首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary

Pro-oxidant effects of hemoglobin-derived heme and iron contribute to the progressive damage observed in β thalassemic and sickle (HbS) red blood cells. Agents that prevent heme/iron release and inhibit their redox activity might diminish such injury. Consequently, the inhibitory effects of chloroquine (CQ), a heme-binding antimalarial drug, and a novel dichloroquine compound (CQ-D2) on iron release and lipid peroxidation were investigated. In contrast to normal hemoglobin, significant amounts of iron were released from both purified hemin and α-hemoglobin chains during incubations with exogenous reduced glutathione (GSH) and/or H2O2. Addition of either CQ or CQ-D2 effectively inhibited GSH- and GSH/H2O2-mediated iron release from hemin (P<0.001). During prolonged incubations (6 h), both CQ and CQ-D2 significantly decreased the release of heme-free iron from both purified hemoglobin and α-hemoglobin chains. Interestingly, CQ and CQ-D2 differentially affected the redox availability of the heme-bound iron. The CQ: heme complex significantly enhanced membrane lipid peroxidation whereas CQ-D2 dramatically (P<0.001) inhibited heme-dependent peroxidation to almost baseline levels. In summary, CQ-derivatives which render heme redox inert and prevent the release of free iron from heme might be beneficial in the treatment of certain hemoglobinopathies and, perhaps, other pathologies promoted by delocalized heme/iron.  相似文献   

2.
A significant inactivation of red blood cell glutathione peroxidase (25% less than the physiological value) was observed after exposure of intact erythrocytes to 2 mM divicine (an autoxidizable aminophenol from Vicia faba seeds) and 2 mM ascorbate for 3 h at 37°C. Addition of catalase and conversion of Hb to the carbomonoxy derivative resulted in protection against enzyme inactivation. Oxidation of Hb was a concurrent phenomenon, and augmented the inactivating effect. In hemolysates, much stronger effects were observed at shorter times (2 h); divicine was effective also without ascorbate, and the presence of reductants (ascorbate or glutathione or NADPH) enhanced its inactivating power. Of the other antioxidant enzymes, superoxide dismutase was unaffected under the same experimental conditions. Catalase was found to be much less sensitive to the inactivation; it was almost unaffected in experiments with intact erythrocytes and specifically protected by NADPH in experiments with hemolysates. This specific damage of glutathione peroxidase, apparently involving interaction of H2O2 and HbO2, may be related to the pathogenesis of hemolysis in favism.  相似文献   

3.
Copper-transporting ATPase ATP7A is essential for mammalian copper homeostasis. Loss of ATP7A activity is associated with fatal Menkes disease and various other pathologies. In cells, ATP7A inactivation disrupts copper transport from the cytosol into the secretory pathway. Using fibroblasts from Menkes disease patients and mouse 3T3-L1 cells with a CRISPR/Cas9-inactivated ATP7A, we demonstrate that ATP7A dysfunction is also damaging to mitochondrial redox balance. In these cells, copper accumulates in nuclei, cytosol, and mitochondria, causing distinct changes in their redox environment. Quantitative imaging of live cells using GRX1-roGFP2 and HyPer sensors reveals highest glutathione oxidation and elevation of H2O2 in mitochondria, whereas the redox environment of nuclei and the cytosol is much less affected. Decreasing the H2O2 levels in mitochondria with MitoQ does not prevent glutathione oxidation; i.e. elevated copper and not H2O2 is a primary cause of glutathione oxidation. Redox misbalance does not significantly affect mitochondrion morphology or the activity of respiratory complex IV but markedly increases cell sensitivity to even mild glutathione depletion, resulting in loss of cell viability. Thus, ATP7A activity protects mitochondria from excessive copper entry, which is deleterious to redox buffers. Mitochondrial redox misbalance could significantly contribute to pathologies associated with ATP7A inactivation in tissues with paradoxical accumulation of copper (i.e. renal epithelia).  相似文献   

