首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phagocytosis of inert particles, a long-known in vivo phenomenon among cells of the reticuloendothelial system, has more recently been found to be a widespread capability of cells in vitro (Gropp 1963) and can be utilized as a marking system when colored particles are employed. Carbon particles (black) were used by Stoker (1964) as cellular markers and later carmine particles (red) were used as markers in cell transformation studies (Stoker 1967; Rabinowitz and Sachs 1968).  相似文献   

2.
In this study, we have tested the possible use of protein-gold complexes as neuronal markers for long-term tracing studies in rat. The tracer we have used consisted of colloidal gold particles coupled to wheat-germ agglutinin apohorseradish peroxidase conjugate (WGA-apoHRP). The neuronal labeling was studied for survival periods of up to nineteen months following injection in the central nervous system. Maximal visualization of the gold particles was achieved through gold silver intensification. The tracer could be detected throughout the entire range of periods considered. The injection site consisted of a dense black core and retrogradely labeled cells were characterized by round black granules over the cell body. The retrogradely labeled cells were cytochemically characterized by demonstrating their transmitter content. Thus protein-gold complexes may be used as long-term neuronal markers compatible with the persistance of the vital functions of the labeled cells.  相似文献   

3.
Summary In this study, we have tested the possible use of protein-gold complexes as neuronal markers for long-term tracing studies in rat. The tracer we have used consisted of colloidal gold particles coupled to wheat-germ agglutinin apohorseradish peroxidase conjugate (WGA-apoHRP). The neuronal labeling was studied for survival periods of up to nineteen months following injection in the central nervous system. Maximal visualization of the gold particles was achieved through gold silver intensification. The tracer could be detected throughout the entire range of periods considered. The injection site consisted of a dense black core and retrogradely labeled cells were characterized by round black granules over the cell body. The retrogradely labeled cells were cytochemically characterized by demonstrating their transmitter content. Thus protein-gold complexes may be used as long-term neuronal markers compatible with the persistance of the vital functions of the labeled cells.  相似文献   

4.
A system for streptavidin detection using biotin conjugated to nano-sized bacterial magnetic particles (BMPs) has been developed. BMPs, isolated from magnetic bacteria, were used as magnetic markers for magnetic force microscopy (MFM) imaging. The magnetic signal was obtained from a single particle using MFM without application of an external magnetic field. The number of biotin conjugated BMPs (biotin-BMPs) bound to streptavidin immobilized on the glass slides increased with streptavidin concentrations up to 100 pg/ml. The minimum streptavidin detection limit using this technique is 1 pg/ml, which is 100 times more sensitive than a conventional fluorescent detection system. This is the first report using single domain nano-sized magnetic particles as magnetic markers for biosensing. This assay system can be used for immunoassay and DNA detection with high sensitivities.  相似文献   

5.
Synopsis Turnip yellow mosaic virus (TYMV) and alphalpha mosaic virus (AMV) were used as immuno-electron microscopical markers to detect cell surface receptors on mononuclear cells in freeze-etch replicas. TYMV particles were conjugated with vacuum-distilled glutaraldehyde to rabbit IgG anti-mouse immunoglobulins (TYMV-RAMIg conjugate) or to rabbit IgG anti-mouse antigen (TYMV-RAMTh conjugate). B-lymphocytes incubated with TYMV-RAMIg conjugate showed either randomly distributed particles or patches of virus particles on the etched surface of the cell membrane. Mouse thymocytes incubated with TYMV-RAMTh conjugate, however, showed only a random distribution of the virus particles. Human mononuclear cells incubated with rabbit IgG anti-AMV and AMV for the demonstration of the receptors for the Fc fragment of IgG showed the oblong shape of the AMV particles on the etched cell membrane. Fc receptors were either randomly distributed or aggregrated into patches. It is concluded that both types of virus particles are useful markers for the demonstration of membrane receptors in freeze-etch replicas of labelled cells.  相似文献   

