共查询到20条相似文献,搜索用时 9 毫秒
1.
猪心线粒体Fo的纯化、重建及其质子转运功能 总被引:1,自引:0,他引:1
比较了猪心线粒体FoF1-ATPase膜部分Fo的四种纯化方法.结果表明,用NaBr从亚线粒体除去FoF1-ATPase的水溶性部分F1-ATPase后,再以CHAPS增溶,并经蔗糖梯度离心,可获得高纯度的Fo.SDS-聚丙烯酰胺凝胶电泳鉴定表明,纯化的Fo含有b、OSCP(寡霉素敏感授予蛋白)、d、a、e、F6、IF1、A6L和c等9种亚基.用去污剂稀释法将纯化的Fo在脂质体上重建后,重建Fo表现较高的被动转运质子活性.这为在体外深入研究Fo的活性、构象与膜脂的关系,以及Fo与F1-ATPase的组装等提供了很好的实验模型. 相似文献
2.
The auxin sensitivity of the plasma-membrane H+-ATPase from tobacco leaves (Nicotiana tabacum L. cv. Xanthi) depends on the physiological state of the plant (Santoni et al., 1990, Plant Sci. 68, 33–38). Results based on the study of auxin sensitivity according to culture conditions which accelerate or delay tobacco development demonstrate that the highest auxin sensitivity is always associated with the end of the period of induction to flowering. Auxin stimulation of H+-translocation activity corresponds to an increase of the apparent ATPase affinity for ATP. The plasma-membrane H+-ATPase content, measured with an enzyme-linked immunosorbent assay using a specific anti-H+-ATPase antibody, varies according to plant development, and was found to increase by 100% during floral induction. The specific molecular ATPase activity also changes according to plant development; more particularly, the decrease in molecular ATPase activity upto and during the floral-induction period parallels the increase of sensitivity to indole-3-acetic acid.Abbreviations ELISA
enzyme-linked immunosorbent assay
- PAGE
polyacrylamide gel electrophoresis
- SDS
sodium dodecyl sulfate
Authors are grateful to Mrs. Grosclaude (Lab. Virologie, INRA, Jouy-en-Josas, France) and Mrs. Boudon (Lab. Mycoplasmes, INRA, Dijon, France) for support and advice in the preparation of antibodies. This work was supported by grants No. 89/512/6 from the E.P.R of Bourgogne and No. 89 C 0662 from M.R.T. 相似文献
3.
Tiziana Cocco Marco Di Paola Michele Minuto Valeria Carlino Sergio Papa Michele Lorusso 《Journal of bioenergetics and biomembranes》1997,29(1):81-87
The effect of different anions on the steady-state proton translocation in bovine bc
1 complex reconstituted in liposomes was studied. The H+/e
– ratio for vectorial proton translocation is at the steady state definitely lower than that measured at level flow, (0.3 vs. 1.0). The presence of azide or arachidonate at micro- and submicromolar concentrations, respectively, gave a substantial reactivation of the proton pumping activity at the steady state, without any appreciable effect on respiration-dependent transmembrane pH difference. Addition of azide to turning-over bc
1 vesicles also caused a transition of b cytochromes toward oxidation. The results are discussed in terms of possible involvement of an acidic residue in the protonation of the semiquinone/quinol couple at the N side of the membrane. 相似文献
4.
P. V. Ershov O. S. Reshetova M. S. Trofimova A.V. Babakov 《Russian Journal of Plant Physiology》2005,52(6):765-773
The authors attempted to relate the cultivar-specific salt tolerance in barley (Hordeum distichum L.) to the efficiency of ion transporters in the plasmalemma and tonoplast. The study involved plasmalemma and tonoplast membrane vesicles isolated from roots and leaves of the 7-day-old barley seedlings exposed to elevated NaCl concentrations. Two barley cultivars were employed: salt-tolerant cv. Elo and salt-susceptible cv. Belogorskii. The vesicles were used to measure the transport activity of plasmalemma and tonoplast proton pumps and the cation/anion exchange. The data obtained in the experiments demonstrated that the changes in the activity of ion transporters under salt stress conditions correlated with the barley cultivar-specific tolerance to elevated NaCl concentrations. 相似文献
5.
