首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
糖尿病肾病是多因素引起的复杂性疾病,近年研究发现炎症反应参与了该病的发生与发展.单核细胞趋化蛋白-1是趋化因子CC亚家族的一员,在募集巨噬细胞等炎性细胞参与炎症反应中扮演着重要的角色.其趋化单核巨噬细胞于糖尿病肾组织中,可介导溶酶体释放,产生氧自由基,促进单核巨噬细胞表达β1-转化生长因子(transforming growth factor β1,TGF-β1),而广泛浸润臣噬细胞加剧了肾小球基底膜增厚、细胞外基质堆积,进而发展为肾小球硬化和间质纤维化.深入研究单核细胞趋化蛋白-1在糖尿病肾病中的作用,可望为糖尿病肾病的预防和治疗提供新的思路和途径.  相似文献   

2.
3.
Abstract

Results from the published studies on the association between monocyte chemoattractant protein-1 (MCP-1) ?2518 A/G gene polymorphism and diabetic nephropathy (DN) risk are still conflicting. This meta-analysis was performed to evaluate the relationship between MCP-1 A/G gene polymorphism and DN risk and to explore whether MCP-1 A allele, AA genotype or GG genotype could become a predictive marker for DN risk. Association studies were identified from the databases of PubMed, Embase, Cochrane Library and CBM-disc (China Biological Medicine Database) as of 1 March 2014, and eligible investigations were synthesized using meta-analysis method. Four studies were identified for the analysis of association between MCP-1 A/G gene polymorphism and DN risk, and all the included studies were form Asian population. The association between MCP-1 A/G gene polymorphism and DN susceptibility was not found (A allele: OR?=?1.19; 95% CI: 0.97–1.45; p?=?0.10; AA genotype: OR?=?1.27; 95% CI: 0.95–1.70; p?=?0.11; GG genotype: OR?=?0.77; 95% CI: 0.57–1.05; p?=?0.10). In the sensitive analysis, according to the control source from hospital, we found that AA genotype was associated with the DN risk (OR?=?1.45; 95% CI: 1.05–2.00; p?=?0.02). However, other associations were not found in the sensitive analysis according to the control source from hospital or population. Our results indicate that AA homozygous might be a significant genetic molecular marker to predict the diabetes mellitus patients developing into DN. However, more investigations are required to further clarify this association.  相似文献   

4.
5.
Cyclin G2 (CCNG2) is an atypical cyclin that inhibits cell cycle progression and is often dysregulated in human cancers. Cyclin G2 in the occurrence and development of diabetic nephropathy (DN), one of the most severe diabetic complications, has not been fully identified. In this study, we investigated the function and regulatory mechanism of cyclin G2 in DN. In vivo studies revealed that a deficiency of cyclin G2 significantly increased albuminuria and promoted tubulointerstitial fibrosis in established DN. Cyclin G2 regulated the expression of fibrosis-related proteins via the canonical Wnt signalling pathway in renal tubular epithelial cells. Moreover, the binding of cyclin G2 to Dapper1 (Dpr1/DACT1), a protein involved in Wnt signalling, decreased the phosphorylation of Dpr1 at Ser762 by casein kinase 1 (CK1) and suppressed the Wnt signalling pathway. These findings reveal that cyclin G2 can protect against renal injury and fibrosis associated with DN and, thus, is a new target for the prevention and treatment of diabetic complications.  相似文献   

6.

Background

Alveolar macrophages play an important role during the development of acute inflammatory lung injury. In the present study, in vivo alveolar macrophage depletion was performed by intratracheal application of dichloromethylene diphosphonate-liposomes in order to study the role of these effector cells in the early endotoxin-induced lung injury.

Methods

Lipopolysaccharide was applied intratracheally and the inflammatory reaction was assessed 4 hours later. Neutrophil accumulation and expression of inflammatory mediators were determined. To further analyze in vivo observations, in vitro experiments with alveolar epithelial cells and alveolar macrophages were performed.

Results

A 320% increase of polymorphonuclear leukocytes in bronchoalveolar lavage fluid was observed in macrophage-depleted compared to macrophage-competent lipopolysaccharide-animals. This neutrophil recruitment was also confirmed in the interstitial space. Monocyte chemoattractant protein-1 concentration in bronchoalveolar lavage fluid was significantly increased in the absence of alveolar macrophages. This phenomenon was underlined by in vitro experiments with alveolar epithelial cells and alveolar macrophages. Neutralizing monocyte chemoattractant protein-1 in the airways diminished neutrophil accumulation.

