首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interaction of camel lens zeta-crystallin with the hydrophobic probe 1-anilinonaphthalene-8-sulfonic acid (ANS) enhanced the ANS fluorescence and quenched the protein fluorescence. Both of these events were concentration-dependent and showed typical saturation curves suggesting specific ANS-zeta-crystallin binding. Quantitative analysis indicated that 1 mole zeta-crystallin bound at most 1 mole ANS. NADPH but not 9,10-phenanthrenequinone (PQ) was able to displace zeta-crystallin-bound ANS. These results suggested the presence of a hydrophobic domain in zeta-crystallin, possibly at the NADPH binding site. alpha-Crystallin as well as NADPH protected zeta-crystallin against thermal inactivation suggesting the importance of this site for enzyme stability. The NADPH:quinone oxidoreductase activity of zeta-crystallin was inhibited by ANS with NADPH as electron donor and PQ as electron acceptor. Lineweaver-Burk plots indicated mixed-type inhibition with respect to NADPH, with a K(i) of 2.3 microM. Secondary plots of inhibition with respect to NADPH indicated a dissociation constant (K'I) of 12 microM for the zeta-crystallin-NADPH-ANS complex. The K(i) being smaller than K'I suggested that competitive inhibition at the NADPH binding site was predominant over non-competitive inhibition. Like ANS-zeta-crystallin binding, inhibition was dependent on ANS concentration but independent of incubation time.  相似文献   

2.
The zeta-crystallin (ZCr) gene P1 of Arabidopsis thaliana, known to confer tolerance toward the oxidizing drug 1,1'-azobis(N, N-dimethylformamide) (diamide) to yeast [Babiychuk, E., Kushnir, S., Belles-Boix, E., Van Montagu, M. & Inzé, D. (1995) J. Biol. Chem. 270, 26224], was expressed in Escherichia coli to characterize biochemical properties of the P1-zeta-crystallin (P1-ZCr). Recombinant P1-ZCr, a noncovalent dimer, showed NADPH:quinone oxidoreductase activity with specificity to quinones similar to that of guinea-pig ZCr. P1-ZCr also catalyzed the divalent reduction of diamide to 1,2-bis(N,N-dimethylcarbamoyl)hydrazine, with a kcat comparable with that for quinones. Two other azodicarbonyl compounds also served as substrates of P1-ZCr. Guinea-pig ZCr, however, did not catalyze the azodicarbonyl reduction. Hence, plant ZCr is distinct from mammalian ZCr, and can be referred to as NADPH:azodicarbonyl/quinone reductase. The quinone-reducing reaction was accompanied by radical chain reactions to produce superoxide radicals, while the azodicarbonyl-reducing reaction was not. Specificity to NADPH, as judged by kcat/Km, was > 1000-fold higher than that to NADH both for quinones and diamide. N-Ethylmaleimide and p-chloromercuribenzoic acid inhibited both quinone-reducing and diamide-reducing activities. Both NADPH and NADP+ suppressed the inhibition, but NADH did not, suggesting that sulfhydryl groups reside in the binding site for the phosphate group on the adenosine moiety of NADPH. The diamide-reducing activity of P1-ZCr accounts for the tolerance of P1-overexpressing yeast to diamide. Other possible physiological functions of P1-ZCr in plants are discussed.  相似文献   

3.
Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for lysophosphatidylcholine-mediated inhibition of hepatic oxidative function. Results showed that in vitro incubation of isolated mitochondria with 40–200 μM lysophosphatidylcholine caused cyclosporine A-resistant swelling in a concentration-dependent manner. However, when mitochondria were challenged with 220 μM CaCl2, cyclosporine A protected against permeability transition induced by 40 μM, but not 80 μM lysophosphatidylcholine. Incubation with 40–120 μM lysophosphatidylcholine also increased mitochondrial permeability to 75 μM CaCl2 in a concentration-dependent manner. Interestingly, despite incubation with 80 μM lysophosphatidylcholine, the mitochondrial membrane potential was steady in the presence of succinate, and oxidation rates and respiratory control indices were similar to controls in the presence of succinate, glutamate/malate, and palmitoyl-carnitine. However, mitochondrial oxidation rates were inhibited by 30–50% at 100 μM lysophosphatidylcholine. Finally, while 40 μM lysophosphatidylcholine has no effect on fatty acid oxidation and mitochondria remained impermeable in intact hepatocytes, 100 μM lysophosphatidylcholine inhibited fatty acid stimulated oxidation and caused intracellular mitochondrial permeability. Taken together, these present data demonstrated that LPC concentration dependently modulates mitochondrial microenvironment, with low micromolar concentrations of lysophosphatidylcholine sufficient to change hepatic oxidation rate whereas higher concentrations are required to disrupt mitochondrial integrity.  相似文献   