Moriyama Y Hayashi M Yatsushiro S Yamamoto A 《Journal of bioenergetics and biomembranes》2003,35(4):367-375
The malaria parasite is a unicellular protozoan parasite of the genus Plasmodium that causes one of the most serious infectious diseases for human beings. Like other protozoa, the malaria parasite possesses acidic organelles, which may play an essential role(s) in energy acquisition, resistance to antimalarial agents, and vesicular trafficking. Recent evidence has indicated that two types of vacuolar proton pumps, vacuolar H+-ATPase and vacuolar H+-pyrophosphatase, are responsible for their acidification. In this mini-review, we discuss the recent progress on vacuolar proton pumps in the malaria parasite. 相似文献
6.
7.
Proton transport-coupled unisite catalysis was measured with the H+-ATPase from chloroplasts. The reaction was measured in the ATP hydrolysis direction under deenergized conditions and in the ATP synthesis direction under energized conditions. The equilibrium constant of the enzyme does not change upon energization, whereas the dissociation constants of substrates and products change by orders of magnitude. This indicates that the Gibbs free enthalpy derived from proton translocation is used to change binding affinities of substrates and products, and this results in synthesis of free ATP. 相似文献
8.
Sodium-transloating ATPase in the fermentative bacteriumStreptococcus faecalis exchanges sodium for potassium ions. Sodium ions stimulate its activity, but K+ ions have no significant effect at present. Although the molecular nature of the sodium ATPase is not clear, the enzyme is distinct from other ion-motive ATPases (E1E2 type and F1F0 type) as judged by its resistance to vanadate as well as dicyclohexylcarbodiimde. The sodium ATPase is induced when cells are grown on media rich in sodium, particularly under conditions that limit the generation of a proton potential or block the constitutive sodium/proton antiporter, indicating that an increase in the cytoplasmic sodium level serves as the signal. The enzyme is not induced in response to K+ deprivation. The sodium ATPase may have evolved to cope with a sodium-rich environment under conditions that limit the magnitude of the proton potential. 相似文献
9.
Stanislaw Ulaszewski Elisabetta Balzi André Goffeau 《Molecular & general genetics : MGG》1987,207(1):38-46
Summary In the yeast Saccharomyces cerevisiae, the pma1 mutations confers vanadate-resistance to H+-ATPase activity when measured in isolated plasma membranes. In vivo, the growth of pma1 mutants is resistant to Dio-9, ethidium bromide and guanidine derivatives. This phenotype was used to man the pma1 mutation adjacent to LEU1 gene on chromosome VII. From a cosmid library of a wild-type Saccharomyces cerevisiae genome, a large 30 kb DNA fragment was isolated by complementation of a leu1-pma1 double mutant. A 5 kb HindIII fragment was subcloned and it restored both Leu+ and Pma+ phenotypes after integrative transformation. The restriction map of the 5 kb HindIII fragment and Southern blot analysis reveal that the cloned fragment contains the entire structural gene for the plasma membrane ATPase and the 5 end of the adjacent LEU1 gene. The pma1 mutation conferring vanadate-resistance is thus located in the structural gene for the plasma membrane ATPase.Publication no 2456 from the Biology Directorate of the Commission of European Communities 相似文献
10.
