首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
After it is incorporated into the body, uranium accumulates in bone and kidney and is a nephrotoxin. Although acute or short-term uranium exposures are well documented, there is a lack of information about the effects of chronic exposure to low levels of uranium on both occupationally exposed people and the general public. The objective of this study was to identify the distribution and chemical form of uranium in kidneys of rats chronically exposed to uranium in drinking water (40 mg uranium liter(-1)). Rats were killed humanely 6, 9, 12 and 18 months after the beginning of exposure. Kidneys were dissected out and prepared for optical and electron microscope analysis and energy dispersive X-ray (XEDS) or electron energy loss spectrometry (EELS). Microscopic analysis showed that proximal tubule cells from contaminated rats had increased numbers of vesicles containing dense granular inclusions. These inclusions were composed of clusters of small granules and increased in number with the exposure duration. Using XEDS and EELS, these characteristic granules were identified as iron oxides. Uranium was found to be present as a trace element but was never associated with the iron granules. These results suggested that the mechanisms of iron homeostasis in kidney could be affected by chronic uranium exposure.  相似文献   

2.
Because uranium is a natural element present in the earth’s crust, the population may be chronically exposed to low doses of it through drinking water. Additionally, the military and civil uses of uranium can also lead to environmental dispersion that can result in high or low doses of acute or chronic exposure. Recent experimental data suggest this might lead to relatively innocuous biological reactions. The aim of this study was to assess the biological changes in rats caused by ingestion of natural uranium in drinking water with a mean daily intake of 2.7 mg/kg for 9 months and to identify potential biomarkers related to such a contamination. Subsequently, we observed no pathology and standard clinical tests were unable to distinguish between treated and untreated animals. Conversely, LC–MS metabolomics identified urine as an appropriate biofluid for discriminating the experimental groups. Of the 1,376 features detected in urine, the most discriminant were metabolites involved in tryptophan, nicotinate, and nicotinamide metabolic pathways. In particular, N-methylnicotinamide, which was found at a level seven times higher in untreated than in contaminated rats, had the greatest discriminating power. These novel results establish a proof of principle for using metabolomics to address chronic low-dose uranium contamination. They open interesting perspectives for understanding the underlying biological mechanisms and designing a diagnostic test of exposure.  相似文献   

3.
An increasing awareness of the radiological impact of the nuclear power industry and other nuclear technologies is observed nowadays on general population. This led to renew interest to assess the health impact of the use of enriched uranium (EU). The aim of this work was to investigate in vivo the effects of a chronic exposure to EU on vitamin D(3) metabolism, a hormone essential in mineral and bone homeostasis. Rats were exposed to EU in their drinking water for 9 months at a concentration of 40 mg l(-1) (1mg/rat day). The contamination did not change vitamin D plasma level. Vitamin D receptor (vdr) and retinoid X receptor alpha (rxralpha), encoding nuclear receptors involved in the biological activities of vitamin D, showed a lower expression in kidney, while their protein levels were paradoxically increased. Gene expression of vitamin D target genes, epithelial Ca(2+) channel 1 (ecac1) and Calbindin-D28k (cabp-d28k), involved in renal calcium transport were decreased. Among the vitamin D target organs examined, these molecular modifications occurred exclusively in the kidney, which confirms that this organ is highly sensitive to uranium exposure. In conclusion, this study showed that a chronic exposure to EU affects both mRNA and protein expressions of renal nuclear receptors involved in vitamin D metabolism, without any modification of the circulating vitamin D.  相似文献   

4.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D(3) metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)(2)D(3)) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxralpha, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrbeta, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)(2)D(3)) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

5.
Quantification of uranium in drinking water has great significance considering its effects on human health. Drinking water samples collected from different sources, viz., hand pumps, tube-wells, and public water supply from Sonipat and Panipat districts of Haryana, India have been analyzed for uranium and other physico-chemical parameters. Uranium concentration in water samples was measured using Pulsed LED Fluorimeter. Uranium concentration in collected water samples ranges from 9.1 to 155.1 µg/L in Sonipat district and 14.9 to 123.3 µg/L in Panipat district. It was inferred from the data that uranium concentration in some water samples was higher than WHO &; USEPA recommended limit of 30 µg/L. The mean cancer risk due to uranium in drinking water in Sonipat and Panipat districts was found to be 1.40 × 10?4 and 1.63 × 10?4, respectively, which is lower than the maximum permissible limit (<10?3). Total Dissolve Salts (TDS) in water samples of some villages in Sonipat district was higher than permissible limits for drinking prescribed by WHO &; BIS.  相似文献   

