首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Estradiol valerate (EV)-induced polycystic ovaries (PCO) in rats are associated with higher ovarian release and content of norepinephrine, decreased beta2-adrenoceptors (ARs), and dysregulated expression of alpha1-AR subtypes, all preceded by an increase in the production of ovarian NGF. The aim of this study was to further elucidate the role of NGF in the ovaries by blocking the action of NGF during development of EV-induced PCO in rats. Control and EV-injected rats were treated with intraperitoneal injections of IgG (control and PCO groups) or with anti-NGF antibodies (anti-NGF and PCO anti-NGF groups) every third day for 5 wk starting from the day of PCO induction. Rat weight, estrous cyclicity, ovarian morphology, ovarian mRNA, and protein expression of alpha1-AR subtypes, beta2-AR, the NGF receptor tyrosine kinase A (TrkA), p75 neurotrophin receptor (p75NTR), and tyrosine hydroxylase (TH) were analyzed. Ovaries in both PCO and PCO anti-NGF groups decreased in size as well as in number and size of corpora lutea. mRNA expression of alpha1a-AR and TrkA in the ovaries was lower, whereas expression of alpha1b- and alpha1d-AR and TH was higher, in the PCO group than in controls. Protein quantities of alpha1-ARs, TrkA, p75NTR, and TH were higher in the PCO group compared with controls, whereas the protein content of beta2-AR was lower. Anti-NGF treatment in the PCO group restored all changes in mRNA and protein content, except that of alpha1b-AR and TrkA mRNAs, to control levels. The results indicate that the NGF/NGF receptor system plays a role in the pathogenesis of EV-induced PCO in rats.  相似文献   

2.
The hepatocytes express nerve growth factor (NGF) and its high affinity receptor tyrosine kinase A (TrkA). However, the link between NGF/TrkA system and hepatocyte proliferation in diabetic animals and the effects of exendin-4, a glucagon like peptide-1 (GLP-1) receptor agonist, on this system are not known. BALB/c male mice were divided into four groups. The first group was given citrate buffer only, the second group was administered exendin-4 alone, the third group received streptozotocin (STZ), and the fourth group was given both STZ and exendin-4. Exendin-4 (3 μg/kg) was administered by subcutaneous injection daily for 30 days after the animals were rendered diabetic by administration of STZ (200 mg/kg). With treatment of exendin-4 to the diabetic mice the following results were noted (i) NGF, TrkA and proliferating cell nuclear antigen positive hepatocytes were decreased; (ii) p75 neurotrophin receptor and caspase-3 positive hepatocyte could not be detected; (iii) liver alanine transaminase and aspartate transaminase activities, lipid peroxidation, protein carbonyl and myeloperoxidase levels were decreased; (iv) liver catalase, superoxide dismutase, glutathione peroxidase activities and glutathione levels were increased. These data suggest that exendin-4 might exerts its anti-proliferative action through blocking NGF/TrkA system and stimulating oxidative defense system in liver of diabetic mice.  相似文献   

3.
Mechanical stretch has been shown to increase vascular endothelial growth factor (VEGF) expression in cultured myocytes. Sympathetic neurons (SN) also possess the ability to express and secrete VEGF, which is mediated by the NGF/TrkA signaling pathway. Recently, we demonstrated that SN respond to stretch with an upregulation of nerve growth factor (NGF) and ciliary neurotrophic factor (CNTF). Whether stretch increases neuronal VEGF expression still remains to be clarified. Therefore, SN from the superior cervical ganglia of neonatal Sprangue Dawley rats were exposed to a gradual increase of stretch from 3% up to 13% within 3 days (3%, 7% and 13%). Under these conditions, the expression and secretion of VEGF was analyzed. Mechanical stretch significantly increased VEGF mRNA and protein expression (mRNA: control = 1 vs. stretch = 3.1; n = 3/protein: control = 1 vs. stretch = 2.7; n = 3). ELISA experiments to asses VEGF content in the cell culture supernatant showed a time and dose dependency in VEGF increment due to stretch. NGF and CNTF neutralization decreased stretch-induced VEGF augmentation in a significant manner. This response was mediated in part by TrkA receptor activation. The stretch-induced VEGF upregulation was accompanied by an increase in HIF-1α expression. KDR levels remained unchanged under conditions of stretch, but showed a significant increase due to NGF neutralization. In summary, SN respond to stretch with an upregulation of VEGF, which is mediated by the NGF/CNTF and TrkA signaling pathway paralleled by HIF-1α expression. NGF signaling seems to play an important role in regulating neuronal KDR expression.  相似文献   