4.
Abstract

Although the importance of glutathione in protection against oxidative stress is well recognised, the role of physiological levels of glutathione and other endogenous antioxidants in protecting against exercise-induced oxidative stress is less clear. We evaluated the role of glutathione and selected antioxidant enzymes as determinants of lipid peroxidation at rest and in response to exercise in men (n = 13–14) aged 20–30 years, who cycled for 40 min at 60% of their maximal oxygen consumption (VO2max). Levels of plasma thiobarbituric acid reactive substances (plasma TBARS) and blood oxidised glutathione (GSSG) increased by about 50% in response to exercise. Mean blood reduced glutathione (GSH)decreased by 13% with exercise. Of the measured red blood cell (RBC)antioxidant enzyme activities, only selenium-dependent glutathione peroxidase (Se-GPX) activity rose following exercise. In univariate regression analysis, plasma TBARS levels at rest predicted postexercise plasma TBARS and the exercise-induced change in total glutathione (TGSH). Blood GSSG levels at rest were strongly determinant of postexercise levels. Multiple regression analysis showed blood GSH to be a determinant of plasma TBARS at rest. The relative changes in TGSH were determinant of postexercise plasma TBARS. In summary, higher blood GSH and lower plasma TBARS at rest were associated with lower resting, and exercise-induced, lipid peroxidation. Subjects with a favourable blood glutathione redox status at rest maintained a more favourable redox status in response to exercise-induced oxidative stress. Changes in blood GSH and TGSH in response to exercise were closely associated with both resting and exercise-induced plasma lipid peroxidation. These results underscore the critical role of glutathione homeostasis in modulating exercise-induced oxidative stress and, conversely, the effect of oxidative stress at rest on exercise-induced changes in glutathione redox status.  相似文献   

5.
Summary The enzymatic destruction of oxidizing products produced during metabolic reduction of oxygen in the cell (such as singlet oxygen, H2O2 and OH radical) involves the concerted action of superoxide dismutase-which removes O 2 - and yields H2O2-and H2O2 removing enzymes such as catalase and glutathione peroxidase. A difference in distribution or ratio of these enzymes in various tissues may result in a different reactivity of oxygen radicals.It was found that in red blood cells superoxide dismutase and catalase are extracted in the same fraction as hemoglobin, while glutathione peroxidase appears to be loosely bound to the cellular structure. This suggests that in red blood cells catalase acts in series with superoxide dismutase against bursts of oxygen radicals formed from oxyhemoglobin, while glutathione & peroxidase may protect the cell membrane against low concentrations of H2O2. On the other hand, catalase activity is absent in various types of ascites tumor cells, while glutathione peroxidase and superoxide dismutase are found in the cytoplasm. However, the peroxidase/dismutase ratio is lower than in liver cells, and this may provide an explanation for the higher susceptibility of tumor cells to treatments likely to involve oxygen radicals.  相似文献   

6.
Objectives: During lung lobectomy, the operated lung completely collapses with simultaneous hypoxic pulmonary vasoconstriction, followed by expansion and reperfusion. Here, we investigated glutathione oxidation and lipoperoxidation in patients undergoing lung lobectomy, during one-lung ventilation (OLV) and after resuming two-lung ventilation (TLV), and examined the relationship with OLV duration.

Methods: We performed a single-centre, observational, prospective study in 32 patients undergoing lung lobectomy. Blood samples were collected at five time-points: T0, pre-operatively; T1, during OLV, 5 minutes before resuming TLV; and T2, T3, and T4, respectively, 5, 60, and 180 minutes after resuming TLV. Samples were tested for reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione redox potential, and malondialdehyde (MDA).

Results: GSSG and MDA blood levels increased at T1, and increased further at T2. OLV duration directly correlated with marker levels at T1 and T2. Blood levels of GSH and glutathione redox potential decreased at T1?T3. GSSG, oxidized glutathione/total glutathione ratio, and MDA levels were inversely correlated with arterial blood PO2/FiO2 at T1 and T2.

