首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Changes in the intracellular and extracellular redox balance have been correlated with cell fate decisions in terms of proliferation versus differentiation, entering versus existing cell cycle and survival versus cell death. Adult hippocampal neurogenesis has been correlated with neuronal plasticity of learning and memory; however, the process is exquisitely sensitive to changes in redox balance. Cranial irradiation is an effective modality in treating brain tumours but often leads to deficits in hippocampus-related learning and memory, which is most likely due to sustained elevation of oxygen free radical production and suppression of hippocampal neurogenesis. The subcellular redox environment affecting hippocampal neurogenesis is largely unknown. Using mutant mice deficient in each one of the three superoxide dismutase (SOD, EC 1.15.1.1) isoforms, we have begun to determine the consequences of SOD deficiency in hippocampal neurogenesis and the related functions of learning and memory under normal condition and following cranial irradiation.  相似文献   

2.
Hippocampus plays an important role in learning and memory and in spatial navigation. Production of new neurons that are functionally integrated into the hippocampal neuronal network is important for the maintenance of functional plasticity. In adults, production of new neurons in the hippocampus takes place in the subgranular zone (SGZ) of dentate gyrus. Neural progenitor/stem cells go through processes of proliferation, differentiation, migration, and maturation. This process is exquisitely sensitive to oxidative stress, and perturbation in the redox balance in the neurogenic microenvironment can lead to reduced neurogenesis. Cranial irradiation is an effective treatment for primary and secondary brain tumors. However, even low doses of irradiation can lead to persistent elevation of oxidative stress and sustained suppression of hippocampal neurogenesis. Superoxide dismutases (SODs) are major antioxidant enzymes for the removal of superoxide radicals in different subcellular compartments. To identify the subcellular location where reactive oxygen species (ROS) are continuously generated after cranial irradiation, different SOD deficient mice have been used to determine the effects of irradiation on hippocampal neurogenesis. The study results suggest that, regardless of the subcellular location, SOD deficiency leads to a significant reduction in the production of new neurons in the SGZ of hippocampal dentate gyrus. In exchange, the generation of new glial cells was significantly increased. The SOD deficient condition, however, altered the tissue response to irradiation, and SOD deficient mice were able to maintain a similar level of neurogenesis after irradiation while wild type mice showed a significant reduction in the production of new neurons.  相似文献   

3.

Background

Circadian disruptions through frequent transmeridian travel, rotating shift work, and poor sleep hygiene are associated with an array of physical and mental health maladies, including marked deficits in human cognitive function. Despite anecdotal and correlational reports suggesting a negative impact of circadian disruptions on brain function, this possibility has not been experimentally examined.

Methodology/Principal Findings

In the present study, we investigated whether experimental ‘jet lag’ (i.e., phase advances of the light∶dark cycle) negatively impacts learning and memory and whether any deficits observed are associated with reductions in hippocampal cell proliferation and neurogenesis. Because insults to circadian timing alter circulating glucocorticoid and sex steroid concentrations, both of which influence neurogenesis and learning/memory, we assessed the contribution of these endocrine factors to any observed alterations. Circadian disruption resulted in pronounced deficits in learning and memory paralleled by marked reductions in hippocampal cell proliferation and neurogenesis. Significantly, deficits in hippocampal-dependent learning and memory were not only seen during the period of the circadian disruption, but also persisted well after the cessation of jet lag, suggesting long-lasting negative consequences on brain function.

Conclusions/Significance

Together, these findings support the view that circadian disruptions suppress hippocampal neurogenesis via a glucocorticoid-independent mechanism, imposing pronounced and persistent impairments on learning and memory.  相似文献   

4.
5.

Background

Adult hippocampal neurogenesis, the process of formation of new neurons, occurs throughout life in the hippocampus. New neurons have been associated with learning and memory as well as mood control, and impaired neurogenesis has been linked to depression, schizophrenia, autism and cognitive decline during aging. Thus, understanding the biological properties of adult neurogenesis has important implications for human health. Computational models of neurogenesis have attempted to derive biologically relevant knowledge, hard to achieve using experimentation. However, the majority of the computational studies have predominantly focused on the late stages of neurogenesis, when newborn neurons integrate into hippocampal circuitry. Little is known about the early stages that regulate proliferation, differentiation, and survival of neural stem cells and their immediate progeny.