4.
Arsenic (As) toxicity through induction of oxidative stress is a well-known mechanism of organ toxicity. To address this problem, buffalo epiphyseal proteins (BEP, at 100 μg/kg BW, i.p. for 28 days) were administered intraperitoneally to female Wistar rats exposed to As (100 ppm sodium arsenite via drinking water for 28 days). Arsenic exposure resulted in marked elevation in lipid peroxidation in brain, cardiac, and hepatic tissues, whereas significant (p < 0.05) adverse change in catalase, superoxide dismutase, glutathione reductase, glutathione peroxidase, and reduced glutathione level were observed in cardiac, hepatic, and brain tissues of As-administered animals. BEP significantly (p < 0.05) counteracted all the adverse changes in antioxidant defense system brought about by As administration. Based on these results, we consider BEP as a potent antioxidant to be used for protection from arsenic-induced oxidative stress related damage of vital organs.  相似文献   

5.
To investigate the efficacy of sacral nerve stimulation (SNS) on nerve growth factor (NGF) mediated visceral sensitivity in normal rat and visceral hypersensitivity model rats. 120 male newborn rats were randomly divided into 6 groups: group A was normal model group; group B ~ F were all sensitized with acetic acid enema and grouped again. Group c2 was given NGF antagonist, d2 group was given NGF agonist, e2 group was given PI3K inhibitor, and f2 group was given PLC‐γ inhibitor. After treatment, the expression of NGF, TrKA, PI3K, AKT, PLC‐γ, NF‐κB, TRPV1, pTRPV1 and intracellular Ca2+ content were detected. The expression of protein TRPV1 and pTRPV1 was increased, and Ca2+ was increased in the visceral hypersensitive group. NGF, TrKA in NGF antagonist group, PI3K, AKT, NF‐κB in PI3K inhibitor group, PLC‐γ in PLC‐γ inhibitor group were all almost not expressed. The relative expression of NGF, TrKA, PI3K, AKT, PLC‐γ and NF‐κB in NGF antagonist group was lower than that in visceral hypersensitivity group and NGF activator group (P < .01). The relative expression of NGF, TrKA, PI3K and AKT mRNA in NGF antagonist group was lower than that in the normal model group (P < .01). There was no significant difference in the relative expression of PLC‐γ and NF‐κB mRNA (P > .05). The expression level of MAPK, ERK1 and ERK2 in visceral hypersensitivity group was higher than that in PI3K inhibitor group and PLC‐γ inhibitor group. The normal group Ca2+ curve was flat, and the NGF agonist group had the highest Ca2+ curve peak. Calcium concentration in visceral hypersensitivity group was higher than that in PI3K inhibitor group and that in PLC‐γ inhibitor group was higher than that in NGF antagonist group. The binding of TrkA receptor to NGF activates the MAPK/ERK pathway, the PI3K/Akt pathway and the PLC‐γ pathway, causing changes in the fluidity of intracellular and extracellular Ca2+, resulting in increased sensitivity of visceral tissues and organs.  相似文献   

6.
7.

Background

Niemann-Pick type C disease (NPC) is a neurovisceral lipid storage disorder mainly characterized by unesterified cholesterol accumulation in lysosomal/late endosomal compartments, although there is also an important storage for several other kind of lipids. The main tissues affected by the disease are the liver and the cerebellum. Oxidative stress has been described in various NPC cells and tissues, such as liver and cerebellum. Although considerable alterations occur in the liver, the pathological mechanisms involved in hepatocyte damage and death have not been clearly defined. Here, we assessed hepatic tissue integrity, biochemical and oxidative stress parameters of wild-type control (Npc1 +/+; WT) and homozygous-mutant (Npc1 −/−; NPC) mice. In addition, the mRNA abundance of genes encoding proteins associated with oxidative stress, copper metabolism, fibrosis, inflammation and cholesterol metabolism were analyzed in livers and cerebella of WT and NPC mice.

