首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Oxidative stress by phenazine methosulfate stimulated proteolysis in erythrocytes. 2. Gamma-irradiation of erythrocytes in the range of 50-1000 Gy also resulted in the induction of proteolysis. 3. Though it has been suggested that hyperthermia imposes an oxidative stress on a cell, hyperthermic exposure of erythrocytes (30 min, 39-49 degrees C) did not stimulate proteolysis during subsequent incubation of whole cells or hemolysates. 4. Proteolytic degradation of spectrin was accelerated during incubation of membranes isolated from cells heated above 45 degrees C but this effect seems to be due rather to thermal denaturation of spectrin than to oxidative modification of cellular proteins by hyperthermia.  相似文献   

2.
The present study examined the relationship between lipid peroxidation and vitamin C, vitamin E and reduced glutathione levels in plasma, erythrocytes and erythrocyte membranes of pulmonary tuberculosis patients and an equal number of age-and sex-matched healthy subjects. Enhanced plasma, erythrocytes and erythrocyte membrane lipid peroxidation with concomitant decline in vitamin C, vitamin E and reduced glutathione levels were found in pulmonary tuberculosis patients. The elevated lipid peroxidation and decreased vitamin C, vitamin E and reduced glutathione levels indicate the potential of oxidative damage to erythrocytes and erythrocyte membranes of pulmonary tuberculosis patients.  相似文献   

3.
The effect of oral administration of acephate (360 mg/kg body weight), for 15 days, daily, was investigated on the erythrocytes of male rats. Activities of acetyl cholinesterase and glucose-6-phosphate dehydrogenase decreased, while those of glutathione-s-transferase and glutathione reductase increased. Decreased glutathione content and increased lipid peroxidation suggest that there was increased oxidative stress in the erythrocytes of treated animals. Increased cholesterol/phospholipid ratio in the erythrocyte membranes and morphological changes in RBCs (scanning electron microscopy studies) were observed in acephate treated animals. The results clearly suggest that acephate induced oxidative stress in erythrocytes leads to morphological changes.  相似文献   

4.
Sickle cell membranes and oxidative damage.   总被引:3,自引:0,他引:3       下载免费PDF全文
Sickle erythrocytes and their membranes are susceptible to endogenous free-radical-mediated oxidative damage which correlates with the proportion of irreversibly sickled cells. The suppression of incubation-induced oxidative stress by antioxidants, free radical scavengers and an iron chelator suggest that oxidation products of membrane-bound haemoglobin contribute towards the pathology of the disease.  相似文献   

5.
The abilities of two kinds of water-soluble diarylamines, disodium 4-chloro-2,2'-iminodibenzoate (CCA) and disodium 4-chloro-3',6'-dimethyl-2,2'-iminodibenzoate (CCM), to protect lipids, membranes and biological tissues from oxidative damages have been studied. The experimental systems studied include the oxidations of methyl linoleate micelles and soybean phosphatidylcholine (Pc) liposomal membranes in aqueous dispersions, oxidative hemolysis of rabbit erythrocytes, and the in vivo oxidative damages of biological tissues all induced by free radicals generated from an azo radical initiator. The two diarylamines functioned as moderate chain-breaking antioxidants and retarded the above oxidations.  相似文献   

6.
The interaction of hemoglobin with phospholipid bilayer vesicles (liposomes) has been analyzed in several studies to better understand membrane-protein interactions. However, not much is known on hemoglobin interactions with the aminophospholipids, predominantly localized in the inner leaflet of erythrocytes, e.g., phosphatidylserine (PS), phosphatidylethanolamine (PE) in membranes containing phosphatidylcholine (PC). Effects of cholesterol, largely abundant in erythrocytes, have also not been studied in great details in earlier studies. This work therefore describes the study of the interactions of different hemoglobin variants HbA, HbE and HbF and the globin subunits of HbA with the two aminophospholipids in the presence and absence of cholesterol. Absorption measurements indicate preferential oxidative interaction of HbE and alpha-globin subunit with unilamellar vesicles containing PE and PS compared to normal HbA. Cholesterol was found to stabilize such oxidative interactions in membranes containing both the aminophospholipids. HbE and alpha-globin subunits were also found to induce greater leakage of membrane entrapped carboxyfluorescein (CF) using fluorescence measurements. HbE was found to induce fusion of membrane vesicles containing cholesterol and PE when observed under electron microscope. Taken together, these findings might be helpful in understanding the oxidative stress-related mechanism(s) involved in the premature destruction of erythrocytes in peripheral blood, implicated in the hemoglobin disorder, HbE/beta-thalassemia.  相似文献   