6.
The present study was conducted to evaluate the protective effects of vitamin E and selenium (Se) application on alteration of antioxidant enzyme activities against cigarette smoking induced oxidative damage in brains, kidneys and liver of mice. Male mice (balb/c) were exposed to cigarette smoke and treated with Se and/or vitamin E. Glutathione transferase (GST), glutathione peroxidase (GPX), glutathione reductase (GRX), superoxide dismutase (SOD) and catalase (CAT) enzyme activities in mice brain, kidney and liver were measured spectrophotometrically. GST, GPX, GRX, SOD and CAT enzyme activities in the brains of smoke-exposed mice were found lower than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Opposite to brain, enzyme activities in kidneys and livers of smoke-exposed mice were found higher than the enzymes activities of control mice and Se-and vitamin E-treated mice at the end of the three and five months. Activities of GST, GPX, GRX SOD and CAT in the livers, kidneys and brains of smoke-exposed mice were found statistically different (p < 0.01) compared to control mice and Se-and vitamin E-treated mice. Combined application of vitamin E and Se had an additive protective effect against changing enzymes activities in smoke-exposed mice livers, kidneys and brains at the end of the both application periods. These results suggest that cigarette smoke exposure enhances the oxidative stress, thereby disturbing the tissue antioxidant defense system and combined application of vitamin E and Se protects the brain, kidney and liver from oxidative damage through their antioxidant potential.  相似文献   

7.

Introduction

Data are sparse about the potential health risks of chronic low-dose contamination of humans by uranium (natural or anthropogenic) in drinking water. Previous studies report some molecular imbalances but no clinical signs due to uranium intake.

Objectives

In a proof-of-principle study, we reported that metabolomics is an appropriate method for addressing this chronic low-dose exposure in a rat model (uranium dose: 40 mg L?1; duration: 9 months, n = 10). In the present study, our aim was to investigate the dose–effect pattern and identify additional potential biomarkers in urine samples.

Methods

Compared to our previous protocol, we doubled the number of rats per group (n = 20), added additional sampling time points (3 and 6 months) and included several lower doses of natural uranium (doses used: 40, 1.5, 0.15 and 0.015 mg L?1). LC–MS metabolomics was performed on urine samples and statistical analyses were made with SIMCA-P+ and R packages.

Results

The data confirmed our previous results and showed that discrimination was both dose and time related. Uranium exposure was revealed in rats contaminated for 9 months at a dose as low as 0.15 mg L?1. Eleven features, including the confidently identified N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide and 4-hydroxyphenylacetylglycine, discriminated control from contaminated rats with a specificity and a sensitivity ranging from 83 to 96 %, when combined into a composite score.

Conclusion

These findings show promise for the elucidation of underlying radiotoxicologic mechanisms and the design of a diagnostic test to assess exposure in urine, in a dose range experimentally estimated to be above a threshold between 0.015 and 0.15 mg L?1.
  相似文献   

8.
Uranium is a naturally occurring primordial radioactive element. Small amounts found in air, water, and food are regularly consumed and inhaled by humans. Even the military, medical, and industrial use of depleted uranium can affect humans. There is an appreciable retention of incorporated uranium in skeleton, kidneys, and liver, and a review of respective effective dose coefficients has been given by the International Commission on Radiological Protection (ICRP) in its "Publication 69"; however, data regarding retention in organs or tissues and rates of urinary and fecal excretion for different age groups are incomplete. Therefore, the present study provides retention data that have been calculated for uranium in all compartments and for urinary and fecal excretion, following acute and chronic injection and ingestion for six age groups. The calculations are based on the current ICRP biokinetic model for uranium, and the data can be plotted by using any mathematical software to obtain the retention data at any time after incorporation or to calculate the internal average organ dose induced by uranium provided that specific absorbed fractions are available. The dynamic relationship of the retention in plasma and blood after intravenously and orally administered uranium can easily be derived from the database for injection and ingestion. The calculated contents of uranium in organs or tissues (using the uranium concentration in foodstuffs published by UNSCEAR for Europeans) are compared with autopsy data available in the literature. According to this model, the whole body of a 75-year-old man contains 7 microg uranium, of which 76% is in the skeleton, 1% in the kidneys, and 2.1% in the liver.  相似文献   

