首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidant stress is associated with the generation of reactive oxygen-derived species, which are considered as the ultimate agents responsible for the damage of a variety of cellular components. Transition metals such as iron ions serve as catalytic centers for the repeated conversion of superoxide radicals or ascorbate to the highly reactive and deleterious hydroxyl radicals and, indeed, increasing amounts of redox-active iron become available during plasmodial development within the parasitized erythrocytes. Thus, the survival of an intracellular parasite depends on the delicate balance of oxidant stress and defense mechanisms. This balance is continuously changing and the parasite must cope with increasing oxidant stress and the decline of protective capacity.  相似文献   

2.
《Free radical research》2013,47(5):279-290
Based on the unusually high and stage-dependant susceptibility of Plasmodia to oxidant stress it has been proposed that during parasite development, increasing levels of redox-active forms of iron are gradually released. The purpose of this study was to examine this proposal by using an assay monitoring the levels of available forms of iron for redox reactions. Ascorbate-driven and iron-mediated degradation of adventitious DNA served as the basis for this functional assay.

Incubation of DNA with lysate from infected RBC caused massive degradation, which was dose, time-and parasite-stage dependent. In contrast, lysate from non-infected RBC did not induce DNA degradation. Likewise, lysate only from infected RBC enhanced the aerobic oxidation of ascorbate. These effects on both reactions, DNA degradation and ascorbate oxidation, could be reconstructed with hemin, instead of lysate. Also, chelators exerted similar effects on both reactions.

The results suggest that increased levels of redox-active forms of iron are liberated during parasite development. We propose that hemin or hemin-like structures are the appropriate candidates which could catalyze oxidative stress and deregulate the delicate redox balance of the host-parasite system.  相似文献   

3.
Hyperbleeding of mice 1 day before and 1 day after infection with Plasmodium berghei resulted in a more aggravated infection. Parasitemia rose significantly faster, but the mean survival time of these mice was not significantly different from control mice. At Day 5 of infection, parasites were almost exclusively in reticulocytes in contrast to control infections in which parasites were found in oxyphilic erythrocytes at Day 5 after infection. Purified parasitized reticulocytes taken from hyperbled mice at Day 5 after infection contained more young developmental parasite stages than purified parasitized oxyphilic erythrocytes taken from normal mice at Day 5 to 7 after infection. Parasitized reticulocytes were more readily opsonized by antibodies from immune serum when compared to parasitized oxyphilic red blood cells and when used to stimulate immune spleen cells the former were better stimulator cells than the latter. Results suggest either that parasitized reticulocytes are more immunogenic then parasitized oxyphilic red blood cells or that suspensions of parasitized reticulocytes contain more immunogenic parasite stages than suspensions of parasitized oxyphilic red blood cells.  相似文献   

4.
Iron chelation therapy was initially designed to alleviate the toxic effects of excess iron evident in iron-overload diseases. However, some iron chelator-metal complexes have also gained interest due to their high redox activity and toxicological properties that have potential for cancer chemotherapy. This communication addresses the conflicting results published recently on the ability of the iron chelator, Dp44mT, to induce hydroxyl radical formation upon complexation with iron (B.B. Hasinoff and D. Patel, J Inorg. Biochem.103 (2009), 1093-1101). This previous study used EPR spin-trapping to show that Dp44mT-iron complexes were not able to generate hydroxyl radicals. Here, we demonstrate the opposite by using the same technique under very similar conditions to show the Dp44mT-iron complex is indeed redox-active and induces hydroxyl radical formation. This was studied directly in an iron(II)/H2O2 reaction system or using a reducing iron(III)/ascorbate system implementing several different buffers at pH 7.4. The demonstration by EPR that the Dp44mT-iron complex is redox-active confirms our previous studies using cyclic voltammetry, ascorbate oxidation, benzoate hydroxylation and a plasmid DNA strand-break assay. We discuss the relevance of the redox activity to the biological effects of Dp44mT.  相似文献   

5.
Based on the unusually high and stage-dependant susceptibility of Plasmodia to oxidant stress it has been proposed that during parasite development, increasing levels of redox-active forms of iron are gradually released. The purpose of this study was to examine this proposal by using an assay monitoring the levels of available forms of iron for redox reactions. Ascorbate-driven and iron-mediated degradation of adventitious DNA served as the basis for this functional assay.