7.
The interaction of hemoglobin with phospholipid bilayer vesicles (liposomes) has been analyzed in several studies to better understand membrane-protein interactions. However, not much is known on hemoglobin interactions with the aminophospholipids, predominantly localized in the inner leaflet of erythrocytes, e.g., phosphatidylserine (PS), phosphatidylethanolamine (PE) in membranes containing phosphatidylcholine (PC). Effects of cholesterol, largely abundant in erythrocytes, have also not been studied in great details in earlier studies. This work therefore describes the study of the interactions of different hemoglobin variants HbA, HbE and HbF and the globin subunits of HbA with the two aminophospholipids in the presence and absence of cholesterol. Absorption measurements indicate preferential oxidative interaction of HbE and alpha-globin subunit with unilamellar vesicles containing PE and PS compared to normal HbA. Cholesterol was found to stabilize such oxidative interactions in membranes containing both the aminophospholipids. HbE and alpha-globin subunits were also found to induce greater leakage of membrane entrapped carboxyfluorescein (CF) using fluorescence measurements. HbE was found to induce fusion of membrane vesicles containing cholesterol and PE when observed under electron microscope. Taken together, these findings might be helpful in understanding the oxidative stress-related mechanism(s) involved in the premature destruction of erythrocytes in peripheral blood, implicated in the hemoglobin disorder, HbE/beta-thalassemia.  相似文献   

8.
The ability of an anti-sickling drug lawsone, 2-OH-1,4-naphthoquinone, and two related compounds to inhibit the haematoporphyrin-sensitised photohaemolysis of normal and sickle cell erythrocytes has been investigated. The compounds appear to protect the erythrocyte membranes by reaction with transient oxidative species. Differential effects between normal and sickle cells are shown and these are attributed to the different membrane composition of irreversibly sickled erythrocytes. This report describes a possible basis for the decreased formation of irreversibly sickled cells in the presence of lawsone.  相似文献   

9.
Potato peels are waste by-product of the potato processing industry. They are reportedly rich in polyphenols. Our earlier studies have shown that extracts derived from potato peel (PPE) possess strong antioxidant activity in chemical and biological model systems in vitro, attributable to its polyphenolic content. The main objective of this study was to investigate the ability of PPE to protect erythrocytes against oxidative damage, in vitro. The protection rendered by PPE in erythrocytes was studied in terms of resistance to oxidative damage, morphological alterations as well as membrane structural alterations. The total polyphenolic content in PPE was found to be 3.93 mg/g powder. The major phenolic acids present in PPE were predominantly: gallic acid, caffeic acid, chlorogenic acid and protocatechuic acid. We chose the experimental prooxidant system: FeSO4 and ascorbic acid to induce lipid peroxidation in rat RBCs and human RBC membranes. PPE was found to inhibit lipid peroxidation with similar effectiveness in both the systems (about 80–85% inhibition by PPE at 2.5 mg/ml). While PPE per se did not cause any morphological alteration in the erythrocytes, under the experimental conditions, PPE significantly inhibited the H2O2-induced morphological alterations in rat RBCs as revealed by scanning electron microscopy. Further, PPE was found to offer significant protection to human erythrocyte membrane proteins from oxidative damage induced by ferrous–ascorbate. In conclusion, our results indicate that PPE is capable of protecting erythrocytes against oxidative damage probably by acting as a strong antioxidant.  相似文献   