Alex Green Wielandt Jesper Torb?l Pedersen Janus Falhof Gerdi Christine Kemmer Anette Lund Kira Ekberg Anja Thoe Fuglsang Thomas Günther Pomorski Morten Jeppe Buch-Pedersen Michael Palmgren 《The Journal of biological chemistry》2015,290(26):16281-16291
Eukaryotic P-type plasma membrane H+-ATPases are primary active transport systems that are regulated at the post-translation level by cis-acting autoinhibitory domains, which can be relieved by protein kinase-mediated phosphorylation or binding of specific lipid species. Here we show that lysophospholipids specifically activate a plant plasma membrane H+-ATPase (Arabidopsis thaliana AHA2) by a mechanism that involves both cytoplasmic terminal domains of AHA2, whereas they have no effect on the fungal counterpart (Saccharomyces cerevisiae Pma1p). The activation was dependent on the glycerol backbone of the lysophospholipid and increased with acyl chain length, whereas the headgroup had little effect on activation. Activation of the plant pump by lysophospholipids did not involve the penultimate residue, Thr-947, which is known to be phosphorylated as part of a binding site for activating 14-3-3 protein, but was critically dependent on a single autoinhibitory residue (Leu-919) upstream of the C-terminal cytoplasmic domain in AHA2. A corresponding residue is absent in the fungal counterpart. These data indicate that plant plasma membrane H+-ATPases evolved as specific receptors for lysophospholipids and support the hypothesis that lysophospholipids are important plant signaling molecules. 相似文献
11.
Masayoshi Maeshima Yoichi Nakanishi Chie Matsuura-Endo Yoshiyuki Tanaka 《Journal of plant research》1996,109(1):119-125
Plant growth results from the division, enlargement and specialization of cells. The two processes of the enlargement and
the differentiation of cells are not spatially separated in plant tissue. We focus our attention here on the enlargement and
elongation of cells. In most cases, growing plant cells contain a large central vacuole. The acid growth theory is based on
the space-filling function of the large vacuole. The active transport systems in the vacuolar membrane are essential for maintenance
of high osmotic pressure and for the expansion of the vacuole. The secondary active transport systems of the vacuole for sugars
and ions are driven by the proton-motive force which is generated by the vacuolar H+-ATPase and H+-translocating inorganic pyrophosphatase. In this review, the relationship between cell elongation and these enzymes of the
vacuolar membrane is emphasized. 相似文献
12.
Summary The initial rate of ATP-dependent proton uptake by hog gastric vesicles was measured at pH's between 6.1 and 6.9 by measuring the loss of protons from the external space with a glass electrode. The apparent rates of proton loss were corrected for scalar proton production due to ATP hydrolysis. For vesicles in 150mm KCl and pH 6.1, corrected rates of proton uptake and ATP hydrolysis were 639±84 and 619±65 nmol/min×mg protein, respectively, giving an H+/ATP ratio of 1.03±0.7. Furthermore, at all pH's tested the ratio of the rate of proton uptake to the rate of ATP hydrolysis was not significantly different than 1.0. No proton uptake (<10 nmol/min×mg protein) was exhibited by vesicles in 150mm NaCl at pH 6.1 despite ATP hydrolysis of 187±46 nmol/min×mg (nonproductive hydrolysis). Comparison of the rates of proton transport and ATP hydrolysis in various mixture of KCl and NaCl showed that the H+/ATP stoichiometries were not significantly different than 1.0 at all concentrations of K+ greater than 10mm. This fact suggests that the nonproductive rate is vanishingly small at these concentrations, implying that the measured H+/ATP stoichiometry is equal to the enzymatic stoichiometry. This result shows that the isolated gastric (K++H+)-ATPase is thermodynamically capable of forming the observed proton gradient of the stomach. 相似文献
13.
《Bioscience, biotechnology, and biochemistry》2013,77(5):1088-1092
Enterococcus hirae grows in a broad pH range from 5 to 11. An E. hirae mutant 7683 lacking the activities of two sodium pumps, Na+-ATPase and Na+/H+ antiporter, does not grow in high Na+ medium at pH above 7.5. We found that 7683 grew normally in high Na+ medium at pH 5.5. Although an energy-dependent sodium extrusion at pH 5.5 was missing, the intracellular levels of Na+ and K+ were normal in this mutant. The Na+ influx rates of 7683 and two other strains at pH 5.5 were much slower than those at pH 7.5. These results suggest that Na+ elimination of this bacterium at acid pH is achieved by a decrease in Na+ entry and a normal K+ uptake. 相似文献
14.