Discussion: During lung lobectomy and OLV, glutathione oxidation, and lipoperoxidation marker blood levels increase, with further increases after resuming TLV. Oxidative stress degree was directly correlated with OLV duration, and inversely correlated with arterial blood PO2/FiO2.  相似文献   

7.
Summary The glutathione reductase from E. coli was rapidly inactivated following aerobic incubation of the pure and cell-free extract enzymes with NADPH, NADH and other reductants. The inactivation of the pure enzyme depended on the time and temperature of incubation (t1/2 = 2 min at 37°C), and was proportional to the |INADPH|/|enzyme| ratio, reaching 50% in the presence of 0.3 M NADPH and 45 M NADH respectively, at a subunit concentration of 20 nM. Higher pyridine nucleotide concentrations were required to inactivate the enzyme from cell-free extracts. Two apparent pKa, corresponding to pH 5.8 and 7.3, were determined for the redox inactivation. The enzyme remained inactive even after eliminating the excess NADPH by gel chromatography. E. coli glutathione reductase was protected by oxidized and reduced glutathione against redox inactivation with both pure and cell-free extract enzymes. Ferricyanide and dithiothreitol protected only the pure enzyme, while NADP+ exclusively protected the cell-free extract enzyme. The inactive glutathione reductase was reactivated by treatment with oxidized and reduced glutathione, ferricyanide, and dithiothreitol in a time-and temperature-dependent process. The oxidized form of glutathione was more efficient and specific than the reduced form in the protection and reactivation of the pure enzyme.The molecular weight of the redox-inactivated E. coli glutathione reductase was similar to that of the dimeric native enzyme, ruling out aggregation as a possible cause of inactivation. A tentative model is discussed for the redox inactivation, involving the formation of an erroneous disulfide bridge at the glutathione-binding site.  相似文献   

8.

Background

DNA repair is a cellular defence mechanism responding to DNA damage caused in large part by oxidative stress. There is a controversy with regard to the effect of red blood cells on DNA damage and cellular response.

Aim

To investigate the effect of red blood cells on H2O2-induced DNA damage and repair in human peripheral blood mononuclear cells.

Methods

DNA breaks were induced in peripheral blood mononuclear cells by H2O2 in the absence or presence of red blood cells, red blood cells hemolysate or hemoglobin. DNA repair was measured by 3H-thymidine uptake, % double-stranded DNA was measured by fluorometric assay of DNA unwinding. DNA damage was measured by the comet assay and by the detection of histone H2AX phosphorylation.

Results

Red blood cells and red blood cells hemolysate reduced DNA repair in a dose-dependent manner. Red blood cells hemolysate reduced % double-stranded DNA, DNA damage and phosphorylation of histone H2AX. Hemoglobin had the same effect as red blood cells hemolysate on % double-stranded DNA.

Conclusion

Red blood cells, via red blood cells hemolysate and hemoglobin, reduced the effect of oxidative stress on peripheral blood mononuclear cell DNA damage and phosphorylation of histone H2AX. Consequently, recruitment of DNA repair proteins diminished with reduction of DNA repair. This suggests that anemia predisposes to increased oxidative stress induced DNA damage, while a higher hemoglobin level provides protection against oxidative-stress-induced DNA damage.  相似文献   

9.
Summary The redox properties of some myxoviruses [Fowl plaque virus strain Rostock (FPV), New Castle Disease virus strain Italy (NDV), B/Hong Kong, A/Port Chalmers, A/Victoria, A/Scotland, and A/Fort Dix (FD)] have been investigated by means of electron spin resonance (ESR) and electron microscopic studies as well as by the determination of the hemagglutination (HA) titer (antigen efficiency). The results have shown that viruses decrease the spin concentration of Cu2+ by acting as a reducing species (electron donor) which will result in the inactivation (oxidation) of the virus. Addition of an oxidizing substance, such as H2O2, to a virus suspension also leads to an oxidation of the viruses and, thus, to their inability to reduce Cu2+. This result is confirmed by the decrease of the HA titer of viruses with increasing Cu2+ concentrations. H2O2 could not be applied for the HA titer test since it interacts with the erythrocytes of the chicken blood used for this determination. Therefore, another oxidizing substance (oxidized glutathione, GSS) was selected which exhibited a slightly less pronounced effect than Cu2+. Since reduced glutathione (GSH) exerts a similar but less pronounced effect than GSS, it might be concluded that viruses have a redox system of their own and act as reducing or oxidizing substance depending on the biological receptor system. Electron microscopic studies confirm this hypothesis. As can be seen by the electron micrographs, increasing concentrations of either Cu2+, GSS, H2O2, KMnO4, or GSH will, finally, result in a complete destruction of the virus. Because of structural similarities it might be assumed that other types of viruses behave very similarly.  相似文献   