9.
The impact on palmiped Cairina moschata of two levels of dietary cadmium (Cd) contamination (C1: 1 mg kg−1 and C10: 10 mg kg−1) was investigated on liver gene expression by real-time PCR. Genes involved in mitochondrial metabolism, in antioxidant defences, detoxification and in DNA damage repair were studied. Metallothionein (MT) protein levels and Cd bioaccumulation were also investigated in liver, kidneys and muscle. Male ducks were subjected to three periods of exposure: 10, 20 and 40 days. Cd was mainly bioaccumulated in kidneys first and in liver. The concentrations in liver and kidneys appeared to reach a stable level at 20 days of contamination even if the concentrations in muscle still increased. Cd triggered the enhancement of mitochondrial metabolism, the establishment of antioxidant defences (superoxide dismutase Mn and Cu/Zn; catalase) and of DNA repair from 20 days of contamination. Discrepancies were observed in liver between MT protein levels and MT gene up-regulation. MT gene expression appeared to be a late hour biomarker.  相似文献   

10.
Although chronic exposure to high doses of trichloroethene causes tumors of the lung, liver, and kidney in experimental animals, the epidemiology data in humans exposed to trichloroethene as a whole fail to support a causal association between trichloroethene exposure and cancers of the lungs, liver, or kidneys in humans at environmentally relevant concentrations. Environmentally relevant concentrations of trichloroethene are defined as 50 ppb (50 µg/L) in water or 5 ppb (27 µg/m3) in air. Tumor induction by trichloroethene in rodents exposed to very high doses over their whole lifespan has been observed in the kidney of rats and in the lung and liver of mice. Mechanistic data demonstrate that species-specific processes are involved in the carcinogenicity associated with chronic trichloroethene exposure in rodents. Based on these data and the results of recent well-conducted epidemiology studies, it can be concluded that humans exposed to trichloroethene at environmentally relevant concentrations are not at an increased risk for developing cancer.  相似文献   

11.
目的观察贫铀经口慢性染毒对小鼠肠道菌群多样性的影响。方法通过将不同剂量的贫铀混入饲料中饲养小鼠,以小鼠肝脏和肾脏铀含量作为判断贫铀在动物体内蓄积的指标,建立贫铀经121慢性染毒小鼠模型,观察各组小鼠之间的体重变化,对各组小鼠进行基于细菌16SrRNAV6-V8区的PCR-DGGE分析。结果食入贫铀的各组小鼠肝脏和肾脏铀含量显著高于对照组(P〈0.05),各组小鼠体重差异无统计学意义(P〉0.05),各组小鼠V6-V8IXDGGE图谱的丰富度和多样性指数差异均无统计学意义(P〉0.05)。结论贫铀经日慢性染毒对小鼠肠道菌群多样性无显著影响。  相似文献   

12.
Uranium‐contaminated soils are present at various locations across the U.S. where uranium was processed for nuclear fuels or atomic weapons. Important issues in dealing with such contamination include the assessment of the potential health risks associated with human exposures to the residual uranium and the determination of safe levels of U in soils that have been treated by a given technology. This paper reviews pertinent aspects of the health risks posed by uranium in soils and discusses various methodological considerations that must be dealt with in developing cleanup limits for U in treated soils. Of special concern is the development of remediation limits that are closely tied to a set of monitoring requirements for determining compliance with derived limits. Key issues addressed include characterization of the bioavailability of uranium compounds in food and water, determination of a safe level of uranium in kidney tissue, estimation of the health risks associated with the uranium daughter products radium and radon, assessment of the potential for ground‐water contamination, biogeochemical characterization of soil‐treatment processes, and specification of appropriate monitoring and statistical protocols for analyzing treated and untreated soils.  相似文献   

13.
This study sets out to compare the absorption and toxicity of Cadmium (Cd) administered via the food-chain and inorganic Cd administered in drinking water after 1 and 3 months exposure using rats as animal model. The food-chain was mimicked by exposing rats to diet containing Cd pre-exposed fish. The uptake of Cd by the rats after both mode of exposure was calculated by summing up the Cd burden in the liver and kidneys and was expressed in terms of % intake. The toxicity of Cd was assessed by monitoring biochemical indices of liver function in the plasma and liver. Regardless of the mode of exposure of the rats, the Cd load in the liver and kidney was significantly (P < 0.05) higher than the respective controls with the kidney having a significantly higher load than the liver after both periods of exposure. However irrespective of the mode of exposure, more Cd was accumulated in the liver and kidney of the 3 months exposed rats relative to those exposed for 1 month. The uptake of Cd by rats exposed to Cd via the food-chain for 1 and 3 months was significantly (P < 0.05) lower when compared to the corresponding water mediated Cd exposed rats, except for the liver after 3 months of exposure. The liver l-ALT activity of rats administered inorganic Cd in drinking water for 1 and 3 months was significantly (P < 0.05) lower as compared to controls. Parallel analysis of the plasma showed no significant (P > 0.05) difference in l-ALT activity between both groups after the same periods of exposure. The l-AST activity in the plasma of rats similarly exposed to Cd for 1 and 3 months was significantly (P < 0.05) higher as compared to controls with a corresponding reduction in the liver. Conversely no significant (P > 0.05) change was observed in plasma and liver l-ALT and l-AST activities after food-chain mediated exposure to Cd for 1 and 3 months in relation to their respective controls. These findings indicate that Cd incorporated in fish is more easily bioavailable, but less toxic relative to inorganic Cd salts at the end of 3 months of exposure in rats.  相似文献   