The effect of chemical modifiers of amino acid residues on the proton conductivity of H+-ATPase in inside out submitochondrial particles has been studied. Treatment of submitochondrial particles prepared in the presence of EDTA (ESMP) with the arginine modifiers, phenylglyoxal or butanedione, or the tyrosine modifier, tetranitromethane, caused inhibition of the ATPase activity. Phenylglyoxal and tetranitromethane also caused inhibition of the anaerobic release of respiratory H+ in ESMP as well as in particles deprived of F1 (USMP). Butanedione treatment caused, on the contrary, acceleration of anaerobic proton release in both particles. The inhibition of proton release caused by phenylglyoxal and tetranitromethane exhibited in USMP a sigmoidal titration curve. The same inhibitory pattern was observed with oligomycin and withN,N-dicyclohexylcarbodiimide. In ESMP, relaxation of H+ exhibited two first-order phases, both an expression of the H+ conductivity of the ATPase complex. The rapid phase results from transient enhancement of H+ conduction caused by respiratory H+ itself. Oligomycin,N,N-dicyclohexylcarbodiimide, and tetranitromethane inhibited both phases of H+ release, and butanedione accelerated both. Phenylglyoxal inhibited principally the slow phase of H+ conduction. In USMP, H+ release followed simple first-order kinetics. Oligomycin depressed H+ release, enhanced respiratory H+, and restored the biphasicity of H+ release. Phenylglyoxal and tetranitromethane inhibited H+ release in USMP without modifying its first-order kinetics. Butanedione treatment caused biphasicity of H+ release from USMP, introducing a very rapid phase of H+ release. Addition of soluble F1 to USMP also restored biphasicity of H+ release. A mechanism of proton conduction by F
o
is discussed based on involvement of tyrosine or other hydroxyl residues, in series with the DCCD-reactive acid residue. There are apparently two functionally different species of arginine or other basic residues: those modified by phenylglyoxal, which facilitate H+ conduction, and those modified by butanedione, which retard H+ diffusion. 相似文献
15.
Summary An attempt has been made to simulate the light-induced oscillations of the membrane potential of Potamogeton lucens leaf cells in relation to the apoplastic pH changes. Previously it was demonstrated that the membrane potential of these cells can be described in terms of proton movements only. It is hypothesized that the membrane potential is determined by an electrogenic H+-ATPase with a variable H+/ATP stoichiometry. The stoichiometry shifts from a value of two in the dark to a value of one in the light. Moreover, this H+ pump shows the characteristics of either a pump or a passive H+ conductance: the mode of operation of the H+ translocator is considered to be regulated by the external pH. The pump conductance is assumed to be dominant at low or neutral pH, while the passive H+ conductance becomes more significant at alkaline pH. The pH dependence of the transport characteristic is expressed by protonation reactions in the plasma membrane. The proposed model can account for most features of the light-induced oscillations but not for the absolute level of the membrane potential.This research was supported by the Foundation of Biophysics, part of the Dutch Organization for Scientific Research (NWO) ECOTRANS publication No. 34. 相似文献
16.