10.
2-Formylpyridine monothiosemicarbazonato copper II (CuL+) is readily taken up by red cells and is initially bound to glutathione and hemoglobin. Glutathione was depleted within 5 hr of incubation, presumably by oxidation mediated by CuL+ and O2 with concomittant generation of toxic oxygen species. Cupric ion was slowly transferred from CuL+ to hemoglobin within about 7 hr, and hemoglobin was oxidized until the major form prevailing after 10 hr was α2β2+. Little increase in hemolysis due to addition of CuL+ dissolved in the radical scavenger dimethyl sulfoxide was observed with prolonged incubation. Strong inhibition of red cell hexokinase by CuL+ was observed when the enzymes in red cell lysates and hemoglobin-free red cell lysates were examined. CuL+ was also an effective inhibitor of yeast hexokinase. However, the inhibitory effect of CuL + within the red cells was less pronounced. It is suggested that even though intracellular accumulation of CuL + creates an oxidizing environment and is potentially capable of inhibiting thiol enzymes such as hexokinase, protective effects are exerted in the red cell by the presence of hemoglobin, of radical scavengers, and of high levels of enzymes that detoxify toxic oxygen species. Address reprint requests to Dr. W.E. Antholine, Department of Radiology, or Dr. F. Taketa, Department of Bio  相似文献   

11.
12.
Hematocrit ratio, hemoglobin concentration and blood oxygen affinity, Bohr effect factor and Hill coefficient, adenosine triphosphate and inositol pentaphosphate (IPP) concentrations were studied in blood of adult pigeons exposed first at 140 m, and then for 3 weeks at 4000 m in an altitude chamber. At altitude, the hematocrit ratio and hemoglobin concentration significantly increased, IPP concentration decreased, and P50 did not change. A lower mean red cell age and a higher hemoglobin concentration may account for the unchanged P50. Adaptation to hypoxia of the tissue oxygen supply was shown by a greater blood O2 capacitance (ΔCHbO2o2) in the physiological range of oxygen partial pressures.  相似文献   

13.
The toxic action of the superoxide anion (O2?) toward the erythrocyte was investigated with O2? generated through the autooxidation of dihydroxyfumaric acid (DHF). A suspension of human red cells exposed to DHF undergoes a rapid breakdown of the cellular hemoglobin to methemoglobin and other green pigments. This hemoglobin breakdown is inhibited by superoxide dismutase (SOD) or catalase (CAT) and is accelerated by lactoperoxidase (LP) added externally to the red cell medium. Associated with the hemoglobin breakdown is a hypotonic hemolysis also inhibited by SOD or CAT and initially accelerated but later inhibited by LP. Conversion of the red cell hemoglobin to carbonmonoxyhemoglobin in an aerated medium results in no hemoglobin breakdown or hypotonic lysis in the presence of DHF, even though O2? can be demonstrated in the medium. Although no evidence for membrane sulfhydryl oxidation or lipid peroxidation can be demonstrated in red cells exposed to DHF, the membranes of these cells were found to retain a green pigment. The presence of this green pigment in red cell membranes was inhibited by SOD, CAT, or conversion of the cellular hemoglobin to carbonmonoxyhemoglobin, but was not inhibited by LP. These results have been interpreted as a peroxide-dependent formation of O2? by DHF, followed by attack of O2? on hemoglobin. The reaction of O2? with hemoglobin leads to the formation of a hemoglobin-breakdown product that binds to the red cell membrane, resulting in an increased osmotic fragility of the cell.  相似文献   