Methodology/Principal Findings

We analyzed various oxidative stress parameters in the liver and hepatic and cerebellum gene expression in 7-week-old NPC1-deficient mice compared with control animals. We found signs of inflammation and fibrosis in NPC livers upon histological examination. These signs were correlated with increased levels of carbonylated proteins, diminished total glutathione content and significantly increased total copper levels in liver tissue. Finally, we analyzed liver and cerebellum gene expression patterns by qPCR and microarray assays. We found a correlation between fibrotic tissue and differential expression of hepatic as well as cerebellar genes associated with oxidative stress, fibrosis and inflammation in NPC mice.

Conclusions/Significance

In NPC mice, liver disease is characterized by an increase in fibrosis and in markers associated with oxidative stress. NPC is also correlated with altered gene expression, mainly of genes involved in oxidative stress and fibrosis. These findings correlate with similar parameters in cerebellum, as has been previously reported in the NPC mice model.  相似文献   

8.
The induction of oxidative stress precedes liver injury during experimental obstructive jaundice (OJ). In this sense, different evidences suggest that melatonin (MEL), as antioxidant, may be useful in the protection against apoptosis and necrosis during experimental cholestasis. In addition, we will also assess if MEL-dependent protection is related to a recovery of antioxidant status disturbances induced by OJ. Cholestasis was achieved by double ligature and sectioning of the principal bile duct. MEL was injected intraperitoneally (500?μg/kg/day). Lipid peroxidation was evaluated by the measurement of malondialdehyde (MDA) content in liver. Different parameters related to antioxidant status, such as reduced glutathione (GSH), glutathione peroxidase (GPx), catalase and superoxide dismutase (SOD) were determined in liver. Liver injury was assessed by alanine aminotransferase (ALT) in serum, histological examination, DNA fragmentation and TUNEL assay. The activation of perisinusoidal stellate cells was evaluated by immunohistochemical measurement of α-smooth muscle actin in liver sections. The induction of OJ increased all the parameters related to apoptosis and necrosis in liver. The induction of liver injury was associated with stellate cell activation, as well as an increase in MDA (p<0.0001) and a reduction in GSH, GPx, catalase and SOD content (p<0.0001) in liver. MEL reduced hepatic apoptosis and necrosis (p<0.004) with a significant improvement in all oxidative stress markers. In conclusion, our results showed that MEL recovered the antioxidant status and reduced apoptosis and necrosis induced by experimental cholestasis.  相似文献   

9.
Acetyl-l-carnitine (ALCAR) has been shown to prevent experimental selenite cataractogenesis, a manifestation of oxidative stress, but little is known about its potential in other settings of oxidative stress. The present study was based on the hypothesis that ALCAR prevents carbon tetrachloride (CCl4)-induced oxidative stress in vital tissues. Male albino Wistar rats were divided into three groups, each of six rats. Group I (control) rats received only vehicle (1 ml/kg b.w.) for 4 days; Group II (CCl4-exposed, untreated) rats received CCl4 (2 ml/kg b.w.) on the second and third days and vehicle on the first and fourth days; Group III (CCl4-exposed, ALCAR-treated) rats received ALCAR (200 mg/kg b.w.) for 4 days and CCl4 on the second and third days. All administrations were made intraperitoneally. After the experimental period, significantly (P < 0.05) elevated mean serum levels of aspartate transaminase, alanine transaminase, alkaline phosphatase, and lactate dehydrogenase were observed in Group II rats when compared to Group I and Group III rats. The mean levels of vitamin C, vitamin E, and reduced glutathione and the mean activities of superoxide dismutase, catalase, and glutathione peroxidase were significantly (P < 0.05) lower in samples of hemolysate and of liver, kidney, and brain tissues of Group II rats than those in Group I and Group III rats. The mean level of lipid peroxidation was significantly (P < 0.05) higher in Group II rats than that in Group I and Group III rats. Moreover, the CCl4-induced upregulation of inducible nitric oxide synthase expression was prevented by ALCAR in the liver and brain tissues. These results suggest that ALCAR is able to prevent the CCl4-induced oxidative stress.  相似文献   