6.
In both plant and animal cells, membrane is continuously being taken from (endocytosis) and added to (exocytosis) the plasma membrane via vesicles. Presently it is believed that the cell regulates these two events by balancing one with the other. In plants no direct proof of this theory exists, due to the lack of proper markers for labelling the incoming vesicles. These markers have to be small enough to traverse the cell wall, yet large enough to be visualised in the electron microscope. Gold particles with a mean diameter of 3.5nm have been developed and used as a marker on plant cells (Morinda citrifolia) cultured in a liquid medium. Initial results showed that the gold marker penetrated the cell wall, indicating that the wall is more permeable than previously thought. Gold particles were located in the cytoplasm, indicating uptake into the cell via endocytosis.  相似文献   

7.
Bacteriophage phi105 is a temperate phage for the transformable Bacillus subtilis 168. The infectivity of deoxyribonucleic acid (DNA) extracted from mature phi105 phage particles, from bacteria lysogenic for phi105 (prophage DNA), and from induced lysogenic bacteria (vegetative DNA) was examined in the B. subtilis transformation system. About one infectious center was formed per 10(8) mature DNA molecules added to competent cells, but single markers could be rescued from mature DNA by a superinfecting phage at a 10(3)- to 10(4)-fold higher frequency. Single markers in mature DNA were inactivated at an exponential rate after uptake by a competent cell. Prophage and vegetative DNA gave about one infectious center per 10(3) molecules added to competent cells. Infectious prophage DNA entered competent cells as a single molecule; it gave a majority of lytic responses. Single markers in sheared prophage DNA were inactivated at the same rate as markers in mature DNA. Prophage DNA was dependent on the bacterial rec-1 function for its infectivity, whereas vegetative DNA was not. The mechanism of transfection of B. subtilis with viral DNA is discussed, and a model for transfection with phi105 DNA is proposed.  相似文献   

8.
The development of cellular tracking by fluorine ((19)F) magnetic resonance imaging (MRI) has introduced a number of advantages for following immune cell therapies in vivo. These include improved signal selectivity and a possibility to correlate cells labeled with fluorine-rich particles with conventional anatomic proton ((1)H) imaging. While the optimization of the cellular labeling method is clearly important, the impact of labeling on cellular dynamics should be kept in mind. We show by (19)F MR spectroscopy (MRS) that the efficiency in labeling cells of the murine immune system (dendritic cells) by perfluoro-15-crown-5-ether (PFCE) particles increases with increasing particle size (560>365>245>130 nm). Dendritic cells (DC) are professional antigen presenting cells and with respect to impact of PFCE particles on DC function, we observed that markers of maturation for these cells (CD80, CD86) were also significantly elevated following labeling with larger PFCE particles (560 nm). When labeled with these larger particles that also gave an optimal signal in MRS, DC presented whole antigen more robustly to CD8+ T cells than control cells. Our data suggest that increasing particle size is one important feature for optimizing cell labeling by PFCE particles, but may also present possible pitfalls such as alteration of the immunological status of these cells. Therefore depending on the clinical scenario in which the (19)F-labeled cellular vaccines will be applied (cancer, autoimmune disease, transplantation), it will be interesting to monitor the fate of these cells in vivo in the relevant preclinical mouse models.  相似文献   

9.
Abstract The relationship between the flow of water through roots in young plants and the associated difference in water potential has often been found to be nonlinear. In this paper it is shown how the Casparian strip forces water, moving from the soil to the xylem of a young root, to pass through the cells of the endodermis, flushing solutes from them and reducing their turgor. It is suggested that the membranes of these cells like those of giant algal cells, respond to change in turgor by changing their hydraulic conductivity. These effects, when combined, are shown to produce a feedback system with a steady state behaviour which could account for some or all of the non-linear relations, between rate of water uptake by young plants and differences between water potentials of the xylem and rooting medium, observed by workers such as Stoker & Weatherley (1971). Some non-steady state responses of the system are explored, and it is suggested that the system also provides the link between the diurnal rhythms of solute concentration in the xylem sap, observed by Vaadia (1960), and of resistance to uptake of water by roots, reported by Parsons & Kramer (1974) amongst others.  相似文献   