Incubation of DNA with lysate from infected RBC caused massive degradation, which was dose, time-and parasite-stage dependent. In contrast, lysate from non-infected RBC did not induce DNA degradation. Likewise, lysate only from infected RBC enhanced the aerobic oxidation of ascorbate. These effects on both reactions, DNA degradation and ascorbate oxidation, could be reconstructed with hemin, instead of lysate. Also, chelators exerted similar effects on both reactions.

The results suggest that increased levels of redox-active forms of iron are liberated during parasite development. We propose that hemin or hemin-like structures are the appropriate candidates which could catalyze oxidative stress and deregulate the delicate redox balance of the host-parasite system.  相似文献   

6.
Invasion of erythrocytes by malaria parasites is known to be blocked by proteolytic digestion of merozoite receptors allegedly present in red cell membranes. This information was used in the present work to develop a simple and convenient assay for parasite invasion into red blood cells and for evaluating the role played by red cell membrane components in this process. Synchronized in vitro cultures of Plasmodium falciparum containing only ring stages were subjected to either trypsin or pronase digestion, a treatment that neither affected ring development into schizonts nor mature merozoite release. Cells from this culture were not invaded by the released merozoites. However, upon addition of untreated human red blood cells, marked invasion was observed, either microscopically or as [3H]isoleucine incorporation. The new assay circumvents the need for separating schizonts from uninfected cells and provides a convenient means for assessing how chemical and biochemical manipulation of red blood cells affects their invasiveness by parasites. Using this assay, we verified that sheep and rabbit erythrocytes were resistant to invasion, as were human erythrocytes which had been treated with trypsin, pronase or neuraminidase. Chymotrypsin digestion of human erythrocytes was without effect on invasion. Human erythrocytes which were chemically modified with the impermeant amino reactive reagent H2DIDS, or with the crosslinker of spectrin, TCEA, were found to resist invasion. The results underscore the involvement of surface membrane components as well as of elements of the cytoskeleton in the process of parasite invasion into erythrocytes.  相似文献   

7.
The possible mechanisms underlying the acquisition of an increased ascorbic acid content by mouse erythrocytes containing the malarial parasite Plasmodium vinckei were investigated. Ascorbic acid was taken up readily by parasitized red blood cells but not by controls, whilst its partly oxidized form, dehydroascorbic acid, entered both. The uptake of both ascorbic acid and dehydroascorbic acid into erythrocytes was increased as a result of malarial infection. Lysates prepared from parasitized red blood cells reduced exogenous dehydroascorbic acid to ascorbic acid at a higher rate than control red blood cell lysates; this difference was abolished following dialysis of the lysates, a process which removes endogenous reduced glutathione (GSH). The rates of chemical and enzymatic reduction of dehydroascorbic acid to ascorbic acid by GSH were of similar magnitude, thus calling into question the existence of a specific dehydroascorbate reductase in erythrocytes and parasites. These observations suggest that the increased uptake of dehydroascorbic acid into parasitized red blood cells may be a result of enhanced dehydroascorbate-reducing capacity, whilst the presence of the parasite induces a selective increase in the permeability of the erythrocyte plasma membrane to ascorbic acid. The endogenous ascorbic acid content of livers obtained from infected mice was 55% below the normal concentration and its relative rate of destruction during incubation in vitro was enhanced in comparison with that of control livers. Furthermore, the capacity of liver homogenates to synthesize ascorbic acid from glucuronic acid was greatly reduced in infected mice. Therefore it is unlikely that the increase in ascorbic acid content of parasitized red blood cells is a consequence of increased biosynthesis and release of ascorbic acid by the host liver. We have not been able to exclude the possibility that the malarial parasite itself may be capable of de novo synthesis of ascorbic acid.  相似文献   