10.
Genetic and environmental factors may contribute to high blood pressure, which is termed essential hypertension. Hypertension is a major independent risk factor for cardiovascular disease, stroke and renal failure; thus, elucidation of the etiopathology of hypertension merits further research. We recently reported that the platelets and neutrophils of patients with hypertension exhibit altered biophysical characteristics. In the present study, we assessed whether the major structural elements of erythrocyte plasma membranes are altered in individuals with hypertension. We compared the phospholipid (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, sphingosine) and cholesterol contents of erythrocytes from individuals with hypertension (HTN) and healthy individuals (HI) using LC/MS-MS. HTN erythrocytes contained higher phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine contents and a lower cholesterol content than HI erythrocytes. Furthermore, atomic force microscopy revealed important morphological changes in HTN erythrocytes, which reflected the increased membrane fragility and fluidity and higher levels of oxidative stress observed in HTN erythrocytes using spectrophotofluorometry, flow cytometry and spectrometry. This study reveals that alterations to the lipid contents of erythrocyte plasma membranes occur in hypertension, and these alterations in lipid composition result in morphological and physiological abnormalities that modify the dynamic properties of erythrocytes and contribute to the pathophysiology of hypertension.  相似文献   

11.
Erythrocytes were incubated with t-butyl hydroperoxide in the presence and absence of hemoglobin as a model system for oxidative stress and the alterations in the structure and integrity of the membranes were investigated. The results showed that in the presence of hemoglobin a significant modification in the membrane surface charge was induced but no such alteration was observed in peroxidized hemoglobin-free membranes. As increased hemoglobin oxidation occurred in the erythrocytes, membrane lipid peroxidation diminished, suggesting a protective role for methemoglobin in t-butyl hydroperoxide-induced lipid peroxidation. Electrophoresis on polyacrylamide gels showed modification of the cytoplasmic protein region but no high molecular weight aggregates formed at the concentrations of the hydroperoxide used in this work. The results suggest that the t-butyl hydroperoxide/normal erythrocyte system seems to be an instructive model for membrane perturbations characteristic of oxidative disorders.  相似文献   

12.
Reduced and oxidized glutathione (GSH and GSSG), protein-bound glutathione, lipid peroxidation and antioxidant enzyme activities were determined in the erythrocyte lysates and membranes of type I and II alcoholics in order to clarify the effect of age-of-onset and the duration of the alcohol consumption on erythrocyte oxidant and antioxidant status. The osmotic fragility and susceptibility of the erythrocytes to haemolysis were also determined. Erythrocyte lipid peroxidation was significantly increased but, GSH and protein-bound GSH, GSH/GSSG ratio and antioxidant enzyme activities were markedly decreased in the erythrocytes of the alcoholic subgroups. Erythrocyte count and haemoglobin content in the blood of alcoholics were found to be decreased in accordance with the finding that erythrocytes were more fragile and less resistant to haemolysis particularly in type II alcoholics. The present study showed that ethanol-induced oxidative stress in erythrocytes can lead to haemolysis and membrane-specific injuries in erythrocytes of the alcoholic subtypes.  相似文献   

13.
Flavonoids protect cells damaged by oxidative stress. This, together with other biological activities, is governed by structural features of flavonoids and the nature and physical state of the cell membrane. We have previously proved that membrane cholesterol contents modify the protective power of quercetin and rutin against oxidative stress in erythrocytes. Here we analyzed the lipid asymmetry, the integrity, and cell viability of native and cholesterol-modified erythrocytes exposed to tert-butyl hydroperoxide in presence of both antioxidants. Our results provides clear evidence that quercetin affords better protection than rutin against lipid peroxidation, ROS generation, erythrophagocytosis and cellular instability in oxidized erythrocytes with normal and modified cholesterol contents. Both antioxidants provided a high of protection for the transbilayer aminophospholipid asymmetry, only partly preserving cell morphology in oxidized control and cholesterol-depleted erythrocytes. Cholesterol depletion reduced the protection provided by both antioxidants against phosphatidylserine externalization, erythrophagocytosis and hemolysis, which is in accordance with the lower degree of preservation against lipid peroxidation observed in oxidized cholesterol-depleted erythrocytes. This lower degree of preservation is presumably attributable to the low antioxidant contents in these erythrocyte membranes, or even to a lower efficiency of the antioxidant in a modified lipid environment due to the removal of cholesterol.  相似文献   

