首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Breast cancer patients have an extremely high rate of bone metastases. Morphological analyses of the bones in most of the patients have revealed the mixed bone lesions, comprising both osteolytic and osteoblastic elements. β-Catenin plays a key role in both embryonic skeletogenesis and postnatal bone regeneration. Although this pathway is also involved in many bone malignancy, such as osteosarcoma and prostate cancer-induced bone metastases, its regulation of breast cancer bone metastases remains unknown. Here, we provide evidence that the β-catenin signaling pathway has a significant impact on the bone lesion phenotype. In this study, we established a novel mouse model of mixed bone lesions using intratibial injection of TM40D-MB cells, a breast cancer cell line that is highly metastatic to bone. We found that both upstream and downstream molecules of the β-catenin pathway are up-regulated in TM40D-MB cells compared with non-bone metastatic TM40D cells. TM40D-MB cells also have a higher T cell factor (TCF) reporter activity than TM40D cells. Inactivation of β-catenin in TM40D-MB cells through expression of a dominant negative TCF4 not only increases osteoclast differentiation in a tumor-bone co-culture system and enhances osteolytic bone destruction in mice, but also inhibits osteoblast differentiation. Surprisingly, although tumor cells overexpressing β-catenin did induce a slight increase of osteoblast differentiation in vitro, these cells display a minimal effect on osteoblastic bone formation in mice. These data collectively demonstrate that β-catenin acts as an important determinant in mixed bone lesions, especially in controlling osteoblastic effect within tumor-harboring bone environment.  相似文献   

3.
4.
The Wnt/β-catenin pathway controls developmental processes and homeostasis; however, abnormal activation of this pathway has been linked to several human diseases. Recent reports have demonstrated regulation of platelet function by canonical and non-canonical Wnt signalling. Platelet aggregation plays a crucial role in haemostasis and thrombosis. Here we report for the first time that, induction of sustained aggregation of platelets by a strong agonist in the presence of calcium was associated with nearly complete proteolysis of β-catenin, which was abrogated upon depletion of calcium from platelet suspension. β-catenin cleavage was disallowed in absence of aggregation, thus implicating integrin αIIbβ3 engagement in β-catenin proteolysis. Degradation of β-catenin was blocked partially by inhibitors of either proteasome or calpain and completely when cells were exposed to both the inhibitors. Protein kinase C inhibition, too, abolished β-catenin degradation. Thus activities of proteasome, calpain and protein kinase C regulate stabilization of β-catenin in aggregated human platelets.  相似文献   

5.
Nuclear localization of β-catenin is integral to its role in Wnt signaling and cancer. Cellular stimulation by Wnt or lithium chloride (LiCl) inactivates glycogen synthase kinase-3β (GSK-3β), causing nuclear accumulation of β-catenin and transactivation of genes that transform cells. β-catenin is a shuttling protein; however, the mechanism by which GSK-3β regulates β-catenin nuclear dynamics is poorly understood. Here, fluorescence recovery after photobleaching assays were used to measure the β-catenin-green fluorescent protein dynamics in NIH 3T3 cells before and after GSK-3β inhibition. We show for the first time that LiCl and Wnt3a cause a specific increase in β-catenin nuclear retention in live cells and in fixed cells after detergent extraction. Moreover, LiCl reduced the rate of nuclear export but did not affect import, hence biasing β-catenin transport toward the nucleus. Interestingly, the S45A mutation, which blocks β-catenin phosphorylation by GSK-3β, did not alter nuclear retention or transport, implying that GSK-3β acts through an independent regulator. We compared five nuclear binding partners and identified LEF-1 as the key mediator of Wnt3a and LiCl-induced nuclear retention of β-catenin. Thus, Wnt stimulation triggered a LEF-1 positive feedback loop to enhance the nuclear chromatin-retained pool of β-catenin by 100-300%. These findings shed new light on regulation of β-catenin nuclear dynamics.  相似文献   