14.
The binding of hemoglobins A, S, and A2 to red cell membranes prepared by hypotonic lysis from normal blood and blood from persons with sickle cell anemia was quantified under a variety of conditions using hemoglobin labelled by alkylation with 14C-labelled Nitrogen Mustard. Membrane morphology was examined by electron microscopy. Normal membranes were found capable of binding native hemoglobin A and hemoglobin S in similar amounts when incubated at low hemoglobin: membrane ratios, but at high ratios hemoglobin saturation levels of the membranes increased progressively for hemoglobin A, hemoglobin S and hemoglobin A2, respectively, in order of increasing electropositivity. Binding was unaffected by variations in temperature (4–22 °C) and altered little by the presence of sulfhydryl reagents, but was inhibited at pH levels above 7.35; disrupted at high ionic strength; and dependent on the ionic composition of the media. These findings suggest that electrostatic, but not hydrophobic or sulfhydryl bonds are important in membrane binding of the hemoglobin under the conditions studied.An increased retention of hemoglobin in preparations of membranes from red cells of patients with sickle cell anemia (homozygote S) was attributable to the dense fraction of homozygote S red cells rich in irreversibly sickled cells, and the latter membranes had a smaller residual binding capacity for new hemoglobin. This suggests that in homozygote S cells which have become irreversibly sickled cells in vivo, there are membrane changes which involve alteration and/or blockade of hemoglobin binding sites.These findings support the notion that hemoglobin participates in the dynamic structure of the red cell membrane in a manner which differs in normal and pathological states.  相似文献   

15.
Healthy children between the ages of 10 and 12 years (n=699) of the Far North (Taimyr peninsular) and Siberia (Krasnoyarsk city) were examined. The red blood system was investigated relative to the duration of residence in the polar region and the season of the year. The red blood cell (RBC) count and the hemoglobin level in children from the newly arrived population corresponded to the normal age values, and those of the aborigines were at the lower border of the normal value range. The qualitative composition of their red blood was changed—the level of the alkaline-resistant hemoglobin was elevated. In all the children who lived in the polar regions, the mean RBC volume was augmented, along with seasonal dynamics of blood electrolyte composition, changes in phospholipid spectrum of erythrocyte membranes, and certain activation of lipid peroxidation reactions. The oxygen-binding capacity of blood was changed in children from the polar regions, which led to alterations of hemoglobin affinity to O2 in pO2 in the direction of its increase in the lungs and decrease in tissues under conditions of existing pO2. These deviations were the most common (from 5/6 to 2/3) in children during the first five years of their residence in polar regions; afterwards their frequency as compared to the control curve did not exceed 1/2, as in the aborigines.  相似文献   

16.
The glutathione redox couple (GSH/GSSG) and hydrogen peroxide (H2O2) are central to redox homeostasis and redox signaling, yet their distribution within an organism is difficult to measure. Using genetically encoded redox probes in Drosophila, we establish quantitative in vivo mapping of the glutathione redox potential (EGSH) and H2O2 in defined subcellular compartments (cytosol and mitochondria) across the whole animal during development and aging. A chemical strategy to trap the in vivo redox state of the transgenic biosensor during specimen dissection and fixation expands the scope of fluorescence redox imaging to include the deep tissues of the adult fly. We find that development and aging are associated with redox changes that are distinctly redox couple-, subcellular compartment-, and tissue-specific. Midgut enterocytes are identified as prominent sites of age-dependent cytosolic H2O2 accumulation. A longer life span correlated with increased formation of oxidants in the gut, rather than a decrease.  相似文献   

17.
Some bacteria, isolated from the blood of hospitalized patients, have been shown to hemolyze red blood cells through a mechanism which was dependent on the oxygenated state of intracellular hemoglobin, since transformation of hemoglobin into the CO-derivative inhibited the lysis. Hemolysis was also inhibited by superoxide dismutase and catalase, while only catalase prevented the formation of methemoglobin in experiments where isolated oxyhemoglobin was exposed to metabolizing bacteria. Production by bacteria of extracellular superoxide was demonstrated. It is suggested that hemolysis is due to interaction of O2 and/or H2O2 with intracellular hemoglobin and that some product of such interaction is the lytic agent.  相似文献   