10.
Background: Carnosol is an ortho-diphenolic diterpene with excellent antioxidant potential. The present study was designed to identify the protective role of carnosol against spinal cord injury (SCI)-induced oxidative stress and inflammation in Wistar rats. Methods: In the present study, oxidative stress status was determined through estimating total antioxidant capacity, total oxidant status, lipid peroxide content, protein carbonyl and sulfhydryl levels, reactive oxygen species (ROS), antioxidant status (superoxide-dismutase, catalase, glutathione, glutathione peroxidase, glutathione-S-transferase). Inflammatory effects were determined by analyzing the expression of NF-κB and COX-2 through Western blot analysis. Further, carnosol-mediated redox homeostasis was analyzed by determining p-AKT and Nrf-2 levels. Results: SCI resulted in a significant increase in oxidative stress status through increased ROS generation, total oxidant levels, lipid peroxide content, protein carbonyl and sulfhydryl levels. The antioxidant status in SCI rats was significantly reduced, indicating imbalance in redox status. In addition, the expression of NF-κB and COX-2 was significantly upregulated, while p-AKT and Nrf-2 levels were downregulated in SCI rats. However, treatment with carnosol showed a significant enhancement in the antioxidant status with concomitant decline in oxidative stress parameters. Further, carnosol treatment regulated the key proteins in inflammation and redox status through significant downregulation of NF-κB and COX-2 levels and upregulation of p-AKT and Nrf-2 expression. Conclusion: Thus, the present study shows for the first time on the protective role of carnosol against SCI-induced oxidative stress and inflammation through modulating NF-κB, COX-2 and Nrf-2 levels in Wistar rats.  相似文献   

11.
Natural melanin was extracted from Lachnum YM156 (LIM). LIM had better thermostability and light resistance, and its solubility was relatively high under alkaline conditions. Simultaneously, we examined its hepatoprotective effect in Cd-exposure mice. Cd-exposure resulted in decreasing weight growth rate, raised liver index, elevated serum levels of alanine aminotransferase (ALT) and aspartate aminotransaminase (AST), and increased Cd accumulation in livers. Hepatic oxidative stress was evidenced by increased malondialdehyde (MDA) contents, decreased glutathione (GSH) contents, and decreased activities of dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) after CdCl2 administration. Additionally, Cd-exposure also increased the liver level of tumor necrosis factor (TNF)-α and interleukin(IL)-1β. Furthermore, the result of quantitative real-time polymerase chain reaction(qRT-PCR) showed that Cd-exposure reduced the mRNA expression level of NF-E2-related factor 2 (Nrf2), heme oxygenase (HO-1), NADPH quinone oxidoreductase 1 (NQO-1), and elevated the mRNA expression level of factor-kappaB (NF-κB) p65, inducible nitric oxide synthase (iNOS) in livers. However, all these changes were dose-dependently reversed by LIM. Overall, the present findings demonstrated that LIM have the hepatoprotective effect through antioxidant and anti-inflammatory responses in Cd-exposure mice.  相似文献   

12.
INTRODUCTION: Recent studies have shown that neurotrophins (NTs) are involved in inflammatory processes. Elevated plasma levels of NTs were found allergic diseases with the highest levels in allergic asthma. However, the exact cellular sources involved in the regulation and release of neurotrophins in allergic inflammation are still not well defined. OBJECTIVE: The aim of this study was to assess whether monocytes of allergic and non-allergic subjects produce, store and release the neurotrophins NGF, BDNF and NT-3. METHODS: Monocytes of allergic and non-allergic donors were purified by immunomagnetic selection. APAAP-staining for the presence of NTs and their receptors was performed. RT-PCR and Western blot evaluated the production and storage of NTs. Monocytes were incubated and supernatants were collected for measurement of neurotrophic factors after stimulation with lipopolysaccharide (LPS) as inflammatory stimulus. The neurotrophin content in lysates and cell culture supernatants was determined by ELISA. RESULTS: Human monocytes express the neurotrophins NGF, BDNF and NT-3 but also their specific receptors TrkA, TrkB and TrkC. RT-PCR amplification of isolated mRNA demonstrated expression of the examined neurotrophins. Proteins were detectable by Western blot. NTs were found in the monocyte lysates and supernatants at different levels in allergic and non-allergic donors. Cell stimulation with LPS leads to release of NGF and NT3. CONCLUSIONS: Monocytes, produce, store and release NGF, BDNF and NT-3. They are a possible source of elevated neurotrophin levels found in allergy and asthma.  相似文献   