4.
Yeast glutathione reductase catalyzes a pyridine nucleotide transhydrogenase reaction using either NADPH or NADH as the electron donor and thionicotinamideadenine dinucleotide phosphate as the electron acceptor. Competitive substrate inhibition of the transhydrogenase reaction by NADPH (Ki = 11 μM) is observed when NADPH is the electron donor. Competitive substrate inhibition by thionicotinamide-adenine dinucleotide phosphate (Ki = 58 μM) is observed with NADH as the electron donor. The turnover numbers of the two transhydrogenase reactions are similar and are equal to about 1% of the turnover number for the NADPH-dependent reduction of oxidized glutathione catalyzed by the enzyme. The transhydrogenase kinetics are analyzed in terms of a pingpong mechanism. It is concluded that the substrate inhibition results from formation of abortive complexes of NADPH with the reduced form of the enzyme and of thionicotinamide-adenine dinucleotide phosphate with the oxidized form of the enzyme. With NADPH as the electron donor, the apparent Michaelis constant for thionicotinamide-adenine dinucleotide phosphate is sensitive to the ionic composition of the assay medium. The data are interpreted to support the existence of a general pyridine nucleotide-binding site at the active site of the enzyme and separate from the binding site for oxidized glutathione.  相似文献   

5.
5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.  相似文献   

6.
Glutathione reductase (GR; E.C. 1.6.4.2) is a flavoprotein that catalyzes the NADPH-dependent reduction of oxidized glutathione (GSSG). In this study we tested the effects of Al3+, Ba2+, Ca2+, Li+, Mn2+, Mo6+, Cd2+, Ni2+, and Zn2+ on purified bovine liver GR. In a range of 10?μM–10?mM concentrations, Al3+, Ba2+, Li+, Mn2+, and Mo6+, and Ca2+ at 5?μM–1.25?mM, had no effect on bovine liver GR. Cadmium (Cd2+), nickel (Ni2+), and zinc (Zn2+) showed inhibitory effects on this enzyme. The obtained IC50 values of Cd2+, Ni2+, and Zn2+ were 0.08, 0.8, and 1?mM, respectively. Cd2+ inhibition was non-competitive with respect to both GSSG (KiGSSG 0.221?±?0.02?mM) and NADPH (KiNADPH 0.113?±?0.008?mM). Ni2+ inhibition was non-competitive with respect to GSSG (KiGSSG 0.313?±?0.01?mM) and uncompetitive with respect to NADPH (KiNADPH 0.932?±?0.03?mM). The effect of Zn2+ on GR activity was consistent with a non-competitive inhibition pattern when the varied substrates were GSSG (KiGSSG 0.320?±?0.018?mM) and NADPH (KiNADPH 0.761?±?0.04?mM), respectively.  相似文献   

7.
SYNOPSIS. Cell-free extracts of a streptomycin-bleached strain of Euglena gracilis var. bacillaris have been examined for enzyme systems primarily responsible for the oxidation of reduced pyridine nucelotides. NADH lipoyl dehydrogenase, NADH and NADPH oxidase, NADH and NADPH diaphorase, and NADH and NADPH cytochrome c reductase have been demonstrated. The NADPH-linked enzymes had lower activity rates and were less sensitive to N-ethyl maleimide and p-hydroxymercuribenzoate than their NADH-linked counterparts. NADH cytochrome c reductase was the most sensitive to antimycin A. Michaelis-Menten constants (Km) determined were as follows: NADH diaphorase, 350 μM; NADPH diaphorase, 200 μM; NADH cytochrome c reductase, 13 μM; NADPH cytochrome c reductase, 9 μM; NADH oxidase, 100 μM; NADPH oxidase 150 μM; NADH lipoyl dehydrogenase, 0.35 μM. Enzyme activities after storage at –5 C indicate that the diaphorases are less labile than the other tested enzymes, and the differential activities of the NADH and NADPH linked enzymes suggest that functionally they may have different roles.  相似文献   