14.
The aim of the present study was to investigate the distribution of uranium (uranyl nitrate hexahydrate, UN) in muscle and organs (kidney, liver, and brain) of broilers, after a 7-day contamination with UN and administration of two different adsorbents (organobentonite and organozeolite). The birds were contaminated during 7 days with 25 mg/UN per day. Adsorbents were given via gastric tube, immediately after contamination with UN. In group 1 that did not receive any adsorbents, histopathological changes in the contaminated broilers were observed in small intestine, liver, and kidney in the form of necrosis of intestinal villi, oedema and cytoplasmic vacuolation of hepatocytes, and dystrophic changes in the kidney tubules epithelium. Organobentonite administered via gastric tube (group 2) reduced uranium distribution by 66 % in kidney, 81 % in liver, and 34 % in brain. In group 3, administration of organozeolite reduced uranium distribution by 67 % in kidney, 68 % in liver, and 49 % in brain. In groups 2 and 3, where the broilers received adsorbents immediately after the UN contamination, no histopathological lesions were observed.  相似文献   

15.
Vanadium (V) as sodium orthovanadate induces an increase in lipid peroxidation in the kidneys after a single subcutaneous or intraperitoneal injection to rats or mice. The rate of malondialdehyde (MDA) formation, an index of lipid peroxidation, by kidney homogenates increased by more than 100% 1 h after injection. Chronic exposure of rats to vanadium sulfate, initially through maternal milk and later in the drinking water, resulted after 10 weeks in a significant increase in MDA formation by kidney but not by other tissues. In both acute and chronic studies in rats and mice, no significant increase in lipid peroxidation by V treatment was detected in brain, heart, lung, spleen, or liver. In mice, administration of ascorbate prior to acute exposure to V diminished both toxicity, i.e., respiratory depression and limb paralysis, and the formation of MDA in kidney.  相似文献   

16.
BackgroundUranium is a naturally occurring radionuclide ubiquitously present in the environment. The skeleton is the main site of uranium long-term accumulation. While it has been shown that natural uranium is able to perturb bone metabolism through its chemical toxicity, its impact on bone resorption by osteoclasts has been poorly explored. Here, we examined for the first time in vitro effects of natural uranium on osteoclasts.MethodsThe effects of uranium on the RAW 264.7 monocyte/macrophage mouse cell line and primary murine osteoclastic cells were characterized by biochemical, molecular and functional analyses.ResultsWe observed a cytotoxicity effect of uranium on osteoclast precursors. Uranium concentrations in the μM range are able to inhibit osteoclast formation, mature osteoclast survival and mineral resorption but don't affect the expression of the osteoclast gene markers Nfatc1, Dc-stamp, Ctsk, Acp5, Atp6v0a3 or Atp6v0d2 in RAW 274.7 cells. Instead, we observed that uranium induces a dose-dependent accumulation of SQSTM1/p62 during osteoclastogenesis.ConclusionsWe show here that uranium impairs osteoclast formation and function in vitro. The decrease in available precursor cells, as well as the reduced viability of mature osteoclasts appears to account for these effects of uranium. The SQSTM1/p62 level increase observed in response to uranium exposure is of particular interest since this protein is a known regulator of osteoclast formation. A tempting hypothesis discussed herein is that SQSTM1/p62 dysregulation contributes to uranium effects on osteoclastogenesis.General significanceWe describe cellular and molecular effects of uranium that potentially affect bone homeostasis.  相似文献   