10.
When rat omentum becomes activated by intraperitoneal injection of inert polydextran particles, these particles are rapidly surrounded by cells that express markers of adult stem cells (SDF–1α, CXCR4, WT–1) and of embryonic pluripotent cells (Oct–4, Nanog, SSEA–1). We have cultured such cells, because they may offer a convenient source of adult stem cells, and have found that they retain stem cell markers and produce high levels of vascular endothelial growth factor for up to ten passages. After systemic or local injection of these cultured cells into rats with acute injury of various organs, the cells specifically engraft at the injured sites. Thus, our experiments show that omental stromal cells can be cultured from activated omentum, and that these cells exhibit stem cell properties enabling them to be used for repair and possibly for the regeneration of damaged tissues.  相似文献   

11.
We describe a new automatic technique for the study of intracellular mobility. It is based on the visualization of colloidal gold particles by video-enhanced contrast light microscopy (nanometer video microscopy) combined with modern tracking algorithms and image processing hardware. The approach can be used for determining the complete statistics of saltatory motility of a large number of individual moving markers. Complete distributions of jump time, jump velocity, stop time, and orientation can be generated. We also show that this method allows one to study the characteristics of random motion in the cytoplasm of living cells or on cell membranes. The concept is illustrated by two studies. First we present the motility of colloidal gold in an in vitro system of microtubules and a protein extract containing a kinesin-like factor. The algorithm is thoroughly tested by manual tracking of the videotapes. The second study involves the motion of gold particles microinjected in the cytoplasm of PTK-2 cells. Here the results are compared to a study using the spreading of colloidal gold particles after microinjection.  相似文献   

12.
To investigate whether the 60-kDa heat shock chaperonin protein (hsp60) is present on the surface of mammalian cells, we used immunogold labeling of intact cells and backscattered electron imaging to image gold particles. Chinese hamster ovary cells and the human leukemic CD4-positive T-cell line CEM-SS on glass coverslips were labeled using affinity-purified monoclonal and polyclonal antibodies specific for hsp60 and 30 nm gold markers. Cells were imaged using the scanning mode of the conventional transmission electron microscope. Backscattered electron imaging provided definitive identification of the gold markers while secondary electron imaging gave information on surface architecture. Labeling intensity was 250–800 gold particles per cell in Chinese hamster ovary cells and 600–2000 in CEM-SS human lymphoblasts. The finding of hsp60 on the cell surface of mammalian cells may signify chaperone involvement in surface functions.  相似文献   

13.
The annexin A5 gene (Anxa5) was recently found to be expressed in the developing and adult vascular system as well as the skeletal system. In this paper, the expression of an Anxa5-lacZ fusion gene was used to define the onset of expression in the vasculature and to characterize these Anxa5-lacZ-expressing vasculature-associated cells. After blastocyst implantation, Anxa5-lacZ-positive cells were first detected in extra-embryonic tissues and in angioblast progenitors forming the primary vascular plexus. Later, expression is highly restricted to perivascular cells in most blood vessels resembling pericytes or vascular smooth muscle cells. Viable Anxa5-lacZ+ perivascular cells were isolated from embryos as well as adult brain meninges by specific staining with fluorescent X-gal substrates and cell-sorting. These purified lacZ+ cells specifically express known markers of pericytes, but also markers characteristic for stem cell populations. In vitro and in vivo differentiation experiments show that this cell pool expresses early markers of chondrogenesis, is capable of forming a calcified matrix and differentiates into adipocytes. Hence, Anxa5 expression in perivascular cells from mouse defines a novel population of cells with a distinct developmental potential.  相似文献   