8.
The effects of ascorbate and copper on the development of Plasmodium falciparum were studied in two modes: pretreatment of uninfected erythrocytes followed by infection by P. falciparum and treatment of parasitized erythrocytes. Pretreatment of G6PD(+) cells with ascorbate caused a slight enhancement in parasite development, while in G6PD(-) cells a suppressive effect on the plasmodia was demonstrated. Copper alone interfered with parasite growth in both cell types. The combination of copper and ascorbate arrested parasite maturation, an effect which was more pronounced in G6PD(-) cells. Synergism between copper and ascorbate was better demonstrated following the treatment of infected erythrocytes: while ascorbate alone supported parasite development and copper alone had only a marginal suppressive effect, the combination of copper and ascorbate yielded a marked inhibition of parasite growth. Ascorbate proved destructive to the parasites in the presence of adventitious copper, or on the second day of the parasite life cycle. In these cases it acted as a pro-oxidant, while in other systems, in particular in the presence of a chelator, ascorbate acted as an antioxidant and promoted parasite growth. The understanding of the role of transition metals and free radicals in parasite development and injury could shed light on novel approaches to fight malaria.  相似文献   

9.
In Plasmodium, the membrane of intracellular parasites is initially formed during invasion as an invagination of the red blood cell surface, which forms a barrier between the parasite and infected red blood cells in asexual blood stage parasites. The membrane proteins of intracellular parasites of Plasmodium species have been identified such as early-transcribed membrane proteins (ETRAMPs) and exported proteins (EXPs). However, there is little or no information regarding the intracellular parasite membrane in Plasmodium vivax. In the present study, recombinant PvETRAMP11.2 (PVX_003565) and PvEXP1 (PVX_091700) were expressed and evaluated antigenicity tests using sera from P. vivax-infected patients. A large proportion of infected individuals presented with IgG antibody responses against PvETRAMP11.2 (76.8%) and PvEXP1 (69.6%). Both of the recombinant proteins elicited high antibody titers capable of recognizing parasites of vivax malaria patients. PvETRAMP11.2 partially co-localized with PvEXP1 on the intracellular membranes of immature schizont. Moreover, they were also detected at the apical organelles of newly formed merozoites of mature schizont. We first proposed that these proteins might be synthesized in the preceding schizont stage, localized on the parasite membranes and apical organelles of infected erythrocytes, and induced high IgG antibody responses in patients.  相似文献   

10.
The advent of intravital microscopy in experimental rodent malaria models has allowed major advances to the knowledge of parasite-host interactions 1,2. Thus, in vivo imaging of malaria parasites during pre-erythrocytic stages have revealed the active entrance of parasites into skin lymph nodes 3, the complete development of the parasite in the skin 4, and the formation of a hepatocyte-derived merosome to assure migration and release of merozoites into the blood stream 5. Moreover, the development of individual parasites in erythrocytes has been recently documented using 4D imaging and challenged our current view on protein export in malaria 6. Thus, intravital imaging has radically changed our view on key events in Plasmodium development. Unfortunately, studies of the dynamic passage of malaria parasites through the spleen, a major lymphoid organ exquisitely adapted to clear infected red blood cells are lacking due to technical constraints.Using the murine model of malaria Plasmodium yoelii in Balb/c mice, we have implemented intravital imaging of the spleen and reported a differential remodeling of it and adherence of parasitized red blood cells (pRBCs) to barrier cells of fibroblastic origin in the red pulp during infection with the non-lethal parasite line P.yoelii 17X as opposed to infections with the P.yoelii 17XL lethal parasite line 7. To reach these conclusions, a specific methodology using ImageJ free software was developed to enable characterization of the fast three-dimensional movement of single-pRBCs. Results obtained with this protocol allow determining velocity, directionality and residence time of parasites in the spleen, all parameters addressing adherence in vivo. In addition, we report the methodology for blood flow quantification using intravital microscopy and the use of different colouring agents to gain insight into the complex microcirculatory structure of the spleen. Ethics statement All the animal studies were performed at the animal facilities of University of Barcelona in accordance with guidelines and protocols approved by the Ethics Committee for Animal Experimentation of the University of Barcelona CEEA-UB (Protocol No DMAH: 5429). Female Balb/c mice of 6-8 weeks of age were obtained from Charles River Laboratories.  相似文献   

