首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fast method for preparing Ca2+-ATPase from rabbit muscle sarcoplasmic reticulum was devised. The method involves extracting extrinsic membrane proteins with the non-ionic detergent octylglucoside at high salt concentration. A Ca2+-ATPase of consistently high specific activity (about 25 mumoles/mg.min) is found in the insoluble residue. The method was optimized with respect to the concentrations of detergent and salt, pH, and other extraction conditions. By the criteria of the protein pattern in SDS-polyacrylamide gel electrophoresis, dependence of the hydrolytic activity on the presence of Ca2+, and the phosphoprotein formation, the preparation is identical with the Ca2+-ATPase isolated previously by MacLennan [10] and other authors. The main advantages of the new method are its rapidity, its reliability, and the high specific activity of the purified enzyme.  相似文献   

2.
Kasai M  Muto S 《Plant physiology》1991,96(2):565-570
The Ca2+ transport system of corn (Zea mays) leaf plasma membrane is composed of Ca2+ pump and Ca2+/H+ antiporter driven by H+ gradient imposed by a H+ pump (M Kasai, S Muto [1990] J Membr Biol 114: 133-142). It is necessary for characterization of these Ca2+ transporters to establish the procedure for their solubilization, isolation, and reconstitution into liposomes. We attempted to solubilize and reconstitute the Ca2+ pump in the present study. A nonionic detergent octaethyleneglycol monododecyl ether (C12E8) was the most effective detergent for a series of extraction and functional reconstitution of the Ca2+ pump among seven detergents examined. This was judged from activities of ATP-dependent 45Ca2+ uptake into liposomes reconstituted with the respective detergent-extract of the plasma membrane by the detergent dilution method. C12E8-extract of the plasma membrane was subjected to high performance liquid chromatography using a DEAE anion exchange column. Ca2+-ATPase was separated from VO43−-sensitive Mg2+-ATPase. These ATPases were separately reconstituted into liposomes, and their ATP-dependent Ca2+ uptake was measured. The liposomes reconstituted with the Ca2+-ATPase, but not with the VO43−-sensitive Mg2+-ATPase, showed ATP-dependent Ca2+ uptake. Nigericin-induced pH gradient (acid inside) caused only a little Ca2+ uptake into liposomes reconstituted with the Ca2+-ATPase, suggesting that the Ca2+/H+ antiporter was not present in the preparation. These results indicate that the Ca2+-ATPase actually functions as Ca2+ pump in the corn leaf plasma membrane.  相似文献   

3.
On solubilization with Triton X-100 of sarcoplasmic reticulum vesicles isolated by differential centrifugation, the Ca2+-ATPase is selectively extracted while approximately half of the initial Mg2+-, or ‘basal’, ATPase remains in the Triton X-100 insoluble residue. The insoluble fraction, which does not contain the 100 000 dalton polypeptide of the Ca2+-ATPase, contains high levels of cytochrome c oxidase. Furthermore, its Mg2+-ATPase activity is inhibited by specific inhibitors of mitochondrial ATPase, indicating that the ‘basal’ ATPase separated from the Ca2+-ATPase by detergent extraction originates from mitochondrial contaminants.To minimize mitochondrial contamination, sarcoplasmic reticulum vesicles were fractionated by sedimentation in discontinuous sucrose density gradients into four fractions: heavy, intermediate and light, comprising among them 90–95% of the initial sarcoplasmic reticulum protein, and a very light fraction, which contains high levels of Mg2+-ATPase. Only the heavy, intermediate and light fractions originate from sarcoplasmic reticulum; the very light fraction is of surface membrane origin. Each fraction of sarcoplasmic reticulum origin was incubated with calcium phosphate in the presence of ATP and the loaded fractions were separated from the unloaded fractions by sedimentation in discontinuous sucrose density gradients. It was found that vesicles from the intermediate fraction had, after loading, minimal amounts of mitochondrial and surface membrane contamination, and displayed little or no Ca2+-independent basal ATPase activity. This shows conclusively that the basal ATPase is not an intrinsic enzymatic activity of the sarcoplasmic reticulum membrane, but probably originates from variable amounts of mitochondrial and surface membrane contamination in sarcoplasmic reticulum preparations isolated by conventional procedures.  相似文献   