Conclusion

These data suggest that alveolar macorphages play an important role in early endotoxin-induced lung injury. They prevent neutrophil influx by controlling monocyte chemoattractant protein-1 production through alveolar epithelial cells. Alveolar macrophages might therefore possess robust anti-inflammatory effects.  相似文献   

7.
目的研究普罗布考(Probucol)对糖尿病大鼠肾组织氧化应激的影响。方法采用腹腔注射链脲佐菌素(STZ)建立糖尿病大鼠模型。30只Wistar大鼠分为正常对照组(NC)、糖尿病组(DM)、糖尿病普罗布考治疗组(DP)。8周末称取体重、肾重、计算肾肥大指数(肾重/体重),检测尿白蛋白排泄率(UAER);测定各组生化指标包括血糖(BG)、胆固醇(TC)、三酰甘油(TG)、血清肌酐(SCr)、血尿素氮(BUN);检测肾组织中丙二醛(MDA)的含量及超氧化物歧化酶(SOD)、过氧化氢酶(CAT)与谷胱甘肽过氧化物酶(GSH-Px)活性;肾组织切片行PAS染色分析肾小球面积及肾小球体积。结果 DM组大鼠肾重、肾重/体重、UAER、TC、TG、SCr、BUN、肾小球面积、肾小球体积较NC组均明显增加,DP组上述改变较DM组均明显减轻(P〈0.05)。DP组肾组织中MDA含量明显低于DM组,SOD、CAT、GSH-Px活性明显高于DM组(P〈0.05)。结论普罗布考可能部分通过减轻肾组织氧化应激反应实现对糖尿病大鼠肾脏的保护作用。  相似文献   

8.
目的:研究淫羊藿总黄酮(TFE)对链脲佐菌素(STZ)致糖尿病大鼠肾脏损伤的影响,并初步探讨其可能的作用机制。方法:健康雄性SD大鼠一次性尾静脉注射STZ(40 mg/kg)建立糖尿病模型。动物随机分成3组(n=10):对照组、模型组和TFE组(100 mg/kg,i.g.)。12周后,处死大鼠。测定空腹血糖,肾脏脏器系数,血清尿素氮(BUN)、肌酐(Cr)含量;测定肾组织中超氧化物歧化酶(SOD)活性和丙二醛(MDA)含量;Masson染色观察肾组织胶原纤维增生;免疫组化测定转化生长因子β1(TGF-β1)蛋白的表达。结果:与对照组比较,模型组肾脏脏器系数增大、肾功能下降、肾组织抗氧化能力降低;病理学可见肾小球、肾小管间质纤维化;同时TGF-β1蛋白表达水平上调。TFE组明显改善上述指标。结论:TFE对STZ致糖尿病大鼠肾脏损伤有明显的改善作用,其作用机制可能与抗氧化作用和抑制TGF-β1蛋白表达有关。  相似文献   

9.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.  相似文献   

10.
Allopurinol (ALP) attenuates oxidative stress and diabetic cardiomyopathy (DCM), but the mechanism is unclear. Activation of nuclear factor erythroid 2‐related factor 2 (Nrf2) following the disassociation with its repressor Keap1 under oxidative stress can maintain inner redox homeostasis and attenuate DCM with concomitant attenuation of autophagy. We postulated that ALP treatment may activate Nrf2 to mitigate autophagy over‐activation and consequently attenuate DCM. Streptozotocin‐induced type 1 diabetic rats were untreated or treated with ALP (100 mg/kg/d) for 4 weeks and terminated after heart function measurements by echocardiography and pressure‐volume conductance system. Cardiomyocyte H9C2 cells infected with Nrf2 siRNA or not were incubated with high glucose (HG, 25 mmol/L) concomitantly with ALP treatment. Cell viability, lactate dehydrogenase, 15‐F2t‐Isoprostane and superoxide dismutase (SOD) were measured with colorimetric enzyme‐linked immunosorbent assays. ROS, apoptosis, was assessed by dihydroethidium staining and TUNEL, respectively. The Western blot and qRT‐PCR were used to assess protein and mRNA variations. Diabetic rats showed significant reductions in heart rate (HR), left ventricular eject fraction (LVEF), stroke work (SW) and cardiac output (CO), left ventricular end‐systolic volume (LVVs) as compared to non‐diabetic control and ALP improved or normalized HR, LVEF, SW, CO and LVVs in diabetic rats (all P < .05). Hearts of diabetic rats displayed excessive oxidative stress manifested as increased levels of 15‐F2t‐Isoprostane and superoxide anion production, increased apoptotic cell death and cardiomyocytes autophagy that were concomitant with reduced expressions of Nrf2, heme oxygenase‐1 (HO‐1) and Keap1. ALP reverted all the above‐mentioned diabetes‐induced biochemical changes except that it did not affect the levels of Keap1. In vitro, ALP increased Nrf2 and reduced the hyperglycaemia‐induced increases of H9C2 cardiomyocyte hypertrophy, oxidative stress, apoptosis and autophagy, and enhanced cellular viability. Nrf2 gene silence cancelled these protective effects of ALP in H9C2 cells. Activation of Nrf2 subsequent to the suppression of Keap1 and the mitigation of autophagy over‐activation may represent major mechanisms whereby ALP attenuates DCM.  相似文献   