13.
Transactivation is a process whereby stimulation of G-protein-coupled receptors (GPCR) activates signaling from receptors tyrosine kinase (RTK). In neuronal cells, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) acting through the GPCR VPAC-1 exerts trophic effects by transactivating the RTK TrkA receptor for the nerve growth factor (NGF). Both PACAP and NGF have pro-inflammatory activities on monocytes. We have tested the possibility that in monocytes, PACAP, as reported in neuronal cells, uses NGF/TrkA signaling pathway. In these cells, PACAP increases TrkA tyrosine phosphorylations through a PI-3kinase dependent but phospholipase C independent pathway. K252a, an inhibitor of TrkA decreases PACAP-induced Akt and ERK phosphorylation and calcium mobilisation resulting in decreases in intracellular H2O2 production and membrane upregulation of CD11b expression, both functions being inhibited after anti-NGF or anti-TrkA antibody treatment. K252a also inhibits PACAP-associated NF-KB activity. Monocytes increase in NGF production is seen after micromolar PACAP exposure while nanomolar treatment which desensitizes cells to high dose of PACAP prevents PACAP-induced TrkA phosphorylation, H2O2 production and CD11b expression. Finally, NGF-dependent ERK activation and H2O2 production is pertussis toxin sensitive. Altogether these data indicate that in PACAP-activated monocytes some pro-inflammatory activities occur through transactivation mechanisms involving VPAC-1, NGF and TrkA-associated tyrosine kinase activity.  相似文献   

14.
Abstract

Objectives

Ionizing radiation induces severe oxidative stress in the body resulting an imbalance in prooxidant and antioxidant status in the cell. The aim of the present study is to investigate the protective effect of polysaccharide protein complex (PPC-Pr) isolated from the mushroom Phellinus rimosus against the oxidative stress induced by gamma radiation.

Methodology

PPC-Pr complex was isolated from the aqueous extracts of P. rimosus. The complex was administered to Swiss albino mice at a concentration of 5 and 10 mg/kg body weight intraperitoneally for 5 days consecutively and exposed to 4 Gy of gamma irradiation. Animals were sacrificed 1 day after irradiation and the antioxidant parameters such as glutathione, glutathione peroxidase, superoxide dismutase, catalase, glutathione reductase as well as lipid peroxidation were evaluated in both liver and brain tissues to evaluate oxidative stress. Amifostine, a standard radioprotective agent, was used as a positive control. In vitro DNA damage was assessed using the comet assay. Survival studies were also carried out to determine the protective role of PPC-Pr against radiation-induced delayed oxidative stress.

Results

PPC-Pr treatment enhanced the declined levels of antioxidants and comet parameters to a significant level, indicating its antioxidant as well as DNA protecting potential. Significant increase in the survival rate of animals was also observed in irradiated animals treated with PPC-Pr complex. The results were comparable to the standard drug amifostine.

Discussion

The results indicate profound effects of PPC-Pr against radiation-induced oxidative stress. The findings suggest potential therapeutic use of PPC-Pr in radiotherapy.  相似文献   

15.
This study aimed to investigate whether treatments with vitamin E, L-carnitine and melatonin can protect against CCl4 and diabetes-induced hepatic oxidative stress. Hepatic oxidative stress was performed in rats through 50% v/v carbon tetrachloride (CCl4) (1 ml/kg/3days, i.p.), and through diabetes mellitus induced by streptozotocin (STZ) (40 mg/kg, i.p.). Vitamin E (100 mg/kg/day, i.p), L-carnitine (300 mg/kg/day, i.p.) and melatonin (10 mg/kg/day, i.p.) were injected for a period of 6 weeks. Thereafter, changes in serum glucose level, liver function tests, hepatic malondialdehyde (MDA) content, hepatic reduced glutathione (GSH) content, hepatic superoxide dismutase (SOD) activity, and serum total antioxidant capacity (TAC) level were evaluated. In CCl4-induced liver fibrosis, the efficacy order was melatonin > L-carnitine > vitamin E, while in STZ-induced diabetes, the efficacy order was vitamin E ≥ melatonin > L-carnitine. In conclusion, these data indicate that low dose of melatonin is more effective than high doses of vitamin E and L-carnitine in reducing hepatic oxidative stress induced by CCl4 and diabetes. Moreover, the potent effect of vitamin E in ameliorating diabetes can be linked not only to the antioxidant actions, but also to the superior effect in reducing diabetes-induced hyperglycaemia. Meanwhile, potency of L-carnitine was nearly the same in CCl4 and diabetes-induced liver damage.  相似文献   

16.
The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p < 0.05) increased in acetaminophen-treated fish tissues. The elevated levels of these enzymes were significantly controlled by the treatment of T. terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.  相似文献   