8.
To identify potential lead compounds for malaria drug discovery, ultrafiltration and liquid chromatography and mass spectrometry (UF and LC/MS) based binding assays were developed for the first time for Plasmodium falciparum thioredoxin (PfTrxR) and glutathione (PfGR) reductases. In the binding assays, curcuminoids (bis-demethoxycurcumin 1, demethoxycurcumin 2, and curcumin 3) were used to study the binding affinity for PfTrxR and PfGR enzymes. The optimum binding was observed when the curcumimoids mixture (1 μM) was incubated with 1 μM PfTrxR and 0.5 μM PfGR enzymes separately for 60 min at 25 °C. The peak areas of the ligands in the chromatogram corresponding to incubation with active PfTrxR and PfGR enzymes increased by 1.6- and 2.0-fold respectively compared to the chromatogram of test compounds incubated with denatured enzymes. Further, binding assay experiments were carried out for compound 2 under non-competitive and competitive incubation conditions with 1 μM PfTrxR and 0.5 μM PfGR enzymes, separately. The binding affinity of compound 2 was higher for both the enzymes under non-competitive incubation conditions. To validate the binding assay developed, we have tested bis-2,4-dinitrophenyl sulfide (4) which is reported as an inhibitor of PfTrxR and PfGR enzymes. Compound 4 showed greater binding affinity for both enzymes under competitive incubation conditions. The relative peak area of compound 4 increased by 3.2- and 6-fold when incubated with active PfTrxR (1 μM) and PfGR (0.5 μM) enzymes respectively compared to the peak areas of the compound in control experiments. The current method developed has a potential for automated high-throughput screening to rapidly determine the binding affinity of ligands for these enzymes.  相似文献   

9.
Overexpression of SIRT1, a NAD+-dependent class III histone deacetylases (HDACs), is implicated in many cancers and therefore could become a promising antitumor target. Here we demonstrate a small molecule SIRT1 inhibitor, ILS-JGB-1741(JGB1741) with potent inhibitory effects on the proliferation of human metastatic breast cancer cells, MDA-MB 231. The molecule has been designed using medicinal chemistry approach based on known SIRT1 inhibitor, sirtinol. The molecule showed a significant inhibition of SIRT1 activity compared to sirtinol. Studies on the antitumor effects of JGB on three different cancer cell lines, K562, HepG2 and MDA-MB 231 showed an IC50 of 1, 10 and 0.5 μM, respectively. Further studies on MDA-MB 231 cells showed a dose-dependent increase in K9 and K382 acetylation of H3 and p53, respectively. Results also demonstrated that JGB1741-induced apoptosis is associated with increase in cytochrome c release, modulation in Bax/Bcl2 ratio and cleavage of PARP. Flowcytometric analysis showed increased percentage of apoptotic cells, decrease in mitochondrial membrane potential and increase in multicaspase activation. In conclusion, the present study indicates the potent apoptotic effects of JGB1741 in MDA-MB 231 cells.  相似文献   

10.
The inhibition by superoxide dismutase of cytochrome c reduction by a range of semiquinone radicals has been studied. The semiquinones were produced from the parent quinones by reduction with xanthine and xanthine oxidase. Most of the quinones studied were favored over O2 as the enzyme substrate, and in air as well as N2, semiquinone radicals rather than superoxide were produced and they caused the cytochrome c reduction. With all but one of the quinones (benzoquinone), cytochrome c reduction in air was inhibited by superoxide dismutase, but the amount of enzyme required for inhibition was up to 100 times greater than that required to inhibit reduction by superoxide. It was highest for the quinones with the highest redox potential. These results demonstrate how superoxide dismutase can inhibit cytochrome c reduction by species other than superoxide. They can be explained by the dismutase displacing the equilibrium: semiquinone + O2 ? quinone + O2? to the right, thereby allowing the forward reaction to out-compete other reactions of the semiquinone. The implication from these findings that superoxide dismutase-inhibitable reduction of cytochrome c may not be a specific test for superoxide production is discussed.  相似文献   