Results

Here, based on the branching process theory and biological evidence, we developed a computational model that represents the early stage hippocampal neurogenic cascade and allows prediction of the overall efficiency of neurogenesis in both normal and diseased conditions. Using this stochastic model with a simulation program, we derived the equilibrium distribution of cell population and simulated the progression of the neurogenic cascade. Using BrdU pulse-and-chase experiment to label proliferating cells and their progeny in vivo, we quantified labeled newborn cells and fit the model on the experimental data. Our simulation results reveal unknown but meaningful biological parameters, among which the most critical ones are apoptotic rates at different stages of the neurogenic cascade: apoptotic rates reach maximum at the stage of neuroblasts; the probability of neuroprogenitor cell renewal is low; the neuroblast stage has the highest temporal variance within the cell types of the neurogenic cascade, while the apoptotic stage is short.

Conclusion

At a practical level, the stochastic model and simulation framework we developed will enable us to predict overall efficiency of hippocampal neurogenesis in both normal and diseased conditions. It can also generate predictions of the behavior of the neurogenic system under perturbations such as increase or decrease of apoptosis due to disease or treatment.
  相似文献   

6.
Age-related memory decline is closely associated with decreased neurogenesis and increased apoptosis in the hippocampus. Noradrenaline exerts its effect by selectively binding to and activating adrenergic receptors (ARs). Tamsulosin, α1-AR antagonist, is reported to have access to the brain and interact with α1-AR. In this study, the effects of tamsulosin on short-term and spatial learning memory in terms of neurogenesis and apoptosis were investigated using rats. Step-down avoidance test for short-term memory and radial 8-arm maze test for spatial learning memory were conducted. Neurogenesis was detected by 5-bromo-2’-deoxyuridine (BrdU) immunohistochemistry and apoptosis was evaluated by caspase-3 immunohistochemisty and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNE) staining. Western blot for protein kinase C (PKC), cAMP-responsive element-binding protein (CREB), brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), phosphatidylinositol 3-kinase (PI 3-kinase), Akt, Bcl-2, and Bax was conducted. In the aged rats, short-term and spatial learning memory was declined. Hippocampal nerogenesis was suppressed and hippocampal apoptosis was enhanced in the aged rats. In addition, phosphorylation of PKCα, CREB, PI-3 kinase, and Akt was decreased in the hippocampus of old-aged rats. Tamsulosin activated PKC/CREB and PI-3 kinase/Akt pathways. With these pathways, BDNF-TrkB signaling enhanced hippocampal neurogenesis and suppressed apoptosis in the old-aged rats. As the results, tamsulosin improved performance of short-term and spatial learning memory in the aged rats.  相似文献   

7.
8.
Exposure to exercise or to environmental enrichment increases the generation of new neurons in the adult hippocampus and promotes certain kinds of learning and memory. While the precise role of neurogenesis in cognition has been debated intensely, comparatively few studies have addressed the mechanisms linking environmental exposures to cellular and behavioral outcomes. Here we show that bone morphogenetic protein (BMP) signaling mediates the effects of exercise on neurogenesis and cognition in the adult hippocampus. Elective exercise reduces levels of hippocampal BMP signaling before and during its promotion of neurogenesis and learning. Transgenic mice with decreased BMP signaling or wild type mice infused with a BMP inhibitor both exhibit remarkable gains in hippocampal cognitive performance and neurogenesis, mirroring the effects of exercise. Conversely, transgenic mice with increased BMP signaling have diminished hippocampal neurogenesis and impaired cognition. Exercise exposure does not rescue these deficits, suggesting that reduced BMP signaling is required for environmental effects on neurogenesis and learning. Together, these observations show that BMP signaling is a fundamental mechanism linking environmental exposure with changes in cognitive function and cellular properties in the hippocampus.  相似文献   