11.
The inhibitory effect of metal chelators on intraerythrocytic malarial parasites imply that trace metal have a vital role in the biology of these organisms. In the present work X-ray fluorometry was used to study the status of zinc and iron in human red blood cells infected with Plasmodium falciparum in culture conditions. It was found that while the iron level remains constant throughout the parasite cell cycle, that of zinc increases in parallel with parasite maturation to reach a 2.3-fold higher level than that of uninfected red blood cells. Compartment analysis of infected red blood cells indicated that most of this gain was associated with the parasite and some with the host-cell membrane. Analysis of the malarial pigment showed that the zinc/iron ratio was similar to that of red blood cells, implying the this compound, which results from the digestion of host-cell cytosol, sequesters the zinc of host metalloenzymes. Dipicolinic acid (DPA), like other chelators, was found to inhibit the intracellular development of the parasite with an ED50 of 1 mM. DPA does not penetrate into normal red blood cells but readily permeates into infected cells, although it does not leach out their zinc. It is uncertain whether the inhibitory effect of DPA is exerted through alterations of host cell metabolism or by directly affecting that of the parasite. The putative receptors of zinc in the infected red blood cell are discussed.  相似文献   

12.
SYNOPSIS. Pyridoxine kinase enzyme activity was greatly increased in duckling erythrocytes infected with Plasmodium lophurae. Pyridoxine kinase activity in parasites freed from erythrocytes was much greater than that of uninfected erythrocytes. The apparent Km for pyridoxine of the parasite enzyme was 6.6 × 10-5 M whereas the host red cell enzyme Km was 1.9 × 10-6 M. Deoxypyridoxine inhibited host and parasite pyridoxine kinase activity with an apparent Ki of 1.5 × 10-6 and 8.6 × 10-6 M, respectively. These results suggest that the vitamin B6 metabolism of the malaria parasites is distinct and separate from that of the host erythrocytes.  相似文献   

13.
Studies were performed to evaluate several methods for the artificial removal of Plasmodium berghei merozoites from infected mouse erythrocytes. These methods, many of which have been reported to yield free parasites capable of establishing a patent infection when injected into a suitable host, included NH4C1-mediated lysis, complement-mediated immune lysis, pressure filtration, and multiple-burst and continuous-flow sonication. Free parasites isolated from infected mouse blood were examined in vitro under conditions known to support merozoite invasion, and were found to be noninvasive, irrespective of the method used for their isolation. Although all methods tested achieved high degrees of lysis, none removed all intact parasitized erythrocytes. Using multiple-burst and continuous-flow sonication, the infective potential of free parasite preparations could be accounted for solely on the basis of the intact parasitized cells contaminating the free parasite preparations.  相似文献   