11.
Renin angiotensin system (RAS) worsens diabetic nephropathy (DN) by increasing oxidative stress. We compared the effect of three different RAS inhibitors: the angiotensin converting enzyme inhibitor Ramipril, the vasopeptidase inhibitor AVE7688 and the angiotensin receptor (AT1) antagonist Losartan on the formation of oxidative and carbonyl stress derived protein modifications in kidney from Zucker obese hyperglycemic rats (ZDFn Gm-fa/fa). Gas chromatography-mass spectrometry was used to measure representative markers of several protein oxidative pathways: direct oxidation [dinitrophenylhydrazine reactive carbonyls (DNP), glutamic (GSA), and aminoadipic (AASA) semialdehydes], mixed glyco- and lipoxidation [Nε-carboxyethyl-lysine (CEL) and Nε-(carboxymethyl)-lysine (CML)] and lipoxidation-[Nε-(malondialdehyde)-lysine-(MDAL)], as well as renal fatty acid composition. Urinary albumin (a marker of DN), DNP, GSA, and MDAL levels, were increased in all obese rats and were dose dependently decreased by AVE7688 whereas Ramipril and Losartan were less efficient. These results show that RAS inhibition improves DN at several levels, independently of its effects on blood pressure and glycemic control, via mechanisms depending of renal oxidative stress.  相似文献   

12.
Ascorbic acid is present as a primary antioxidant in plasma and within cells, protecting both cytosolic and membrane components of cells from oxidative damage. The effects of intracellular ascorbic acid on F(2)-isoprostanes (biomarkers of oxidative stress) and monocyte chemoattractant protein-1 (marker of inflammatory responses) production in monocytic THP-1 cells were investigated under conditions of 2,2'-Azobis(2-methylpropionamidine)dihydrochloride (AAPH) induced oxidative stress. Cells cultured under normal conditions have extremely low ascorbate levels and the intracellular ascorbate can be augmented significantly by adding ascorbate to the culture medium. While AAPH treatment reduced cell viability, increased F(2)-isoprostanes and MCP-1 production, the presence of intracellular ascorbic acid maintained high cell viability and attenuated both F(2)-isoprostanes and MCP-1 production. Measurement of intracellular ascorbic acid and its oxidised products showed that intracellular ASC was oxidised to a significantly greater extent during AAPH treatment and may be utilised to protect the cells under conditions of oxidative stress. This study demonstrates the importance of intracellular ascorbate, which may be lacking under normal cell culture conditions, under conditions of increased oxidative stress.  相似文献   

13.
14.
目的:探讨体外培养条件下糖基化终产物(AGEs)对人肾小球系膜细胞(HRMCs)中糖基化终产物受体(RAGE)、氧化应激及单核细胞趋化因子-1(MCP-1)表达的影响。方法:将HRMCs与不同浓度的糖化牛血清白蛋白(AGE-BSA)和牛血清白蛋白(BSA)共同培养,或与同一质量浓度的AGE-BSA和BSA共同培养不同时间,以中和抗RAGE抗体封闭细胞膜上RAGE;采用细胞免疫化学法检测AGEs对HRMCs中RAGE表达的影响,流式细胞术检测细胞内活性氧(ROS),半定量逆转录-聚合酶链反应(RT-PCR)法检测MCP-1 mRNA的表达。结果:在HRMCs中AGE-BSA能够促进RAGE的表达,并以时间和剂量依赖方式促进HRMCs中ROS及MCP-1的表达;ROS及MCP-1的表达水平在加入不同浓度(50、100、200、400 mg/L)的AGE-BSA作用48 h后以及加入质量浓度为200 mg/L的AGE-BSA作用不同时间(12、24、48、72 h)后,较相应质量浓度或时间的BSA组和对照组均明显升高(P〈0.05);抗RAGE抗体干预后能够部分抑制AGE-BSA诱导ROS及MCP-1的表达,而人IgG没有这种作用。结论:AGEs通过RAGE激活氧化应激效应诱导MCP-1的表达上调,是糖尿病肾病发生发展的可能机制。  相似文献   