11.
鸭肝脂肪酸合成酶的NADPH底物抑制及作用动力学   总被引:7,自引:0,他引:7  
己知动物脂肪酸合成酶的底物乙酰辅酶A和丙二酰辅酶A具有竞争性双底物抑制的乒乓机制。实验发现鸭肝脂肪酸合成酶的第三个底物NADPH也具有底物抑制,并研究了它的规律及与NADPH有关的稳态动力学。发现对于该酶的全反应,增加丙二酰辅酶A浓度,降低环境盐浓度,均使NADPH底物抑制减少。但以NADPH作底物的酮酰还原和烯酰还原二步单独反应以及包含四步单独反应的乙酰乙酰辅酶A还原反应都无NADPH底物抑制现象。NADPH底物抑制对丙二酰辅酶A为竞争性,丙二酰辅酶A底物抑制对NADPH为非竞争性。在全反应中NADPH和丙二酰辅酶A之间发现为乒乓机制,在乙酰乙酰辅酶A还原反应中,两个底物NADPH和乙酰乙酰辅酶A之间则表现为序列反应机制。降低环境盐浓度使NADPH和丙二酰辅酶A之间的乒乓机制向序列机制转化。在全反应中,NADP产物抑制相对NADP为竞争性,对丙二酰辅酶A为非竞争性。  相似文献   

12.
This study examined the effect of schisandrin, one of the major lignans isolated from Schisandra chinensis, on spontaneous contraction in rat colon and its possible mechanisms. Schisandrin produced a concentration-dependent inhibition (EC50 = 1.66 μM) on the colonic spontaneous contraction. The relaxant effect of schisandrin could be abolished by the neuronal Na+ channel blocker tetrodotoxin (1 μM) but not affected by propranolol (1 μM), phentolamine (1 μM), atropine (1 μM) or nicotine desensitization, suggesting possible involvement of non-adrenergic non-cholinergic (NANC) transmitters released from enteric nerves. Nω-nitro-l-arginine methyl ester (100-300 μM), a nitric oxide synthase inhibitor, attenuated the schisandrin response. The role of nitric oxide (NO) was confirmed by an increase in colonic NO production after schisandrin incubation, and the inhibition on the schisandrin responses by soluble guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-α]-quinoxalin-1-one (1-30 μM). Non-nitrergic NANC components may also be involved in the action of schisandrin, as suggested by the significant inhibition of apamin on the schisandrin-induced responses. Pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) tetrasodium salt hydrate (100 μM), a selective P2 purinoceptor antagonist, markedly attenuated the responses to schisandrin. In contrast, neither 8-cyclopentyl-1,3-dipropylxanthine, an antagonist for adenosine A1 receptors, nor chymotrypsin, a serine endopeptidase, affected the responses. All available results have demonstrated that schisandrin produced NANC relaxation on the rat colon, with the involvement of NO and acting via cGMP-dependent pathways. ATP, but not adenosine and VIP, likely plays a role in the non-nitrergic, apamin-sensitive component of the response.  相似文献   

13.
2-C-Methyl-D-erythritol-4-phosphate synthase (MEP synthase) catalyzes the rearrangement/reduction of 1-D-deoxyxylulose-5-phosphate (DXP) to methylerythritol-4-phosphate (MEP) as the first pathway-specific reaction in the MEP biosynthetic pathway to isoprenoids. Recombinant E. coli MEP was purified by chromatography on DE-52 and phenyl-Sepharose, and its steady-state kinetic constants were determined: k(cat) = 116 +/- 8 s(-1), K(M)(DXP) = 115 +/- 25 microM, and K(M)(NADPH) = 0.5 +/- 0.2 microM. The rearrangement/reduction is reversible; K(eq) = 45 +/- 6 for DXP and MEP at 150 microM NADPH. The mechanism for substrate binding was examined using fosmidomycin and dihydro-NADPH as dead-end inhibitors. Dihydro-NADPH gave a competitive pattern against NADPH and a noncompetitive pattern against DXP. Fosmidomycin was an uncompetitive inhibitor against NADPH and gave a pattern representative of slow, tight-binding competitive inhibition against DXP. These results are consistent with an ordered mechanism where NADPH binds before DXP.  相似文献   