9.
Presenilin-1 (PS1), the catalytic core of the aspartyl protease γ-secretase, regulates adult neurogenesis. However, it is not clear whether the role of neurogenesis in hippocampal learning and memory is PS1-dependent, or whether PS1 loss of function in adult hippocampal neurogenesis can cause learning and memory deficits. Here we show that downregulation of PS1 in hippocampal neural progenitor cells causes progressive deficits in pattern separation and novelty exploration. New granule neurons expressing reduced PS1 levels exhibit decreased dendritic branching and dendritic spines. Further, they exhibit reduced survival. Lastly, we show that PS1 effect on neurogenesis is mediated via β-catenin phosphorylation and notch signaling. Together, these observations suggest that impairments in adult neurogenesis induce learning and memory deficits and may play a role in the cognitive deficits observed in Alzheimer’s disease.  相似文献   

10.
It has been hypothesized that individuals who have higher demands for spatially based behaviours should show increases in hippocampal attributes. Some avian species have been shown to use a spatially based representation of their environment during migration. Further, differences in hippocampal attributes have been shown between migratory and non-migratory subspecies as well as between individuals with and without migratory experience (juveniles versus adults). We tested whether migratory behaviour might also be associated with increased hippocampal neurogenesis, and whether potential differences track previously reported differences in hippocampal attributes between a migratory (Zonotrichia leucophrys gambelii) and non-migratory subspecies (Z. l. nuttalli) of white-crowned sparrows. We found that non-migratory adults had relatively fewer numbers of immature hippocampal neurons than adult migratory birds, while adult non-migrants had a lower density of new hippocampal neurons than adult and juvenile migratory birds and juvenile non-migratory birds. Our results suggest that neurogenesis decreases with age, as juveniles, regardless of migratory status, exhibit similar and higher levels of neurogenesis than non-migratory adults. However, our results also suggest that adult migrants may either seasonally increase or maintain neurogenesis levels comparable to those found in juveniles. Our results thus suggest that migratory behaviour in adults is associated with maintained or increased neurogenesis and the differential production of new neurons may be the mechanism underpinning changes in the hippocampal architecture between adult migratory and non-migratory birds.  相似文献   

11.

Background

The lysophosphatidic acid LPA1 receptor regulates plasticity and neurogenesis in the adult hippocampus. Here, we studied whether absence of the LPA1 receptor modulated the detrimental effects of chronic stress on hippocampal neurogenesis and spatial memory.

Methodology/Principal Findings

Male LPA1-null (NULL) and wild-type (WT) mice were assigned to control or chronic stress conditions (21 days of restraint, 3 h/day). Immunohistochemistry for bromodeoxyuridine and endogenous markers was performed to examine hippocampal cell proliferation, survival, number and maturation of young neurons, hippocampal structure and apoptosis in the hippocampus. Corticosterone levels were measured in another a separate cohort of mice. Finally, the hole-board test assessed spatial reference and working memory. Under control conditions, NULL mice showed reduced cell proliferation, a defective population of young neurons, reduced hippocampal volume and moderate spatial memory deficits. However, the primary result is that chronic stress impaired hippocampal neurogenesis in NULLs more severely than in WT mice in terms of cell proliferation; apoptosis; the number and maturation of young neurons; and both the volume and neuronal density in the granular zone. Only stressed NULLs presented hypocortisolemia. Moreover, a dramatic deficit in spatial reference memory consolidation was observed in chronically stressed NULL mice, which was in contrast to the minor effect observed in stressed WT mice.

Conclusions/Significance

These results reveal that the absence of the LPA1 receptor aggravates the chronic stress-induced impairment to hippocampal neurogenesis and its dependent functions. Thus, modulation of the LPA1 receptor pathway may be of interest with respect to the treatment of stress-induced hippocampal pathology.  相似文献   

12.
13.
Recent evidence postulates a role of hippocampal neurogenesis in anxiety behavior. Here we report that elevated levels of neurogenesis elicit increased anxiety in rodents. Mice performing voluntary wheel running displayed both highly elevated levels of neurogenesis and increased anxiety in three different anxiety-like paradigms: the open field, elevated O-maze, and dark-light box. Reducing neurogenesis by focalized irradiation of the hippocampus abolished this exercise-induced increase of anxiety, suggesting a direct implication of hippocampal neurogenesis in this phenotype. On the other hand, irradiated mice explored less frequently the lit compartment of the dark-light box test irrespective of wheel running, suggesting that irradiation per se induced anxiety as well. Thus, our data suggest that intermediate levels of neurogenesis are related to the lowest levels of anxiety. Moreover, using c-Fos immunocytochemistry as cellular activity marker, we observed significantly different induction patterns between runners and sedentary controls when exposed to a strong anxiogenic stimulus. Again, this effect was altered by irradiation. In contrast, the well-known induction of brain-derived neurotrophic factor (BDNF) by voluntary exercise was not disrupted by focal irradiation, indicating that hippocampal BDNF levels were not correlated with anxiety under our experimental conditions. In summary, our data demonstrate to our knowledge for the first time that increased neurogenesis has a causative implication in the induction of anxiety.  相似文献   