14.
Erythrocytes are a convenient model to understand oxidative damage to the membranes induced by various xenobiotics. The objective of the present study was to investigate the propensity of atrazine to induce oxidative stress and its possible attenuation by vitamin E. Experimental animals were orally administered atrazine (300 mg kg(-1) body weight, daily) and vitamin E (100 mg kg(-1) body weight, daily) for a period of 7, 14, and 21 days. Erythrocyte membranes were prepared and analyzed for acetylcholinesterase (AChE) activity, lipid peroxidation (LPO), and lipid composition. Susceptibility of erythrocytes to atrazine exposure was further investigated in terms of morphological alterations by scanning electron microscopy (SEM). Results indicate that atrazine exposure caused a significant inhibition of AChE activity and induction of oxidative stress in terms of increased malondialdehyde (MDA) levels. Atrazine treatment significantly decreased total lipid, cholesterol, and phospholipid content of erythrocyte membranes. SEM revealed varying degrees of distortion depending on duration of atrazine exposure. However, administration of vitamin E ameliorated the oxidative stress and changes in the erythrocyte membranes induced by atrazine.  相似文献   

15.
Excessive generation of reactive oxygen species (ROS) can induce oxidative damage to vital cellular molecules and structures including DNA, lipids, proteins, and membranes. Recently, melatonin has attracted attention because of their free radical scavenging and antioxidant properties. The aim of this study was to evaluate the possible protective role of melatonin against atrazine-induced oxidative stress in rat erythrocytes in vivo. Adult male albino rats of Wistar strain were randomly divided into four groups. Control group received isotonic saline; melatonin (10 mg/kg bw/day) group; atrazine (300 mg/kg of bw/day) group; atrazine + melatonin group. Oral administration of atrazine and melatonin was given daily for 21 days. Oxidative stress was assessed by determining the glutathione (GSH) and malondialdehyde (MDA) level, and alteration in antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione-S-transferase (GST), and glucose-6-phosphate dehydrogenase (G-6-PD) in the erythrocytes of normal and experimental animals. A significant increase in the MDA levels and decrease in the GSH was observed in the atrazine treated animals (P < 0.05). Also, significant increase in the activities of SOD, CAT, GPx, and GST were observed in atrazine treated group compared to controls (P < 0.05). Moreover, significant decrease in protein, total lipids, cholesterol, and phospholipid content in erythrocyte membrane were demonstrated in atrazine treated rats. Administration of atrazine significantly inhibits the activities of G-6-PD and membrane ATPases such as Na(+)/K(+)-ATPase, Mg(2+)-ATPase, and Ca(2+)-ATPase (P < 0.05). Scanning electron microscopic (SEM) examination of erythrocytes revealed morphological alterations in the erythrocytes of atrazine treated rats. Furthermore, supplementation of melatonin significantly modulates the atrazine-induced changes in LPO level, total lipids, total ATPases, GSH, and antioxidant enzymes in erythrocytes. In conclusion, the increase in oxidative stress markers and the concomitant alterations in antioxidant defense system indicate the role of oxidative stress in erythrocytes of atrazine-induced damage. Moreover, melatonin shows a protective role against atrazine-induced oxidative damage in rat erythrocytes.  相似文献   

16.
The statins, most commonly used in the treatment of hyperlipidemia, have certain beneficial effects including improved endothelial function, plaque stability and decreased oxidative stress and inflammation, beyond their lipid-lowering effect in plasma. We evaluated the pleiotropic impact of atorvastatin on erythrocyte structural/mechanical properties and lipid peroxidation in dyslipidemics. The study group included 44 patients with dyslipidemia and was divided into subgroups according to triglyceride and cholesterol levels as hypercholesterolemic (n?=?29) and mixed-type hyperlipidemic (n?=?15). Subjects were given 10?mg atorvastatin per day for 12?weeks. Changes in serum lipid composition, lipid contents, Na+/K+-ATPase activity and osmotic fragility in erythrocytes and oxidative stress parameters of erythrocytes and plasma were studied. Atorvastatin therapy improved the serum lipid profile of both subgroups. This alteration was accompanied by a decreased level of cholesterol in erythrocyte membranes. Moreover, enhanced activity of Na+/K+-ATPase in erythrocytes reflected the improvements in membrane lipids of both subgroups. However, a significant change was observed in osmotic fragility values of the mixed-typed dyslipidemic group. This treatment lowered the lipid peroxidation in plasma and erythrocytes and increased plasma total antioxidant capacity in all groups. The present study shows that the use of atorvastatin reversed the structural and functional features of erythrocyte membranes in dyslipidemic subjects. Also, hypolipidemic therapy had a beneficial impact on a balance between oxidant and antioxidant systems.  相似文献   