14.
Summary P. falciparum, an intraerythrocytic parasite, obtains nourishment primarily through phagocytosis of the host cytosol but also through the incorporation of extracellular small molecules which enter through the parasitized red cell's membrane via pores. Normal mature erythrocytes are incapable of endocytosis. Several lines of evidence suggest that extracellular large molecules may be taken up when the mature red cell is parasitized byP. falciparum, but direct evidence has been lacking. We now report the use of ferritin, an electron dense protein, to demonstrate endocytosis inP. falciparum infected red cells. Parasitized red cells incubated with ferritin internalize that macromolecule as demonstrated by electron microscopy. While normal red cells incubated with ferritin took up none of the tracer molecule, parasitized red cells internalized substantial amounts. In addition both ferritin and apoferritin inhibited the growth ofP. falciparum in a dose dependent fashion, again indicating endocytosis of a macromolecule. These data indicate thatP. falciparum can somehow stimulate the mature erythrocyte to engage in endocytosis. We also note that both infected and non-infected red cells in a culture in whichP. falciparum is growing become abnormally sticky for ferritin. Moreover, parasitized red cells bind I125-transferrin while non-parasitized erythrocytes do not. These observations suggest that a soluble parasite product alters the red cell membrane in a non-global manner, causing selective effects in relation to different proteins.  相似文献   

15.
Introduction     
The role of reactive oxygen species (ROS) generated by polymorphonuclear leucocytes (PMNs) in the host response against malaria was investigated. Non-activated human PMNs were added to cultures of P. falciparum in microtitre cells. Parasite viability was evaluated by the incorporation of radioactive hypoxanthine. Using PMN/RBC = 1/150 (starting parasitemia was 1+) the incorporation on the second day in culture was only 61+ of the control cultures. An effect could be observed already after two hours of incubation (30+ reduction at a 1/50 PMN/RBC ratio). A direct contact between the effector and target cells was obligatory for the expression of the damage.

Parasites within G6PD-deficient erythrocytes were more sensitive to the PMNs than normal parasitized erythrocytes. This difference could be attributed to the production of reactive oxygen intermediates in the experimental system, since G6PD-deficient erythrocytes are generally more sensitive to oxidant stress.

Salicylic acid was used as a scavenger and reporter molecule for hydroxyl radical fluxes. It is converted to the corresponding dihydroxybenzoic acid derivatives, which could be detected by HPLC. Uninfected NRBC or parasitized erythrocytes containing young ring forms could trigger the PMNs to produce much less ROS than the mature forms of the parasites. Other factors associated with PMNs may inactivate the parasites, such as phagocytosis, lysosomal enzymes or degradation toxic products of the PMNs. However our results indicate that increased oxidative stress induced by PMNs interfere with the growth of P. falciparum and could play a role in human evolution of abnormal erythrocytes.  相似文献   

16.
Possible functions of antibody in controlling multiplication of B. rodhaini in mice have been investigated. The infectivity of parasites which have been circulating in the blood of immune hosts for 4 hr is not impaired. Clearance of parasitized red cells from the blood of immune hosts is not impaired if the parasites are prevented from leaving the red cells by the effects of radiation damage. The rate of clearance of parasitized red cells by immune hosts is very slow compared with the clearance of foreign red cells by normal hosts.  相似文献   

17.
2,3-Diphosphoglycerate (2,3-DPG), an intracellular metabolite of glycolytic pathway is known to affect the oxygen binding capacity of haemoglobin and mechanical properties of the red blood cells. 2,3-DPG levels have been reported to be elevated during anaemic conditions including visceral leishmaniasis. 2,3-DPG activity in P. falciparum infected red blood cells, particularly in cells infected with different stages of the parasite and its relationship with structural integrity of the cells is not known. Chloroquine sensitive and resistant strains of P. falciparum were cultured in vitro and synchronized cultures of ring, trophozoite and schizont stage rich cells along with the uninfected control erythrocytes were assayed for 2,3-DPG activity and osmotic fragility. It was observed that in both the strains, in infected erythrocytes the 2,3-DPG activity gradually decreased and osmotic fragility gradually increased as the parasite matured from ring to schizont stage. The decrease in 2,3-DPG may probably be due to increased pyruvate kinase activity of parasite origin, which has been shown in erythrocytes infected with several species of Plasmodium. The absence of compensatory increase in 2,3-DPG in P. falciparum infected erythrocytes may aggravate hypoxia due to anaemia in malaria and probably may contribute to hypoxia in cerebral malaria. As 2,3-DPG was not found to be increased in erythrocytes parasitized with P. falciparum, the increased osmotic fragility observed in these cells is not due to increased 2,3-DPG as has been suggested in visceral leishmaniasis.  相似文献   