14.
Recent studies have shown that the precursor of nerve growth factor (proNGF) is highly elevated in aging brains and in the brains of patients with Alzheimer’s Disease. proNGF accumulates in hippocampus which is an important neurogenic region related to learning and memory. However, it remains unclear whether proNGF has an influence on hippocampal neurogenesis. In this study, we demonstrated that the high-affinity receptor of proNGF, p75 neurotrophic factor (p75NTR), was expressed both on cells undergoing mitosis and postmitotic mature cells in mouse hippocampus. proNGF infusion into adult mouse hippocampus significantly reduced the density of BrdU-incorporating cells and the density of BrdU/Doublecortin double positive cells in the subgranular zone of hippocampus, indicating an inhibitory effect of proNGF on hippocampal neurogenesis. proNGF infusion also induced prominent cell apoptosis and activated residential astrocyte and microglia, which might further impair the hippocampal neurogenesis. These results implied that proNGF played a pivotal role in regulating the hippocampal neurogenesis and might account for the memory deficit and cognitive impairment.  相似文献   

15.
Neural stem cells generate neurons in the hippocampal dentate gyrus in mammals, including humans, throughout adulthood. Adult hippocampal neurogenesis has been the focus of many studies due to its relevance in processes such as learning and memory and its documented impairment in some neurodegenerative diseases. However, we are still far from having a complete picture of the mechanism regulating this process. Our study focused on the possible role of cyclic nucleotide-gated (CNG) channels. These voltage-independent channels activated by cyclic nucleotides, first described in retinal and olfactory receptors, have been receiving increasing attention for their involvement in several brain functions. Here we show that the rod-type, CNGA1, and olfactory-type, CNGA2, subunits are expressed in hippocampal neural stem cells in culture and in situ in the hippocampal neurogenic niche of adult mice. Pharmacological blockade of CNG channels did not affect cultured neural stem cell proliferation but reduced their differentiation towards the neuronal phenotype. The membrane permeant cGMP analogue, 8-Br-cGMP, enhanced neural stem cell differentiation to neurons and this effect was prevented by CNG channel blockade. In addition, patch-clamp recording from neuron-like differentiating neural stem cells revealed cGMP-activated currents attributable to ion flow through CNG channels. The current work provides novel insights into the role of CNG channels in promoting hippocampal neurogenesis, which may prove to be relevant for stem cell-based treatment of cognitive impairment and brain damage.  相似文献   

16.

The intermediate filament protein nestin is expressed by neural stem cells, but also by some astrocytes in the neurogenic niche of the hippocampus in the adult rodent brain. We recently reported that nestin-deficient (Nes?/?) mice showed increased adult hippocampal neurogenesis, reduced Notch signaling from Nes?/? astrocytes to the neural stem cells, and impaired long-term memory. Here we assessed learning and memory of Nes?/? mice in a home cage set up using the IntelliCage system, in which the mice learn in which cage corner a nose poke earns access to drinking water. Nes?/? and wildtype mice showed comparable place learning assessed as the incorrect corner visit ratio and the incorrect nose poke ratio. However, during reversal place learning, a more challenging task, Nes?/? mice, compared to wildtype mice, showed improved learning over time demonstrated by the incorrect visit ratio and improved memory extinction over time assessed as nose pokes per visit to the previous drinking corner. In addition, Nes?/? mice showed increased explorative activity as judged by the increased total numbers of corner visits and nose pokes. We conclude that Nes?/? mice exhibit improved reversal place learning and memory extinction, a finding which together with the previous results supports the concept of the dual role of hippocampal neurogenesis in cognitive functions.