18.
In green or etiolated rye leaves catalase was most efficiently inactivated by blue light absorbed by its prosthetic heme. Red light was ineffective at low intensity but induced marked inactivation in green leaves at higher photon flux, while far-red light was ineffective. At identical intensities of photosynthetically active radiation, Photosystem II (PS II) was equally inactivated by both blue and red light. Since catalase was insensitive to red light and no sensitizer for red light was detected in isolated peroxisomes, the inactivation of catalase observed in leaves in red light must result from photooxidative reactions initiated in the chloroplasts. In a simplified model system the inactivation of isolated catalase was induced by the presence of a suspension of either intact or broken chloroplasts in red light. This chloroplast-mediated inactivation of catalase in vitro was O2-dependent. It was greatly retarded at low temperature, fully suppressed by the radic al scavenger Trolox, partially retarded by superoxide dismutase, but only little diminished by the singlet oxygen quencher histidine and not affected by dimethylsulfoxide, a hydroxyl radical scavenger. Chloroplast-mediated catalase inactivation in vitro was suppressed by suitable electron acceptors, in particular by methyl viologen. A comparison of the effects of inhibitors, donors, or acceptors for specific sites of the photosynthetic electron transport indicated that an overreduction of PS II and plastoquinone represented the major sources for the formation of O2 and some unidentified radical that appeared to mediate the inactivation of catalase outside of the chloroplasts. Chloroplast-mediated catalase inactivation provides a means for the detection of a redox signalling system of chloroplasts that was postulated to indicate overreduction of plastoquinones. Similarly as in the in vitro system, catalase inactivation in red light was also in leaves temperature-dependent and stimulated by DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone). These results provide strong evidence that inactivation of catalase initiated by chloroplastic reactions in red light occurred also in leaves under identical conditions as in the model system in vitro.  相似文献   

19.
《Free radical research》2013,47(3):154-163
Abstract

Pharmacological ascorbate, via its oxidation, has been proposed as a pro-drug for the delivery of H2O2 to tumors. Pharmacological ascorbate decreases clonogenic survival of pancreatic cancer cells, which can be reversed by treatment with scavengers of H2O2. The goal of this study was to determine if inhibitors of intracellular hydroperoxide detoxification could enhance the cytotoxic effects of ascorbate. Human pancreatic cancer cells were treated with ascorbate alone or in combination with inhibitors of hydroperoxide removal including the glutathione disulfide reductase inhibitor 1,3 bis (2-chloroethyl)-1-nitrosurea (BCNU), siRNA targeted to glutathione disulfide reductase (siGR), and 2-deoxy-D-glucose (2DG), which inhibits glucose metabolism. Changes in the intracellular concentration of H2O2 were determined by analysis of the rate of aminotriazole-mediated inactivation of endogenous catalase activity. Pharmacological ascorbate increased intracellular H2O2 and depleted intracellular glutathione. When inhibitors of H2O2 metabolism were combined with pharmacological ascorbate the increase in intracellular H2O2 was amplified and cytotoxicity was enhanced. We conclude that inclusion of agents that inhibit cellular peroxide removal produced by pharmacological ascorbate leads to changes in the intracellular redox state resulting in enhanced cytotoxicity.  相似文献   

20.
Malaria parasites adapt to the oxidative stress during their erythrocytic stages with the help of vital thioredoxin redox system and glutathione redox system. Glutathione reductase and thioredoxin reductase are important enzymes of these redox systems that help parasites to maintain an adequate intracellular redox environment. In the present study, activities of glutathione reductase and thioredoxin reductase were investigated in normal and Plasmodium berghei-infected mice red blood cells and their fractions. Activities of glutathione reductase and thioredoxin reductase in P. berghei-infected host erythrocytes were found to be higher than those in normal host cells. These enzymes were mainly confined to the cytosolic part of cell-free P. berghei. Full characterization and understanding of these enzymes may promise advances in chemotherapy of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号