4.
亲和层析纯化肌质网Ca2+-ATP酶   总被引:1,自引:1,他引:0  
建立了一种亲和层析纯化肌质网Ca2+-ATP酶的方法.用非离子型去污剂C12E8 溶解肌质网,再通过反应红-120琼脂糖亲和层析柱使肌质网Ca2+-ATP酶纯度从粗品中的65%提高到99%,并具有较高ATP水解活性.经SDS-聚丙烯酰胺凝胶电泳检测,为电泳纯.  相似文献   

5.
应用生物膜的分离与重建技术, 将GM3、大豆磷脂与肌质网Ca2+-ATP酶共同重建在脂质体上, 酶活力明显增加. 经负染、冷冻断裂复型后电镜等形态学方法证实形成的脂酶体囊泡封闭性好,脂酶体上Ca2+-ATP酶蛋白颗粒均匀、直径增大.  相似文献   

6.
We have compared effects of dimethylsulfoxide (Me2SO) and two polyols on the Ca2+-ATPase purified from human erythrocytes. As studied under steady-state conditions over a broad solute concentration range and temperature, Me2SO, glycerol, and xylitol do not inhibit the Ca2+-ATPase activity; this is in contrast to numerous other organic solutes that we have investigated. Under specific experimental conditions, Me2SO (but not glycerol) substantially increases Ca2+-ATPase activity, suggesting a possible facilitation of enzyme oligomerization. The activation is more pronounced at low Ca2+ concentrations. In contrast to glycerol, Me2SO shows no protective effect on enzyme structure as assessed by determining residual Ca2+-ATPase activity after exposing the enzyme to thermal denaturation at 45°C. Under these conditions several other organic solutes strongly enhance the denaturating effect of temperature. Because of the temperature dependence of its effect on the Ca2+-ATPase activity we believe that Me2SO activates the Ca2+-ATPase by indirect water-mediated interactions.  相似文献   

7.
The presence of an energy-dependent calcium uptake system in adipocyte endoplasmic reticulum (D. E. Bruns, J. M. McDonald, and L. Jarett, 1976, J. Biol. Chem.251, 7191–7197) suggested that this organelle might possess a calcium-stimulated transport ATPase. This report describes two types of ATPase activity in isolated microsomal vesicles: a nonspecific, divalent cation-stimulated ATPase (Mg2+-ATPase) of high specific activity, and a specific, calcium-dependent ATPase (Ca2+ + Mg2+-ATPase) of relatively low activity. Mg2+-ATPase activity was present in preparations of mitochondria and plasma membranes as well as microsomes, whereas the (Ca2+ + Mg2+)-ATPase activity appeared to be localized in the endoplasmic reticulum component of the microsomal fraction. Characterization of microsomal Mg2+-ATPase activity revealed apparent Km values of 115 μm for ATP, 333 μm for magnesium, and 200 μm for calcium. Maximum Mg2+-ATPase activity was obtained with no added calcium and 1 mm magnesium. Potassium was found to inhibit Mg2+-ATPase activity at concentrations greater than 100 mm. The energy of activation was calculated from Arrhenius plots to be 8.6 kcal/mol. Maximum activity of microsomal (Ca2+ + Mg2+)-ATPase was 13.7 nmol 32P/mg/min, which represented only 7% of the total ATPase activity. The enzyme was partially purified by treatment of the microsomes with 0.09% deoxycholic acid in 0.15 m KCl which increased the specific activity to 37.7 nmol 32P/mg/min. Characterization of (Ca2+ + Mg2+)-ATPase activity in this preparation revealed a biphasic dependence on ATP with a Hill coefficient of 0.80. The apparent Kms for magnesium and calcium were 125 and 0.6–1.2 μm, respectively. (Ca2+ + Mg2+)-ATPase activity was stimulated by potassium with an apparent Km of 10 mm and maximum activity reached at 100 mm potassium. The energy of activation was 21.5 kcal/mol. The kinetics and ionic requirements of (Ca2+ + Mg2+)-ATPase are similar to those of the (Ca2+ + Mg2+)-ATPase in sarcoplasmic reticulum. These results suggest that the (Ca2+ + Mg2+)-ATPase of adipocyte endoplasmic reticulum functions as a calcium transport enzyme.  相似文献   