Jesper Torb?l Pedersen Janus Falhof Kira Ekberg Morten Jeppe Buch-Pedersen Michael Palmgren 《The Journal of biological chemistry》2015,290(33):20396-20406
The plasma membrane H+-ATPase is a P-type ATPase responsible for establishing electrochemical gradients across the plasma membrane in fungi and plants. This essential proton pump exists in two activity states: an autoinhibited basal state with a low turnover rate and a low H+/ATP coupling ratio and an activated state in which ATP hydrolysis is tightly coupled to proton transport. Here we characterize metal fluorides as inhibitors of the fungal enzyme in both states. In contrast to findings for other P-type ATPases, inhibition of the plasma membrane H+-ATPase by metal fluorides was partly reversible, and the stability of the inhibition varied with the activation state. Thus, the stability of the ATPase inhibitor complex decreased significantly when the pump transitioned from the activated to the basal state, particularly when using beryllium fluoride, which mimics the bound phosphate in the E2P conformational state. Taken together, our results indicate that the phosphate bond of the phosphoenzyme intermediate of H+-ATPases is labile in the basal state, which may provide an explanation for the low H+/ATP coupling ratio of these pumps in the basal state. 相似文献
17.
In leaves of Elodea densa the membrane potential measured in light equals the equilibrium potential of H+ on the morphological upper plasma membrane. The apoplastic pH on the upper side of the leaf is as high as 10.5-11.0, which indicates that alkaline pH induces an increased H+ permeability of the plasmalemma. To study this hypothesis in more detail we investigated the changes in membrane potential and conductance in response to alterations in the external pH from 7 (= control) to 9 or 11 under both light and dark conditions. Departing from the control pH 7 condition, in light and in dark the application of pH 9 resulted in a depolarization of the membrane potential to the Nernst potential of H+. In the light but not in the dark, this depolarization was followed by a repolarization to about -160 mV. The change to pH 9 induced, in light as well as in dark, an increase in membrane conductance. The application of pH 11, which caused a momentary hyper- or depolarization depending on the value at the time pH 11 was applied, brought the membrane potential to around -160 mV. The membrane conductance also increased, in comparison to its value at pH 7, as a result of the application of pH 11, irrespective of the light conditions. 相似文献
18.
Chourasia M Sastry GM Sastry GN 《Biochemical and biophysical research communications》2005,336(3):961-966
It is proposed that the hydronium ion, H3O+, binds to the E1 conformation of the alpha-subunit of gastric proton pump. The H3O+ binding cavities are characterized parametrically based on valence, sequence, geometry, and size considerations from comparative modeling. The cavities have scope for accommodating monovalent cations of different ionic radii. The H3O+ transport is proposed to be aided by arenes which are arranged regularly along the pump starting from N-domain through the transmembrane region. Step-by-step structural changes accompanying H3O+ occlusion are studied in detail. The observations corroborate well with earlier experimental studies. 相似文献
19.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7
M.Abbreviations IAA
indole-3-acetic acid
- ABA
abscisic acid
- GA3
gibberellic acid
- H+-ATPase
adenosine triphosphatase
- H+-PPase
pyrophosphatase
- ATP
adenosine triphosphate
- Tris
Tris (hydroxymethyl)-aminomethane
- MES
(2[N-Morpholino]) ethane sulfonic acid
- EDTA
ethylene diamine tetraacetic acid
- Pi
inorganic phosphate 相似文献
20.
In this paper a detailed study of the effect of nitration of tyrosine residues by tetranitromethane on H+ conduction and other reactions catalyzed by the H+-ATPase complex in phosphorylating submitochondrial particles, uncoupled particles, and the purified complex is presented. Tetranitromethane treatment of submitochondrial particles results in marked inhibition of ATP hydrolysis, ATP-33Pi exchange, and proton conduction by the H+-ATPase complex. These effects are caused by nitration of tyrosine residues of H+-ATPase complex as shown by the appearance of the absorption peak at 360 nm (specific for nitrotyrosine formation) and inhibition of ATP hydrolysis and ATP-33Pi exchange in the complex purified from tetranitromethane-treated particles. H+ conduction in phospholipid vesicles inlaid with F0 is also inhibited by tetranitromethane treatment. These observations indicate that tyrosine residue(s) of F0 are critically involved in energy-linked proton translocation in the ATP-ase complex. 相似文献