6.
In neural crest cell development, the expression of the cell adhesion proteins cadherin-7 and cadherin-11 commences after delamination of the neural crest cells from the neuroepithelium. The canonical Wnt signaling pathway is known to drive this delamination step and is a candidate for inducing expression of these cadherins at this time. This project was initiated to investigate the role of canonical Wnt signaling in the expression of cadherin-7 and cadherin-11 by treating neural crest cells with Wnt3a ligand. Expression of cadherin-11 was first confirmed in the neural crest cells for the chicken embryo. The changes in the expression level of cadherin-7 and -11 following the treatment with Wnt3a ligand were studied using real-time RT-PCR and immunostaining. Statistically significant up-regulation in the mRNA expression of cadherin-7 and cadherin-11 and in the amount of cadherin-7 and cadherin-11 protein found in cell-cell interfaces between neural crest cells was observed in response to Wnt, demonstrating that cadherin-7 and cadherin-11 expressed by the migrating neural crest cells can be regulated by the canonical Wnt pathway.  相似文献   

7.
慢激活延迟整流钾电流(slowly activated delayed rectifier potassium current,IKs)由KCNQ1通道与KCNE1通道共同编码。KCNQl或KCNEl通道电流功能上调能够引发短QT综合征。全新化学结构化合物QO-58对KCNQ1-5通道具有开放作用。该文采用电生理膜片钳技术探讨QO-58对KCNQl/KCNEl/IKs通道电流作用,观察QO-58的心脏电生理毒性。结果表明,化合物QO-58能够浓度依赖性地增大KCNQ1/KCNE1通道电流,并且引起KCNQ1/KCNE1通道电流电压关系曲线向超极化方向移动。QO-58能够轻微增大豚鼠心室肌IKs通道电流,但对豚鼠乳头肌动作电位时程无显著影响。结果提示,QO-58心脏电生理毒性较低,具有进一步研发成为治疗兴奋性增强等相关疾病的新型药物的潜力。  相似文献   

8.
9.
β-catenin is a key mediator of the Wnt signaling process and accumulates in the nucleus and at the membrane in response to Wnt-mediated inhibition of GSK-3β. In this study we used live cell photobleaching experiments to determine the dynamics and rate of recruitment of β-catenin at membrane adherens junctions (cell adhesion) and membrane ruffles (cell migration). First, we confirmed the nuclear-cytoplasmic shuttling of GFP-tagged β-catenin, and found that a small mobile pool of β-catenin can move from the nucleus to membrane ruffles in NIH 3T3 fibroblasts with a t0.5 of ~ 30 s. Thus, β-catenin can shuttle between the nucleus and plasma membrane. The localized recruitment of β-catenin-GFP to membrane ruffles was more rapid, and the strong recovery observed after bleaching (mobile fraction 53%, t0.5 ~5 s) is indicative of high turnover and transient association. In contrast, β-catenin-GFP displayed poor recovery at adherens junctions in MDCK epithelial cells (mobile fraction 10%, t0.5 ~8 s), indicating stable retention at these membrane structures. We previously identified IQGAP1 as an upstream regulator of β-catenin at the membrane, and this is supported by photobleaching assays which now reveal IQGAP1 to be more stably anchored at membrane ruffles than β-catenin. Further analysis showed that LiCl-mediated inactivation of the kinase GSK-3β increased β-catenin membrane ruffle staining; this correlated with a faster rate of recruitment and not increased membrane retention of β-catenin. In summary, β-catenin displays a high turnover rate at membrane ruffles consistent with its dynamic internalization and recycling at these sites by macropinocytosis.  相似文献   