18.
The metal-mediated site-specific mechanism for free radical-induced biological damage is reviewed. According to this mechanism, cooper- or iron-binding sites on macromolecules serve as centers for repeated production of hydroxyl radicals that are generated via the Fenton reaction. The aberrations induced by superoxide, ascorbate, isouramil, and paraquat are summarized. An illustrative example is the enhancement of double-strand breaks by ascorbate/copper. Prevention of the site-specific free radical damage can be accomplished by using selective chelators for iron and copper, by displacing these redox-active metals with other redox-inactive metals such as zinc, by introducing high concentrations of hydroxyl radicals scavengers and spin trapping agents, and by applying protective enzymes that remove superoxide or hydrogen peroxide. Histidine is a special agent that can intervene in free radical reactions in variety of modes. In biological systems, there are traces of copper and iron that are at high enough levels to catalyze free-radical reactions, and account for such deleterious processes. In the human body Fe/Cu = 80/1 (w/w). Nevertheless, both (free) copper and iron are soluble enough, and the rate constants of their reduced forms with hydrogen peroxide are sufficiently high to suggest that they might be important mediators of free radical toxicity.  相似文献   

19.
Surface antigens of the avian malarial parasite, Plasmodium lophurae, and its host cell, the duckling erythrocyte, were visualized at the ultrastructural level using rabbit antisera and ferritin-labeled goat anti-rabbit IgG. Rabbit antisera to P. lophurae caused an aggregation of parasite and parasitophorous vacuole surface membrane antigens, a phenomenon known as capping. Capping required living plasmodia and did not occur if parasites had been fixed with glutaraldehyde prior to exposure to antisera. Antisera against duckling erythrocytes did not cross-react with erythrocyte-free malarial parasites, and did not form caps on the surface of the red blood cell. Antiplasmodial sera did not react with normal or malaria-infected red cells. These results suggest that surface membrane proteins of the intracellular plasmodium are capable of lateral movement.  相似文献   

20.
J W Barnwell 《Blood cells》1990,16(2-3):379-395
Malaria parasites during intraerythrocytic development change the ultrastructure, biophysics, and the antigens of the host red blood cell membrane. Parasite-encoded proteins are associated with, inserted into, or secreted across the infected erythrocyte membrane. Since parasites of the genus Plasmodium are eukaryotic cells, it must be assumed that they possess essentially eukaryotic modes of vesicle-mediated transport and translocation of proteins and membranes. Numerous studies have demonstrated vesicular structures in the cytoplasm of malaria-infected red blood cells and an assortment of parasite proteins associated with the different vesicles, membranes, and membrane-defined compartments. Some parasite polypeptides remain trapped between the parasite and the parasitophorous vacuole membranes PVM, whereas others are associated with morphologically distinct membrane-limited vesicles and vacuoles. Some of these same parasite protein antigens also associate with the erythrocyte membrane or with parasite-induced ultrastructural modifications in the membrane of the parasitized red blood cells. This implies that intracellular transport occurs in malaria-infected erythrocytes, a capacity that uninfected red blood cells normally lose upon enucleation. The specific locations of parasite antigens within the infected cell also implys the existence of targeting signals in the translocated parasite polypeptides and perhaps transport-mediating proteins. The genes corresponding to some of these translocated proteins have been sequenced. Typical (and in some cases atypical) signal peptide sequences occur, as well as a number of sequences that may result in posttranslational modifications. How or if these features figure in to the translocation across, and targeting to a particular membrane compartment of the intraerythrocytic parasite remains unknown.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号