  相似文献   

17.
In addition to the subventricular zone, the dentate gyrus of the hippocampus is one of the few brain regions in which neurogenesis continues into adulthood. Perturbation of neurogenesis can alter hippocampal function, and previous studies have shown that neurogenesis is dysregulated in Alzheimer disease (AD) brain. Bone morphogenetic protein-4 (BMP4) and its antagonist Noggin have been shown to play important roles both in embryonic development and in the adult nervous system, and may regulate hippocampal neurogenesis. Previous data indicated that increased expression of BMP4 mRNA within the dentate gyrus might contribute to decreased hippocampal cell proliferation in the APPswe/PS1ΔE9 mouse AD model. However, it is not known whether the BMP antagonist Noggin contributes to the regulation of neurogenesis. We therefore studied the relative expression levels and localization of BMP4 and its antagonist Noggin in the dentate gyrus and whether these correlated with changes in neurogenesis in 6-12 mo old APPswe/PS1ΔE9 transgenic mice. Bromodeoxyuridine (BrdU) was used to label proliferative cells. We report that decreased neurogenesis in the APP/PS1 transgenic mice was accompanied by increased expression of BMP4 and decreased expression of Noggin at both the mRNA and protein levels; statistical analysis showed that the number of proliferative cells at different ages correlated positively with Noggin expression and negatively with BMP4 expression. Intraventricular administration of a chimeric Noggin/Fc protein was used to block the action of endogenous BMP4; this resulted in a significant increase in the number of BrdU-labeled cells in dentate gyrus subgranular zone and hilus in APP/PS1 mice. These results suggest that BMP4 and Noggin co-modulate neurogenesis.  相似文献   

18.
19.
Neurogenesis in a rat model of age-related cognitive decline   总被引:5,自引:0,他引:5  
Bizon JL  Lee HJ  Gallagher M 《Aging cell》2004,3(4):227-234
Age-related decrements in hippocampal neurogenesis have been suggested as a basis for learning impairment during aging. In the current study, a rodent model of age-related cognitive decline was used to evaluate neurogenesis in relation to hippocampal function. New hippocampal cell survival was assessed approximately 1 month after a series of intraperitoneal injections of 5-bromo-2'-deoxyuridine (BrdU). Correlational analyses between individual measures of BrdU-positive cells and performance on the Morris water maze task provided no indication that this measure of neurogenesis was more preserved in aged rats with intact cognitive abilities. On the contrary, among aged rats, higher numbers of BrdU-positive cells in the granule cell layer were associated with a greater degree of impairment on the learning task. Double-labelling studies confirmed that the majority of the BrdU+ cells were of the neuronal phenotype; the proportion of differentiated neurons was not different across a broad range of cognitive abilities. These data demonstrate that aged rats that maintain cognitive function do so despite pronounced reductions in hippocampal neurogenesis. In addition, these findings suggest the interesting possibility that impaired hippocampal function is associated with greater survival of newly generated hippocampal neurons at advanced ages.  相似文献   

20.
The response of the brain to irradiation is complex, involving a multitude of stress inducible pathways that regulate neurotransmission within a dynamic microenvironment. While significant past work has detailed the consequences of CNS radiotherapy following relatively high doses (≥ 45 Gy), few studies have been conducted at much lower doses (≤ 2 Gy), where the response of the CNS (like many other tissues) may differ substantially from that expected from linear extrapolations of high dose data. Low dose exposure could elicit radioadaptive modulation of critical CNS processes such as neurogenesis, that provide cellular input into hippocampal circuits known to impact learning and memory. Here we show that mice deficient for chemokine signaling through genetic disruption of the CCR2 receptor exhibit a neuroprotective phenotype. Compared to wild type (WT) animals, CCR2 deficiency spared reductions in hippocampal neural progenitor cell survival and stabilized neurogenesis following exposure to low dose irradiation. While radiation-induced changes in microglia levels were not found in WT or CCR2 deficient animals, the number of Iba1+ cells did differ between each genotype at the higher dosing paradigms, suggesting that blockade of this signaling axis could moderate the neuroinflammatory response. Interestingly, changes in proinflammatory gene expression were limited in WT animals, while irradiation caused significant elevations in these markers that were attenuated significantly after radioadaptive dosing paradigms in CCR2 deficient mice. These data point to the importance of chemokine signaling under low dose paradigms, findings of potential significance to those exposed to ionizing radiation under a variety of occupational and/or medical scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号