17.
d-galactose (GAL) causes aging-related changes and oxidative stress in the organism. We investigated the effect of carnosine (CAR) or taurine (TAU), having antioxidant effects, on hepatic injury and oxidative stress in GAL-treated rats. Rats received GAL (300 mg/kg; s.c.; 5 days/week) alone or together with CAR (250 mg/kg/daily; i.p.; 5 days/week) or TAU (2.5 % w/w; in rat chow) for 2 months. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA), protein carbonyl (PC) and glutathione (GSH) levels and superoxide dismutase (SOD), glutathione peroxidase (GSH-0050x), and glutathione transferase (GST) activities were determined. Hepatic expressions of B cell lymphoma-2 (Bcl-2), Bax and Ki-67 were evaluated. Serum ALT, AST, hepatic MDA, and PC levels were observed to increase in GAL-treated rats. Hepatic Bax expression, but not Bcl-2, increased, Ki-67 expression decreased. GAL treatment caused decreases in GSH levels, SOD and GSH-Px activities in the liver. Hepatic mRNA expressions of SOD, but not GSH-Px, also diminished. CAR or TAU treatments caused significant decreases in serum ALT and AST activities. These treatments decreased apoptosis and increased proliferation and ameliorated histopathological findings in the livers of GAL-treated rats. Both CAR and TAU reduced MDA and PC levels and elevated GSH levels, SOD and GSH-Px (non significant in TAU?+?GAL group) activities. These treatments did not alter hepatic mRNA expressions of SOD and GSH-Px enzymes. Our results indicate that CAR and TAU restored liver prooxidant status together with histopathological amelioration in GAL-induced liver damage.  相似文献   

18.
N-Nitrosodiethylamine (DEN) is a notorious carcinogen, present in many environmental factors. DEN induces oxidative stress and cellular injury due to enhanced generation of reactive oxygen species; free radical scavengers protect the membranes from DEN-induced damage. The present study was designed to evaluate the protective effect of bacoside A (the active principle isolated from Bacopa monniera Linn.) on carcinogen-induced damage in rat liver. Adult male albino rats were pretreated with 15 mg/kg body weight/day of bacoside A orally (for 14 days) and then intoxicated with single necrogenic dose of N-nitrosodiethylamine (200 mg/kg bodyweight, intraperitonially) and maintained for 7 days. The liver weight, lipid peroxidation (LPO), and activity of serum marker enzymes (aspartate transaminases, alanine transaminases, lactate dehydrogenase, alkaline phosphatase, and γ-glutamyl transpeptidase) were markedly increased in carcinogen-administered rats, whereas the activities of marker enzymes were near normal in bacoside A-pretreated rats. Activities of antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutatione-S-transferase, and reduced glutathione) in liver also decreased in carcinogen-administered rats, which were significantly elevated in bacoside A-pretreated rats. It is concluded that pretreatment of bacoside A prevents the elevation of LPO and activity of serum marker enzymes and maintains the antioxidant system and thus protects the rats from DEN-induced hepatotoxicity.  相似文献   

19.
Tamarix gallica, a hepatic stimulant and tonic, was examined for its ability to inhibit thioacetamide (TAA)-induced hepatic oxidative stress, toxicity and early tumor promotion response in male Wistar rats. TAA (6.6 mmol/kg body wt. i.p) enhanced lipid peroxidation, hydrogen peroxide content, glutathione S-transferase and xanthine oxidase with reduction in the activities of hepatic antioxidant enzymes viz., glutathione peroxidase, superoxide dismutase and caused depletion in the level of hepatic glutathione content. A marked increase in liver damage markers was also observed. TAA treatment also enhanced tumor promotion markers, ornithine decarboxylase (ODC) activity and [3H] thymidine incorporation into hepatic DNA. Pretreatment of rats orally with Tamarix gallica extract (25 and 50 mg/kg body weight) prevented TAA-promoted oxidative stress and toxicity. Prophylaxis with Tamarix gallica significantly reduced the susceptibility of the hepatic microsomal membrane for iron-ascorbate induced lipid peroxidation, H2O2 content, glutathione S-transferase and xanthine oxidase activities. There was also reversal of the elevated levels of liver marker parameters and tumor promotion markers. Our data suggests that Tamarix gallica is a potent chemopreventive agent and may suppress TAA-mediated hepatic oxidative stress, toxicity, and tumor promotion response in rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号