8.
Summary The Ca2+-ATPase from rat liver microsomes has been solubilized in Triton X-100 and purified to homogeneity by ficollsucrose treatment, column chromatography with agarose-hexane adenosine 5-triphosphate Type 2, and high pressure liquid chromatography (HPLC). The purified enzyme obtained by this sequential procedure exhibited a 183-fold increase in specific activity. After ficoll-sucrose treatment, the activity of the Ca2+-ATPase was stable for at least two weeks when stored at –70°C. In SDS-polyacrylamide gels, several fractions from HPLC chromatography showed a single band at a position corresponding to a molecular weight of about 107 kDa. This value is consistent with the molecular weight of the phosphoenzyme intermediate of endoplasmic reticulum (ER) Ca2+-ATPase. Further characterization of the ER Ca2+-ATPase was performed by western immunoblots. Antiserum raised against the 100-kDa sarcoplasmic reticulum (SR) Ca2+-ATPase cross-reacted with the purified Ca2+-ATPase from rat liver ER membranes.  相似文献   

9.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

10.
The effect of calcium and a soluble cytoplasmic activator on (Ca2+ + Mg2+)-ATPase of density-separated human red cells was investigated. At all calcium concentrations tested, dense (old) lysed cells and their isolated membranes displayed lower activities as compared to the light (young) cells and their membranes. Isolated membranes from all density red cell fractions showed two distinct (Ca2+ + Mg2+)-ATPase activities; one at low calcium and another at moderate calcium concentrations. At high calcium concentration, (Ca2+ + Mg2+)-ATPase activity of isolated membranes was low in all cell fractions. In contrast to the isolated membranes, lysed cells from all density fractions had a maximum (Ca2+ + Mg2+)-ATPase activity only at a low concentration of calcium, while moderate and high calcium concentrations produced low activity. Upon isolation of membranes, a substantial loss of (Ca2+ + Mg2+)-ATPase activity took place from all density cell fractions. Upon membrane isolation, the relative loss of (Ca2+ + Mg2+)-ATPase activity at low Ca2+ concentration was greater in older cells. The extent of stimulation of (Ca2+ + Mg2+)-ATPase by the activator at low calcium concentration was 3–4-fold greater in older cell membranes than in the young ones.These data suggest that the lower (Ca2+ + Mg2+)-ATPase activity in old cells could be accounted for by a selective loss of (Ca2+ + Mg2+)-ATPase activity at low Ca2+ concentration presumably due to reduced affinity of old cell membranes to activator protein.  相似文献   

