMU synthesis with shortened reaction time were developed. Under optimized batch reaction conditions such as 1:5 molar ratio of undecylenic acid and glycerol, 2?h of reaction time at 30% substrate concentration in tert-butyl alcohol, conversion of 82% in the absence of molecular sieve, and conversion of 93% in the presence of molecular sieve were achieved. Packed bed reactor studies resulted in high conversion of 86% in 10-min residence time. Characterization of formed GMU was performed by FTIR, MS/MS. Enzymatic process resulted in GMU as a predominant product in high yield and shorter reaction time periods with GMU content of 92% and DAG content of 8%. Optimized GMU synthesis in the present study can be used as a useful reference for industrial synthesis of fatty acid esters of glycerol by the enzymatic route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号