15.
Obese adipose tissue is characterized by enhanced macrophage infiltration. A loop involving monocyte chemoattractant protein-1 (MCP-1) and tumor necrosis factor-α (TNFα) between adipocytes and macrophages establishes a vicious cycle that augments inflammatory changes and insulin resistance in obese adipose tissue. Tomatoes, one of the most popular crops worldwide, contain many beneficial phytochemicals that improve obesity-related diseases such as diabetes. Some of them have also been reported to have anti-inflammatory properties. In this study, we focused on the potential protective effects of phytochemicals in tomatoes on inflammation. We screened fractions of tomato extract using nitric oxide (NO) assay in lipopolysaccharide (LPS)-stimulated RAW264 macrophages. One fraction, RF52, significantly inhibited NO production in LPS-stimulated RAW264 macrophages. Furthermore, RF52 significantly decreased MCP-1 and TNFα productions. The coculture of 3T3-L1 adipocytes and RAW264 macrophages markedly enhanced MCP-1, TNFα, and NO productions compared with the control cultures; however, the treatment with RF52 inhibited the production of these proinflammatory mediators. These results suggest that RF52 from tomatoes may have the potential to suppress inflammation by inhibiting the production of NO or proinflammatory cytokines during the interaction between adipocytes and macrophages.  相似文献   

16.
单核细胞趋化蛋白-1(monocyte chemoattractant protein-1;MCP-1)属于炎症趋化因子CC亚族成员,它能趋化T淋巴细胞、单核细胞,诱导内皮细胞、单核细胞释放黏附因子,使单核/巨噬细胞向病变处聚集。这些免疫及炎症过程有可能导致2型糖尿病大血管病变的发生、发展。本文就单核细胞趋化蛋白-1促使动脉粥样硬化的机制、及其干预治疗,单核细胞趋化蛋白-1表达上调的影响因素,深入了解单核细胞趋化蛋白-1与2型糖尿病大血管病变的关系。  相似文献   

17.
Contact hypersensitivity (CHS) is frequently used as an animal model for human allergic contact dermatitis (ACD). Diets of pomegranate polyphenols (PPs) or soy isoflavones (SIs) each alleviated CHS symptoms; however, the effect of diets containing a mixture of PPs and SIs on CHS is unclear. We investigated the CHS-inhibitory effects of diets supplemented with a mixture of PPs and SIs at human physiologically relevant doses. Consuming the mixture of PPs and SIs attenuated ear swelling and reduced infiltration of Gr-1-positive cells. Ear swelling decreased in the PP and SI-treated mice compared to the SI-treated mice. The auricle tissues of the PP and SI-fed mice exhibited decreased production of CXCL2 and MCP-5 compared to the SI- and PP-treated mice, respectively. These results suggest that dietary supplementation with a mixture of PPs and SIs may have ACD-preventive effects and may prove more beneficial than supplementation with PPs or SIs alone.  相似文献   

18.
Objective: We designed this study to observe the effect of galangin on damaged mitochondria in the liver of diabetic rats.

Methods: Male albino Wistar rats were made diabetic by injecting streptozotocin (STZ) intraperitoneally (40?mg?kg?1 body weight (BW)). Galangin (8?mg?kg?1 BW) or glibenclamide (600?µg?kg?1 BW) was given orally daily once for 45 days to both healthy and diabetic rats.

Results: Diabetic rats showed significant (P?P?P?P?P?Conclusion: From the results, we conclude that galangin could maintain liver mitochondrial function in diabetic rats.  相似文献   

19.
20.
Oxidative stress has been proposed as the pathogenic mechanism linking insulin resistance with endothelial dysfunction during diabetes. The present study investigated the attenuation of plasma dyslipidemia and oxidative damage by caloric restriction in experimental diabetes. Forty male Wistar rats were divided into ad libitum and calorie-restricted groups. The calorie-restricted group was subjected to 30% caloric restriction for 63 days before induction of diabetes to 50% of both groups. Caloric restriction significantly (p<0.01) reduced the body weights, reactive oxygen species (ROS), catalase, total cholesterol levels and non-significantly reduced SOD activities in non-diabetic and diabetic rats. Caloric restriction was also found to improve blood glucose levels, glycated hemoglobin, malondialdehyde, triglyceride, oxidized glutathione and reduced glutathione levels and significantly (p<0.05) increased GPx and GR activities in the experimental animals. The non-diabetic rats fed ad libitum had the most significant increases in body weight which could be due to dyslipidemia. These results indicate that dietary caloric restriction attenuates the oxidative damage and dyslipidemia exacerbated during diabetes as evidenced by the significant reduction in their body weights, ROS, total cholesterol levels and the increases in GPx activity and redox status.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号