10.
11.
Cyto-nuclear shuttling of β-catenin is at the epicenter of the canonical Wnt pathway and mutations in genes that result in excessive nuclear accumulation of β-catenin are the driving force behind the initiation of many cancers. Recently, Naked Cuticle homolog 1 (Nkd1) has been identified as a Wnt-induced intracellular negative regulator of canonical Wnt signaling. The current model suggests that Nkd1 acts between Disheveled (Dvl) and β-catenin. Here, we employ the zebrafish embryo to characterize the cellular and biochemical role of Nkd1 in vivo. We demonstrate that Nkd1 binds to β-catenin and prevents its nuclear accumulation. We also show that this interaction is conserved in mammalian cultured cells. Further, we demonstrate that Nkd1 function is dependent on its interaction with the cell membrane. Given the conserved nature of Nkd1, our results shed light on the negative feedback regulation of Wnt signaling through the Nkd1-mediated negative control of nuclear accumulation of β-catenin.  相似文献   

12.
Wnt/β-catenin signaling is a critical regulator of skeletal physiology. However, previous studies have mainly focused on its roles in osteoblasts, while its specific function in osteoclasts is unknown. This is a clinically important question because neutralizing antibodies against Wnt antagonists are promising new drugs for bone diseases. Here, we show that in osteoclastogenesis, β-catenin is induced during the macrophage colony-stimulating factor (M-CSF)-mediated quiescence-to-proliferation switch but suppressed during the RANKL-mediated proliferation-to-differentiation switch. Genetically, β-catenin deletion blocks osteoclast precursor proliferation, while β-catenin constitutive activation sustains proliferation but prevents osteoclast differentiation, both causing osteopetrosis. In contrast, β-catenin heterozygosity enhances osteoclast differentiation, causing osteoporosis. Biochemically, Wnt activation attenuates whereas Wnt inhibition stimulates osteoclastogenesis. Mechanistically, β-catenin activation increases GATA2/Evi1 expression but abolishes RANKL-induced c-Jun phosphorylation. Therefore, β-catenin exerts a pivotal biphasic and dosage-dependent regulation of osteoclastogenesis. Importantly, these findings suggest that Wnt activation is a more effective treatment for skeletal fragility than previously recognized that confers dual anabolic and anti-catabolic benefits.  相似文献   

13.
KCNQ1 channels assemble with KCNE1 transmembrane (TM) peptides to form voltage-gated K+ channel complexes with slow activation gate opening. The cytoplasmic C-terminal domain that abuts the KCNE1 TM segment has been implicated in regulating KCNQ1 gating, yet its interaction with KCNQ1 has not been described. Here, we identified a protein–protein interaction between the KCNE1 C-terminal domain and the KCNQ1 S6 activation gate and S4–S5 linker. Using cysteine cross-linking, we biochemically screened over 300 cysteine pairs in the KCNQ1–KCNE1 complex and identified three residues in KCNQ1 (H363C, P369C, and I257C) that formed disulfide bonds with cysteine residues in the KCNE1 C-terminal domain. Statistical analysis of cross-link efficiency showed that H363C preferentially reacted with KCNE1 residues H73C, S74C, and D76C, whereas P369C showed preference for only D76C. Electrophysiological investigation of the mutant K+ channel complexes revealed that the KCNQ1 residue, H363C, formed cross-links not only with KCNE1 subunits, but also with neighboring KCNQ1 subunits in the complex. Cross-link formation involving the H363C residue was state dependent, primarily occurring when the KCNQ1–KCNE1 complex was closed. Based on these biochemical and electrophysiological data, we generated a closed-state model of the KCNQ1–KCNE1 cytoplasmic region where these protein–protein interactions are poised to slow activation gate opening.  相似文献   