11.
Manuel J. Datiles 《BBA》2008,1777(4):362-368
Melittin, a cationic, amphiphilic polypeptide, has been reported to inhibit the ATPase activity of the catalytic portions of the mitochondrial (MF1) and chloroplast (CF1) ATP synthases. Gledhill and Walker [J.R. Gledhill, J.E. Walker. Inhibition sites in F1-ATPase from bovine heart mitochondria, Biochem. J. 386 (2005) 591-598.] suggested that melittin bound to the same site on MF1 as IF1, the endogenous inhibitor polypeptide. We have studied the inhibition of the ATPase activity of CF1 and of F1 from Escherichia coli (ECF1) by melittin and the cationic detergent, cetyltrimethylammonium bromide (CTAB). The Ca2+- and Mg2+-ATPase activities of CF1 deficient in its inhibitory ε subunit (CF1-ε) are sensitive to inhibition by melittin and by CTAB. The inhibition of Ca2+-ATPase activity by CTAB is irreversible. The Ca2+-ATPase activity of F1 from E. coli (ECF1) is inhibited by melittin and the detergent, but Mg2+-ATPase activity is much less sensitive to both reagents. The addition of CTAB or melittin to a solution of CF1-ε or ECF1 caused a large increase in the fluorescence of the hydrophobic probe, N-phenyl-1-naphthylamine, indicating that the detergent and melittin cause at least partial dissociation of the enzymes. ATP partially protects CF1-ε from inhibition by CTAB. We also show that ATP can cause the aggregation of melittin. This result complicates the interpretation of experiments in which ATP is shown to protect enzyme activity from inhibition by melittin. It is concluded that melittin and CTAB cause at least partial dissociation of the α/β heterohexamer.  相似文献   

12.
Antibodies raised in rabbits against the purified erythrocyte membrane Ca2+ pumping ATPase were affinity-purified using an ATPase-Sepharose column. Addition of a few molecules of the purified antibody per molecule of ATPase was sufficient to inhibit the ATPase activity. Extensively washed ghosts or preincubated pure ATPase sometimes develop an appreciable Mg2+-ATPase activity. In such cases, the antibodies inhibited the Mg2+-ATPase as well as the Ca2+-ATPase. This is consistent with the hypothesis that a portion of the Mg2+-ATPase activity of ghosts is derived from the Ca2+-ATPase. When nitrophenylphosphatase activity was observed, both Mg2+ - and Ca2+-stimulated activities were observed. Only the Ca2+ activity was inhibited by the antibodies, confirming that this activity is due to the Ca2+ pump, and suggesting that the Mg2+-nitrophenylphosphatase is due to a separate enzyme. Amounts of antibody comparable to those which inhibited the Ca2+-ATPases had no effect on the Na+-K+-ATPase; 4-fold higher amounts of antibody significantly stimulated the Na+-K+-ATPase, but this effect of the antibody was not specific: Immunoglobulins from the nonimmune serum also significantly stimulated the Na+-K+-ATPase.In resealed erythrocyte membranes, antibodies incorporated into the ghosts inactivated the Ca2+-ATPase, while antibodies added to the outside had no significant effect.  相似文献   

13.
Summary Membrane-bound Ca2+-ATPase activity was localized cytochemically in the blood vessels of the spinal cord of rat embryos to obtain a better understanding of the membrane activities of vascular cells.The cytochemical method revealed a growth of the parenchymal vasculature. In the parenchyma, reaction product was dense over the entire plasma membrane of voluminous endothelial cells provided with large nuclei and enriched cytoplasmic organelles, suggesting that the endothelial cells may be of a vascular sprout. The parenchymal vessels with a wide lumen were frequently associated with pericytes, and the Ca2+-ATPase activity was diminished in intensity on the luminal surface of the flattened endothelial cells. On the other hand, the endothelium of extraparenchymal capillaries exhibited Ca2+-ATPase activity primarily on the luminal surface of the plasma membrane. Quercetin, a Ca2+-transporting ATPase inhibitor, considerably decreased the abluminal activity in the voluminous endothelial cells with slit-like vascular lumen and the luminal activity of functioning capillary endothelium as well. Thus, a dual activity of Ca2+-ATPase, postulating for the activities of Ca2+-transporting ATPase and ecto-ATPase, was closely correlated with the maturation processes of the capillary endothelium.  相似文献   