17.
The occurrence, in Hereditary Spherocytosis, of an oxidative damage to red blood cell membranes was studied by "in vitro" treatment of the erythrocytes with tert-butylhydroperoxide, methylene blue, or phenylhydrazine. Spherocytes were found to be more sensitive than normal erythrocytes to the action of these drugs. Tert-butylhydroperoxide caused a more intense lipid peroxidation as well as more extensive membrane protein alterations, namely spectrin degradation, formation of high molecular weight aggregates, and globin binding to the membrane. Marked spectrin degradation was also induced by methylene blue and by phenylhydrazine, which differed from each other for their effects on the generation of membrane-bound globin and of intermediate proteolysis products. Spectrin appeared therefore to be, in Hereditary Spherocytosis, a highly sensitive target to oxidative stress, a phenomenon which may, also "in vivo", increase the rate of spectrin loss thus enhancing erythrocyte fragility.  相似文献   

18.
In agreement with previous data, membrane protein phosphorylation was found to be altered in intact sickle cells (SS) relative to intact normal erythrocytes (AA). Similar changes were observed in their isolated membranes. The involvement of protein kinase C (PKC) in this process was investigated. The membrane PKC content in SS cells, measured by [3H]phorbol ester binding, was about 6-times higher than in AA cells. In addition, the activity of the enzyme, measured by histone phosphorylation was also found to be increased in SS cell membranes but decreased in their cytosol compared to the activity in AA cell membranes and cytosol. The increase in membrane PKC activity was observed mostly in the light fraction of SS cells, fractionated by density gradient, whereas the decrease in cytosolic activity was only observed in the dense fraction. PKC activity, measured in cells from the blood of reticulocyte-rich patients, exhibited an increase in both membranes and cytosol, thus explaining some of the effects observed in the SS cell light fraction, which is enriched in reticulocytes. The increase in PKC activity in the membranes of SS cells is partly explained by their young age but the loss of PKC activity in their cytosol, particularly in that of the dense fraction, seems to be specific to SS erythrocytes. The relative decrease in membrane PKC activity between the dense and the light fractions of SS cells might be related to oxidative inactivation of the enzyme.  相似文献   

19.
Erythrocytes are constantly exposed to ROS due to their function in the organism. High tension of oxygen, presence of hemoglobin iron and high concentration of polyunsaturated fatty acids in membrane make erythrocytes especially susceptible to oxidative stress. A comparison of the antioxidant activities of polyphenol-rich plant extracts containing hydrolysable tannins from sumac leaves (Rhus typhina L.) and condensed tannins from grape seeds (Vitis vinifera L.) showed that at the 5-50 μg/ml concentration range they reduced to the same extent hemolysis and glutathione, lipid and hemoglobin oxidation induced by erythrocyte treatment with 400 μM ONOO(-) or 1 mM HClO. However, extract (condensed tannins) from grape seeds in comparison with extract (hydrolysable tannins) from sumac leaves stabilized erythrocytes in hypotonic NaCl solutions weakly. Our data indicate that both hydrolysable and condensed tannins significantly decrease the fluidity of the surface of erythrocyte membranes but the effect of hydrolysable ones was more profound. In conclusion, our results indicate that extracts from sumac leaves (hydrolysable tannins) and grape seeds (condensed tannins) are very effective protectors against oxidative damage in erythrocytes.  相似文献   

20.
In this work, effects of manganese on respiration of rat liver mitochondria and the rate of K+ outflow from rat erythrocytes are studied in a broad range of concentrations. It is shown that manganese ions at low concentrations (1 × 10–7–3 × 10–5 М) inhibit K+ outflow from rat erythrocytes; this can be used to prevent their lysis. At high concentrations (1 × 10–4–1 × 10–3 M), manganese activates K+ outflow from the erythrocytes but inhibits the valinomycin-induced outflow of the ion from the erythrocytes. This fact is an indication of manganese influence on physicochemical properties of membranes. At low concentrations manganese does not affect parameters of respiration and oxidative phosphorylation of rat liver mitochondria, while at high concentrations it exerts acceleration of the mitochondrial respiration, i.e., uncouples respiration from phosphorilation and, hence, inhibits ATP synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号