14.
15.
16.
To conduct RNAi interference of Lyc-β and Lyc-ε genes, two plant expression vectors were constructed by inserting the intron fragments of the gusA gene into the two target gene fragments, which were designed in anti-sense directions. After the Agrobacterium tumefaciens-mediated transformation, 13 transgenic tomato plants (seven and six for Lyc-β and Lyc-ε, respectively) were obtained, which was further validated by PCR. Real-time PCR revealed that the messenger RNA abundance of Lyc-β gene and Lyc-ε gene in transgenic tomato plants was significantly reduced to 8.95% and 13.16%, respectively, of the level of the wild-type plant. Subsequent high-performance liquid chromatography analysis found that transgenic tomato plant had significantly increased lycopene content, with the highest value of 13.8 μg/g leaf dry weight, which was about 4.2-fold that of wild-type plant. Moreover, Lyc-β and Lyc-ε interference gene effects were observed on downstream products as well. β-Carotene and lutein contents decreased in Lyc-β RNAi lines, ranging from 40.7 to 117.3 μg/g and 4.9 to 23.5 μg/g leaf dry weight, respectively. In Lyc-ε RNAi lines, β-carotene content increased, ranging from 195.8 to 290.2 μg/g, while lutein content decreased, ranging from 3.7 to 11.3 μg/g. For total carotenoids, Lyc-β RNAi lines resulted in 2.9-fold decrease, while Lyc-ε RNAi lines yielded 1.7-fold increase in contents when compared to wild-type control. This study demonstrated that RNAi gene technology is an effective method for enhancing lycopene content in plants.  相似文献   

17.
Regulation of β-xylosidase formation by xylose in Trichoderma reesei   总被引:1,自引:0,他引:1  
The soft-rot fungus Trichoderma reesei forms -xylosidase (EC 3.2.1.37) activity during cultivation on xylan and xylose, but not on glucose. When mycelia precultivated on glycerol were washed and transferred to fresh medium without a carbon and nitrogen source, -xylosidase formation was induced by xylan, xylobiose and xylose. A supply of 4 mm xylose and a pH of 2.5 provided optimal conditions for induction. -Xylosidase accounted for the major portion of total extracellular protein under these conditions, and could be purified to physical homogeneity by a single anion exchange chromatography step. A recombinant strain of T. reesei that carries multiple copies of the homologous xylanase II-encoding gene has a six-fold increased xylanase activity, but forms comparable -xylosidase activities. This shows that the rate of xylan hydrolysis has no effect on the induction of -xylosidase. Methyl--d-xyloside inhibited -xylosidase competitively and was a weak -xylosidase inducer. The induction by xylobiose and xylan was strongly enhanced by the simultaneous addition of methyl--d-xylosidese and xylan or xylobiose. The results suggest that a slow supply of xylose is a trigger for -xylosidase induction.  相似文献   

18.
19.
20.
AimsPrevious studies have shown that isorhamnetin has anti-adipogenic effects in mouse 3T3-L1 cells. This study was conducted to elucidate the inhibitory mechanisms of isorhamnetin during adipogenic differentiation of human adipose tissue-derived stem cells (hAMSCs).Main methodsThe effect of isorhamnetin on adipogenic differentiation of hAMSCs was quantified by Oil Red O staining and a triglyceride assay. In addition, real-time PCR and Western blot were used to determine the expression of adipogenesis-related genes.Key findingsIsorhamnetin inhibited the adipocyte differentiation of hAMSCs. Additionally, when the effects of Wnt antagonists that promote adipogenesis were evaluated, isorhamnetin was found to down-regulate the mRNA levels of sFRP1 and Dkk1, but had no effect on the mRNA levels of sFRP2, sFRP3, sFRP4 and Dkk3. Isorhamnetin also inhibited the expression of Wnt receptor and co-receptor genes. Furthermore, isorhamnetin increased the protein levels of β-catenin, an effector molecule of Wnt signaling, but had no effect on the mRNA levels of β-catenin. The phosphorylation level of GSK 3β was also increased by isorhamnetin. These results were confirmed by the fact that the expression of c-myc, cyclin D1 and PPARδ, which are target genes of β-catenin, was upregulated by isorhamnetin. Moreover, isorhamnetin reduced the mRNA expression levels of C/EBPα and PPARγ, which are known to be inhibited by c-myc or by cyclin D1 and PPARδ, respectively.SignificanceOur results indicate that isorhamnetin inhibits the adipogenic differentiation of hAMSCs and that its mechanisms are mediated by the stabilization of β-catenin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号