14.
zeta-Crystallin is a major protein in the lens of certain mammals. In guinea pigs it comprises 10% of the total lens protein, and it has been shown that a mutation in the zeta-crystallin gene is associated with autosomal dominant congenital cataract. As with several other lens crystallins of limited phylogenetic distribution, zeta-crystallin has been characterized as an "enzyme/crystallin" based on its ability to reduce catalytically the electron acceptor 2,6-dichlorophenolindophenol. We report here that certain naturally occurring quinones are good substrates for the enzymatic activity of zeta-crystallin. Among the various quinones tested, the orthoquinones 1,2-naphthoquinone and 9,10-phenanthrenequinone were the best substrates whereas menadione, ubiquinone, 9,10-anthraquinone, vitamins K1 and K2 were inactive as substrates. This quinone reductase activity was NADPH specific and exhibited typical Michaelis-Menten kinetics. Activity was sensitive to heat and sulfhydryl reagents but was very stable on freezing. Dicumarol (Ki = 1.3 x 10(-5) M) and nitrofurantoin (Ki = 1.4 x 10(-5) M) inhibited the activity competitively with respect to the electron acceptor, quinone. NADPH protected the enzyme against inactivation caused by heat, N-ethylmaleimide, or H2O2. Electron paramagnetic resonance spectroscopy of the reaction products showed formation of a semiquinone radical. The enzyme activity was associated with O2 consumption, generation of O2- and H2O2, and reduction of ferricytochrome c. These properties indicate that the enzyme acts through a one-electron transfer process. The substrate specificity, reaction characteristics, and physicochemical properties of zeta-crystallin demonstrate that it is an active NADPH:quinone oxidoreductase distinct from quinone reductases described previously.  相似文献   

15.
The reactivity of quinones 1–4 and of the corresponding quinols 5–8 towards carbon- and oxygen-centred radicals were studied. All quinones bearing at least one nuclear position free, readily react with alkyl and phenyl radicals to afford the alkylated quinones 12–24; however, quinones 1 and 3 reacted with 2-cyano-2-propyl radical to yield products (the mono- and di-ethers 9–11) derived from the attack on the carbonylic oxygen. The reactions carried out on quinones with the benzoyloxy radical led to no reaction products and in the case of Q10, the isoprenic chain also remained unchanged. Quinols 5–8 reacted only with oxygencentred radicals (benzoyloxy and 2-cyano-2-propylperoxy radicals) to give the corresponding quinones. The isoprenic chain of Q10 did not undergo attack even with peroxy radicals. Carbon-centred radicals resulted unable to abstract hydrogen from the studied quinols.  相似文献   

16.
Sesamin, sesamolin (lignans) and sesamol - from sesame seed (Sesamum indicum L.) - are known for their health promoting properties. We examined the inhibition effect of sesamol, a phenolic degradation product of sesamolin, on the key enzyme in melanin synthesis, viz. tyrosinase, in vitro. Sesamol inhibits both diphenolase and monophenolase activities with midpoint concentrations of 1.9 μM and 3.2 μM, respectively. It is a competitive inhibitor of diphenolase activity with a Ki of 0.57 μM and a non-competitive inhibitor of monophenolase activity with a Ki of 1.4 μM. Sesamol inhibits melanin synthesis in mouse melanoma B16F10 cells in a concentration dependant manner with 63% decrease in cells exposed to 100 μg/mL sesamol. Apoptosis is induced by sesamol, limiting proliferation. This study of the chemistry and biology of lignans, in relation to the mode of action of bioactive components, may open the door for drug applications targeting enzymes.  相似文献   