14.
Plant cells frequently and rapidly have to respond to environmental changes for survival. Regulation of transport and other energy-requiring processes in the plasmalemma of root cells is therefore one important aspect of the ecological adaptation of plants. Wheat (Triticum aestivum L. cv. Drabant) was grown hydroponically, with or without 50 nM benzyladenine in the medium, and plasma membranes from root cells of 8-day-old plants were prepared by aqueous polymer two-phase partitioning. The influence of Ca2+ and Mg2+ on the plasmalemma ATPase activities was investigated. The presence of benzyladenine during growth increased the ATPase activity, that dependent upon Ca2+ more than that elicited by Mg2+. As a general characteristic, ATP was the preferred substrate, but all nucleotide tri- and diphosphates could be accepted with activities in plasma membranes from control plants of 7-36% (Mg2+) and 40-86% (Ca2+) and in plasma membranes from benzyladenine-treated plants of 12-47% (Mg2+) and 53-102% (Ca2+) as compared with activities obtained with ATP. Nucleotidemonophosphates were not hydrolyzed by the preparations. In preparations from benzyladenine-treated plants one peak of Ca2+-ATPase at pH 5.2–5.6, with a tail from pH 6 and upwards, and one peak of Mg2+-ATPase at pH 6.0–6.5 were observed in the presence of EDTA in the assay media. In preparations from control plants, the addition of EDTA to the assays resulted in a wide optimum between pH 6 and 7 for Mg2+-ATPase and low Ca2+-ATPase activity with no influence of pH in the range 4.5 to 8. Analysis of the pH dependence in the presence of both Ca2+ and Mg2+ indicates that the control plants mainly contain Mg2+-ATPase corresponding to the proton pump. Preparations from benzyladenine-treated wheat roots show, in addition, activation by Ca2+, which, in the slightly alkaline pH range may correspond to a Ca2+-extruding (Ca2++ Mg2+)-ATPase. In the acidic range, the responses are more complicated: the Mg2+-ATPase is inhibited by vanadate, while the Ca2+-ATPase is insensitive, and benzyladenine added during growth influences the interaction between Ca2+ and Mg2+ in a way that parallels the effect of high salt medium.  相似文献   

15.
Ca2+-ATPase in the peribacteroid membrane (PBM) of symbiosomes isolated from Vicia faba root nodules was characterized in terms of its hydrolytic and transport activities. Both activities were found to be pH-dependent and exhibit pH optimum at pH 7.0. Translocation of Ca2+ through the PBM by the Ca2+-ATPase was shown to be fueled by ATP and other nucleotide triphosphates in the following order: ATP?>?ITP???GTP???UTP???CTP, the K m of the enzyme for MgATP being about 100 μM. Ca-dependent ITP-hydrolytic activity of symbiosomes was investigated in the presence of the Ca-EGTA buffer system and showed the affinity of PBM Ca2+-ATPase for Ca2+ of about 0.1 μM. The transport activity of Ca2+-ATPase was inhibited by erythrosin B as well as orthovanadate, but markedly stimulated by calmodulin from bovine brain. These results allowed us to conclude that this enzyme belongs to IIB-type Ca2+-ATPases which are present in other plant membranes.  相似文献   

16.
Electrical stimulation of the rat heart sarcolemmal membranes with a square wave current was found to increase Ca2+-ATPase activity. This activation of the enzyme was dependent upon the voltage of the electric current, frequency of stimulation and duration of stimulation of the sarcolemmal membranes. The increase in ca2+-ATPase was reversible upon terminating the electrical stimulation. The activation of sarcolemmal Ca2+-ATPase due to electrical stimulation was markedly depressed when the reaction was carried out at high pH (7.8 to 8.2), low pH (6.6 to 7.0), high temperatures (45 to 50°C) and low temperatures (17 to 25°C) of the incubation medium. Ca2+-antagonists, verapamil and D-600, unlike other types of inhibitors such as propranolol and ouabain, were found to reduce the activation of sarcolemmal Ca2+-ATPase by electrical stimulation. These results support the view that Ca2+/Mg2+ ATPase may be involved in the gating mechanism for opening Ca2+-channels in the sarcolemmal membrane upon excitation of the cardiac muscle.  相似文献   