14.
Flow cytometry (FCM) allows the simultaneous measurement of multiple fluorescences and light scatter induced by illumination of single cells or microscopic particles in suspension, as they flow rapidly through a sensing area. In some systems, individual cells or particles may be sorted according to the properties exhibited. By using appropriate fluorescent markers, FCM is unique in that multiple structural and functional parameters can be quantified simultaneously on a single-particle basis, whereas up to thousands of biological particles per second may be examined. FCM is increasingly used for basic, clinical, biotechnological, and environmental studies of biochemical relevance. In this critical review, we summarize the main advantages and limitations of FCM for biochemical studies and discuss briefly the most relevant parameters and analytical strategies. Graphical examples of the biological information provided by multiparametric FCM are presented. Also, this review contains specific sections on flow cytoenzymology, FCM analysis of isolated subcellular organelles, and cell-free FCM.  相似文献   

15.
Multinucleate giant cells (MGCs) are formed by the fusion of 5 to 15 monocytes or macrophages. MGCs can be generated by hip implants at the site where the metal surface of the device is in close contact with tissue. MGCs play a critical role in the inflammatory processes associated with adverse events such as aseptic loosening of the prosthetic joints and bone degeneration process called osteolysis. Upon interaction with metal wear particles, endothelial cells upregulate pro-inflammatory cytokines and other factors that enhance a localized immune response. However, the role of endothelial cells in the generation of MGCs has not been completely investigated. We developed a three-dimensional peripheral tissue-equivalent model (PTE) consisting of collagen gel, supporting a monolayer of endothelial cells and human peripheral blood mononuclear cells (PBMCs) on top, which mimics peripheral tissue under normal physiological conditions. The cultures were incubated for 14 days with Cobalt chromium alloy (CoCr ASTM F75, 1–5 micron) wear particles. PBMC were allowed to transit the endothelium and harvested cells were analyzed for MGC generation via flow cytometry. An increase in forward scatter (cell size) and in the propidium iodide (PI) uptake (DNA intercalating dye) was used to identify MGCs. Our results show that endothelial cells induce the generation of MGCs to a level 4 fold higher in 3-dimentional PTE system as compared to traditional 2-dimensional culture plates. Further characterization of MGCs showed upregulated expression of tartrate resistant alkaline phosphatase (TRAP) and dendritic cell specific transmembrane protein, (DC-STAMP), which are markers of bone degrading cells called osteoclasts. In sum, we have established a robust and relevant model to examine MGC and osteoclast formation in a tissue like environment using flow cytometry and RT-PCR. With endothelial cells help, we observed a consistent generation of metal wear particle- induced MGCs, which heralds metal on metal hip failures.  相似文献   

16.
Properties of a fetal multipotent neural stem cell (NEP cell)   总被引:20,自引:0,他引:20  
Multipotent neural stem cells (NSCs) present in the developing neural tube (E10.5, neuroepithelial cells; NEP) were examined for the expression of candidate stem cell markers, and the expression of these markers was compared with later appearing precursor cells (E14.5) that can be distinguished by the expression of embryonic neural cell adhesion molecule (E-NCAM) and A2B5. NEP cells possess gap junctions, express connexins, and appear to lack long cilia. Most candidate markers, including Nestin, Presenilin, Notch, and Numb, were expressed by both NEP cells as well as other cell populations. Fibroblast growth factor receptor 4 (FGFR4), Frizzled 9 (Fz9), and SRY box-containing gene 2 (Sox2) as assessed by immunocytochemistry and in situ hybridization are markers that appear to distinguish NSCs from other precursor cells. Neither Hoechst 33342 nor rhodamine-123 staining, telomerase (Tert) expression, telomerase activity, or breakpoint cluster region protein 1 (Bcrp1) transporter expression could be used to distinguish NEP stem cells from other dividing cells. NEP cells, however, lacked expression of several lineage markers that are expressed by later appearing cells. These included absence of expression of CD44, E-NCAM, A2B5, epidermal growth factor receptor (EGFR), and platelet-derived growth factor receptor-alpha (PDGFR alpha), suggesting that negative selection using cell surface epitopes could be used to isolate stem cell populations from mixed cultures of cells. Using mixed cultures of cells isolated from E14.5 stage embryos, we show that NEP cells can be enriched by depleting differentiating cells that express E-NCAM or A2B5 immunoreactivity. Overall, our results show that a spectrum of markers used in combination can reliably distinguish multipotent NSCs from other precursor cells as well as differentiated cells present in the CNS.  相似文献   