17.
A series of 6,7,8-trimethoxy N-aryl-substituted-4-aminoquinazoline derivatives were synthesized as epidermal growth factor receptor (EGFR) inhibitors, and their antitumor activities were assessed in the gastric cancer cell line SGC7901 using MTT assay. All compounds of Tg114 were found to inhibit SGC7901 cell proliferation, and compound Tg11 (IC50?=?0.434?μM) was found to be slightly more effective against SGC7901 cells than epirubicin (IC50?=?5.16?μM). This suggests that compound Tg11 can be used as a new substitution structure to develop more efficacious antitumor agents. Western blot analysis showed that treatment with Tg11 (40?μM for 30?min) resulted in near complete inhibition of EGF-induced ERK1/2 phosphorylation, indicating that its anti-proliferative effect is largely associated with inhibition of ERK1/2 activation. These data imply that Tg11 is a potential anticancer agent capable of inhibiting cell proliferation.  相似文献   

18.
Tannic acid is a hydrolyzable tannin that exists in many widespread edible plants with a variety of biological activities. In this study, we found that tannic acid potently inhibited the activity of fatty acid synthase (FAS) in a concentration-dependent manner with a half-inhibitory concentration value (IC50) of 0.14 μM. The inhibition kinetic results showed that the inhibition of FAS by tannic acid was mixed competitive and noncompetitive manner with respect to acetyl-CoA and malonyl-CoA, but uncompetitive to NADPH. Tannic acid prevented the differentiation of 3T3-L1 pre-adipocytes, and thus repressed intracellular lipid accumulation. In the meantime, tannic acid decreased the expression of FAS and down-regulated the mRNA level of FAS and PPARγ during adipocyte differentiation. Further studies showed that the inhibitory effect of tannic acid did not relate to FAS non-specific sedimentation. Since FAS was believed to be a therapeutic target of obesity, these findings suggested that tannic acid was considered having potential in the prevention of obesity.  相似文献   

19.
In this work we studied the reaction of four quinones, 1,4-benzoquinone (1,4-BQ), 2,5-dimethyl-1,4-benzoquinone (2,5-DM-1,4-BQ), tetrachloro-1,4-benzoquinone (TC-1,4-BQ) and 1,4-naphthoquinone (1,4-NQ) with jack bean urease in phosphate buffer, pH 7.8. The enzyme was allowed to react with different concentrations of the quinones during different incubation times in aerobic conditions. Upon incubation the samples had their residual activities assayed and their thiol content titrated. The titration carried out with use of 5,5'-di-thiobis(2-nitrobenzoic) acid was done to examine the involvement of urease thiol groups in the quinone-induced inhibition. The quinones under investigation showed two distinct patterns of behaviour, one by 1,4-BQ, 2,5-DM-1,4-BQ and TC-1,4-BQ, and the other by 1,4-NQ. The former consisted of a concentration-dependent inactivation of urease where the enzyme-inhibitor equilibrium was achieved in no longer than 10min, and of the residual activity of the enzyme being linearly correlated with the number of modified thiols in urease. We concluded that arylation of the thiols in urease by these quinones resulting in conformational changes in the enzyme molecule is responsible for the inhibition. The other pattern of behaviour observed for 1,4-NQ consisted of time- and concentration-dependent inactivation of urease with a nonlinear residual activity-modified thiols dependence. This suggests that in 1,4-NQ inhibition, in addition to the arylation of thiols, operative are other reactions, most likely oxidations of thiols provoked by 1,4-NQ-catalyzed redox cycling. In terms of the inhibitory strength, the quinones studied formed a series: 1,4-NQ approximately 2,5-DM-1,4-BQ<1,4-BQ相似文献   

20.
Enzymatic oxidation of apocynin, which may mimic in vivo metabolism, affords a large number of oligomers (apocynin oxidation products, AOP) that inhibit vascular NADPH oxidase. In vitro studies of NADPH oxidase activity were performed to identify active inhibitors, resulting in a trimer hydroxylated quinone (IIIHyQ) that inhibited NADPH oxidase with an IC50 = 31 nM. Apocynin itself possessed minimal inhibitory activity. NADPH oxidase is believed to be inhibited through prevention of the interaction between two NADPH oxidase subunits, p47phox and p22phox. To that end, while apocynin was unable to block the interaction of his-tagged p47phox with a surface immobilized biotinylated p22phox peptide, the IIIHyQ product strongly interfered with this interaction (apparent IC50 = 1.6 μM). These results provide evidence that peroxidase-generated AOP, which consist of oligomeric phenols and quinones, inhibit critical interactions that are involved in the assembly and activation of human vascular NADPH oxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号