17.
The extensive use of depleted uranium (DU) in today's society results in the increase of the number of human population exposed to this radionuclide. The aim of this work was to investigate in vivo the effects of a chronic exposure to DU on vitamin D3 metabolism, a hormone essential in mineral and bone homeostasis. The experiments were carried out in rats after a chronic contamination for 9 months by DU through drinking water at 40 mg/L (1 mg/rat/day). This dose corresponds to the double of highest concentration found naturally in Finland. In DU-exposed rats, the active vitamin D (1,25(OH)2D3) plasma level was significantly decreased. In kidney, a decreased gene expression was observed for cyp24a1, as well as for vdr and rxrα, the principal regulators of CYP24A1. Similarly, mRNA levels of vitamin D target genes ecac1, cabp-d28k and ncx-1, involved in renal calcium transport were decreased in kidney. In the brain lower levels of messengers were observed for cyp27a1 as well as for lxrβ, involved in its regulation. In conclusion, this study showed for the first time that DU affects both the vitamin D active form (1,25(OH)2D3) level and the vitamin D receptor expression, and consequently could modulate the expression of cyp24a1 and vitamin D target genes involved in calcium homeostasis.  相似文献   

18.
Background aimsTissue-specific stem cells are a promising target for kidney regeneration, because it has been shown that they play a primary role in kidney repair. Several methods have been developed for the isolation of stem/progenitor cells from healthy kidneys but the existence of these cells in chronically damaged kidneys has not been noticed so far.MethodsA mouse model of chronic kidney failure was developed by ligation of the left ureter for 5 months, and then isolation of stem cells from this tissue as well as normal kidneys was attempted.ResultsWe found that multipotent stem cells could be isolated from both types of tissue. In addition, the cells isolated from damaged kidneys showed potential for homing to the site of injury and a renoprotective effect in an animal model of cisplatin-induced nephropathy.ConclusionsThese results show that multipotent renoprotective stem cells exist in severely damaged kidneys, which could be a target for designing new therapies.  相似文献   

19.
双酚A (bisphenol A, BPA)被广泛应用于生产环氧树脂和聚碳酸酯塑料等制品,在强酸、强碱或高温条件下,BPA被释放出来,然后渗入环境中。在大多数生物液体中都检测到了不同浓度的BPA,BPA的存在已被证明与许多慢性疾病密切相关,包括慢性肾病(chronic kidney disease,CKD)。然而,关于BPA的有害作用及其对CKD的不良影响知之甚少。为了探讨BPA对动物肾毒性的作用机制,本研究通过向饮水中加入0.01、0.1和1 mg/L的BPA,暴露于雌性小鼠4周后,交配和怀孕的雌性小鼠持续接触BPA,直到断奶;F1代3周龄雄性仔鼠继续口服相同剂量的BPA,持续10周。结果表明,0.1mg/L和1mg/LBPA处理组小鼠的肾脏损伤严重,血清中肾脏功能指标尿素氮(urea nitrogen,UN)、肌酐(creatinine,CR)和尿酸(uric acid,UA)的含量均发生显著升高(P<0.05);肾脏组织形态结构被损害;肾脏抗氧化相关基因在mRNA和蛋白水平上的表达显著降低(P<0.05),包括谷胱甘肽硫转移酶(glutathione-S-transf...  相似文献   

20.
Saxitoxins (STXs) are neurotoxins produced by cyanobacteria such as Cylindrospermopsis raciborskii. During bloom events, the production of these compounds causes contamination on public water supply sources. STXs block voltage gated sodium channels and can lead to severe poisoning and death of organisms at different trophic levels. Other toxicity mechanism of STX is the generation of reactive oxygen species (ROS). The aim of this study was to investigate the effect of consumption of water contaminated with a C. raciborskii strain (producing variants of Neo-STX and STX) by rats during 30 days through the analysis of oxidative stress biochemical parameters. Total antioxidant capacity (ACAP) and oxidative stress parameters were analyzed at pre-frontal cortex, hippocampus and liver of adult Wistar rats (2–3 months old). Treated animals ingested concentrations of 3 and 9 μg/L of STX equivalents and were compared with a control group (culture medium ASM-1). At the concentration of 3 μg/L, a decrease in ROS production associated with lower ACAP at hippocampus was observed. Furthermore, a decrease of glutamate cysteine ligase (GCL) activity in the cortex and an increase of brain and liver glutathione concentration were also observed. At the highest concentration (9 μg/L), there was an ACAP increase in the hippocampus as well as in the activity GCL and glutathione-S-transferase in the cortex and hippocampus. At both concentrations, lipid peroxidation was registered in the liver. Therefore, chronic ingestion of STXs can alter the antioxidant defenses and induce oxidative stress in brain and liver. The present results point to the values adopted as threshold limit for STXs in potable waters (3 μg/L) shows already significant chronic effects that alter antioxidant defenses and induce oxidative stress at least in two of the organs studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号