17.
Zabaglo L  Ormerod MG  Dowsett M 《Cytometry》2000,41(3):166-171
BACKGROUND: A variety of markers, including Ki67, estrogen receptors (ER), and progesterone receptors (PgR), are frequently measured in fine needle aspirates (FNA) from human breast carcinomas. We used a human breast carcinoma cell line, MCF7, as a model system to investigate the use of laser scanning cytometry (LSC) for the measurement of these markers. Additionally, we measured the number of apoptotic cells. METHODS: Cells were treated with drugs to vary the expression of markers and the number of apoptotic cells. They were then fixed on microscope slides. For LSC, the cells were stained for the different markers with fluorescein using immunofluorescence and for apoptotic cells using the TUNEL assay. The nuclei were counterstained with propidium iodide. A parallel set of slides was stained using horseradish peroxidase and diaminobenzidine and scored manually by conventional light microscopy. RESULTS: The results from the LSC closely paralleled those obtained by manual scoring of immunohistochemical stains. CONCLUSIONS: It should be possible to use LSC for the routine measurement of nuclear markers in FNAs from human breast carcinomas.  相似文献   

18.
Isolation of Bacillus subtilis genes from a charon 4A library.   总被引:31,自引:23,他引:8       下载免费PDF全文
A library of Bacillus subtilis chromosomal deoxyribonucleic acid (DNA) was constructed, using lambda charon 4A as a cloning vector. Partially cleaved Bacillus subtilis DNA was prepared by partial methylation with EcoRI methylase, followed by complete EcoRI endonuclease digestion. More than 95% of the phage particles carried B. subtilis DNA inserts. When this library was screened for transforming activity, using competent cells, 70% of the genetic markers tested were found in a sample of 1,710 plaques. Cloned genetic loci were found to be about 100-fold more efficient in transforming activity than chromosomal DNA. Intact phage particles containing the pheA locus were found to be able to transform competent recipients with approximately the same efficiency as phage DNA. Transformation by intact particles was insensitive to deoxyribonuclease.  相似文献   

19.
Wu DT  Seita Y  Zhang X  Lu CW  Roth MJ 《PloS one》2012,7(4):e34778
The identification of stem cells within a mixed population of cells is a major hurdle for stem cell biology--in particular, in the identification of induced pluripotent stem (iPS) cells during the reprogramming process. Based on the selective expression of stem cell surface markers, a method to specifically infect stem cells through antibody-conjugated lentiviral particles has been developed that can deliver both visual markers for live-cell imaging as well as selectable markers to enrich for iPS cells. Antibodies recognizing SSEA4 and CD24 mediated the selective infection of the iPS cells over the parental human fibroblasts, allowing for rapid expansion of these cells by puromycin selection. Adaptation of the vector allows for the selective marking of human embryonic stem (hES) cells for their removal from a population of differentiated cells. This method has the benefit that it not only identifies stem cells, but that specific genes, including positive and negative selection markers, regulatory genes or miRNA can be delivered to the targeted stem cells. The ability to specifically target gene delivery to human pluripotent stem cells has broad applications in tissue engineering and stem cell therapies.  相似文献   

20.
Modification of rectified Nomarski differential interference contrast optics (Nikon) and the epi-illumination system (Nikon IGS-cube) improved the detection of colloidal gold particles with analog video enhanced microscopy. Immuno-gold labelled microtubules of Haemanthus endosperm are visualized at a level of detection unmatched in conventional light microscopy. Single gold, or gold silver enhanced particles in suspension viewed with the modified epi-illumination after pressure injection into cells, are well distinguished from other granular cell components. Immuno-gold has also been detected on the surface of chromosomes and the nuclear envelopes in cells during the rapid experimental disassembly of microtubules. Thus, under certain conditions tubulin in a form other than microtubules may be detected. Practical applications of this "optical stain" for non fading immuno-gold 5-40 nm markers are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号