17.
Sodium arsenite (NaAsO2), at 10% of its median lethal dose, was administered to rats with and without vitamin C pretreatment. Liver microsomal fraction was isolated and the activity of Ca2+-ATPase was assayed. Sodium arsenite was found to inhibit the activity of the liver microsomal Ca2+-ATPase to 50% to that of control rats. The specific activity of the enzyme in rats administered sodium arsenite with vitamin C pretreatment was not significantly different from that of control rats.  相似文献   

18.
Dextran sulfate (DS) with average molecular weight (AMW) of 20,000 and sulfur content of 18%, which has a high lipemia clearing activity, enhanced Ca2+ binding to the plasma membrane of rat liver, and the DS itself bound the membrane, whereas there was little binding of DS and Ca2+. Various DSs slightly activated Na+-K+-ATPase, but not Mg2+-ATPase activity of the membrane. These results suggest that DSs, especially with high AMW of 20,000, bind the plasma membrane, resulting in enhancements of the Ca2+ binding to there and Ca2+-ATPase activity.  相似文献   

19.
We have compared properties of the red blood cell Ca2+-ATPase in two types of preparations: red cell membrane ghosts (enzyme in unfractionated membranes) and after purification (detergent-soluble enzyme). The Ca2+-ATPase activity was studied with respect to its requirement for: calmodulin, calcium, magnesium, monovalent cations, ionic strength, pH, and temperature. Sensitivity of the Ca2+-ATPase activity in the two preparations to anticalmodulin drugs and to engineered calmodulins with amino acid substitutions was determined. Finally, stoichiometry of the formation of phosphorylated enzyme intermediate (EP) and titrations of the ATP binding region with fluorescein 5-isothiocyanate (FITC) were characterized. For the first time a high phosphorylation level of 2.0–2.4 mmol EP/mg of purified enzyme is reported.The two enzyme preparations have been found to be very similar with respect to the dependency of all the regulating factors described here. These results complement findings reported from various laboratories on the similarity of other kinetic properties as well as the similarity of modulation of the Ca2+-ATPase activity by phospholipids and proteolysis in the membranous and purified enzyme. Thus, the purified detergent-soluble enzyme is very well suited for kinetic characterization of the red cell Ca2+-ATPase.  相似文献   

20.
Incubation of erythrocyte ghosts with carbonylcyanide m-chlorophenylhydrazone (CCCP) plus Ca2+ resulted in inactivation of the Ca2+-stimulated ATPase activity. Omission of Ca2+ or lowering of the temperature below 25 °C eliminated the inhibitory effect, as also did the presence of ATP during the incubation. On the other hand, the addition of β-mercaptoethanol did not influence the Ca2+-dependent inhibition by CCCP. Compared with the level of CCCP which uncouples oxidative phosphorylation, a rather high level (0.5 mM) of CCCP was required to inhibit the ATPase activity in ghosts. However, once the inhibition had been accomplished, almost all of the CCCP could be removed from the ghost membrane by washing with a Ca2+-containing solution, without affecting the inhibition of ATPase. If ethylene-glycol-bis(β-aminoethyl acid was included in the washing medium, the inhibition of ATPase was nearly completely reversed by washing. The results indicate that only the Ca2+-stimulated, Mg2+-ATPase was inhibited by 0.5 mM CCCP, while the remaining components of the ATPase activity were slightly inhibited by higher levels of the uncoupler. Low levels of CCCP (0.1 mM) stimulated the Mg2+-ATPase slightly. CCCP was much more specific for the Ca2+-stimulated ATPases than N-(1-naphthyl)maleimide, an unusually effective sulfhydryl reagent, and the requirement of Ca2+ for inactivation was also quite specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号