首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lesion formation due to oral administration of absolute ethanol could be prevented by parenteral pretreatment with antiperoxidative drugs such as butylated hydroxytoluene (BHT), quercetin and quinacrine. Also effective were allopurinol and oxypurinol, inhibitors of xanthine oxidase, but not superoxide dismutase (SOD) and hydroxyl radical scavengers, such as sodium benzoate and dimethyl sulfoxide (DMSO). BHT, quercetin, quinacrine and sulfhydryl compounds such as reduced glutathione and cysteamine which offer gastroprotection in vivo against ethanol inhibited lipid peroxidation induced in vitro by ferrous ion in porcine gastric mucosal homogenate, but SOD, sodium benzoate, DMSO, allopurinol and oxypurinol did not. These results suggest the possibility that an active species, probably derived from free iron mobilized by the xanthine oxidase system, other than oxygen radicals such as hydroxyl radicals, contributes to lipid peroxidation and lesion formation in the gastric mucosa after absolute ethanol administration.  相似文献   

2.
This work undertakes the study of changes in urinary, plasmatic and tissue levels of Thromboxane B2 (TXB2) as well as in tissue Prostaglandin E2 (PGE2) after pancreas transplantation and the effect of superoxide dismutase (SOD) on these changes. For this purpose, streptozotocine induced diabetic rats were subjected to pancreas transplantation. Experimental groups were classified as follows: Group I: Control; Group II: Animals subjected to 15 min of pancreas arterial flow occlusion followed by reperfusion; Group III: Syngenic pancreas transplantation after 12 hours of organ preservation; Group IV: Same as III, but with additional SOD (13 mg/kg) pretreatment. The results indicate that significant increases of PGE2 and TXB2 levels occur as a consequence of the surgical removal, preservation and implantation of the organ. For TXB2 these increases, immediate in plasma and tissue, are not detected in urine until 24 hours after transplantation of the pancreas. The release of TXB2 and PGE2 was effectively prevented in the SOD treated group supporting the role of oxygen free radicals and lipid peroxidation in the processes of ischemia-reperfusion associated to transplantation of the pancreas.  相似文献   

3.
BW775C, an inhibitor of the lipoxygenase and cyclo-oxygenase pathways, inhibits the respiratory distress induced by arachidonic acid in rats. The degree of respiratory distress was measured in terms of respiratory rate using electrodes implanted at each side of the thorax. Indomethacin, an inhibitor of the cyclooxygenase pathway, failed to influence the respiratory distress induced by arachidonic acid. The results implicate the lipoxygenase pathway, i.e. the leukotrienes synthesis inhibition, in the respiratory distress induced by arachidonic acid.  相似文献   

4.
Recent work suggests that oxygen radicals may be important mediators of damage in a wide variety of pathologic conditions. In this review we consider the evidence supporting the participation of oxygen radicals in the adult respiratory distress syndrome, in ischemia reperfusion injury in the myocardium, and in cerebral vascular injury in acute hypertension and traumatic brain injury. In the adult respiratory distress syndrome there is active sequestration of polymorphonuclear neutrophils in the pulmonary vascular system. There is evidence that activation of these neutrophils results in the production of oxygen radicals which injure the capillary membrane and increase permeability, leading to progressive hypoxia and decreased lung compliance which are hallmarks of the syndrome. In acute arterial hypertension or experimental brain injury oxygen radicals are important mediators of vascular damage. The metabolism of arachidonic acid is the source of oxygen free radical production in these conditions. In myocardial ischemia and reperfusion injury, the ischemic myocyte is "primed" for free radical production. With reperfusion and reintroduction of molecular oxygen there is a burst of oxygen radical production resulting in extensive tissue destruction. Myocardial ischemia--reperfusion injury shares in common with the other two syndromes activation of the arachidonic acid cascade and acute inflammation. Thus it would appear that the generation of toxic oxygen species may represent a final common pathway of tissue destruction in several pathophysiologic states.  相似文献   

5.
Using a spin-trapping technique, we have examined free-radical formation by mitomycin C and its analogs, BMY 25282 and BMY 25067, in rat cardiac microsomes and isolated perfused rat hearts. All three drugs stimulated 2--4-fold OH radical formation in cardiac microsomes which was inhibited by SOD and catalase. Superoxide anion radical was also detected in the presence of diethylenetetraaminopentaacetic acid. Addition of DMSO yielded methyl radicals, thus indicating the production of free OH under these conditions. Similar stimulation of OH formation (2--3-fold) in the perfusates from rat hearts was detected with all three drugs. Perfusion with catalase (550 U/ml) completely suppressed the OH signal both in the presence and absence of the drugs, thus suggesting the intermediacy of hydrogen peroxide. However, BMY 25067-induced OH formation was more sensitive to inhibition by superoxide dismutase (SOD) and the iron chelator ICRF-187. Perfusion with DMSO produced methyl radicals at the expense of OH in the presence of all three drugs. SOD and catalase inhibited DMPO-OH signals, indicating that most of the OH formation was extracellular in this setting. While mitomycin C and BMY 25067 (up to 10 microM) did not affect the heart rate, perfusion with 10 microM BMY 25282 caused acute arrhythmia and cardiac standstill within 20 min. An initial surge in OH formation (2-fold) accompanied this cardiotoxic effect. Both the arrhythmia and the free radical signal were partially blocked by SOD, catalase and ICRF-187, indicating that iron-dependent oxygen radical formation from BMY-25282 (and possibly other compounds) is involved, in part, in inducing toxic manifestations in the rat heart and possibly in clinic.  相似文献   

6.
The potential role of oxygen free radicals in hCG-induced ovulation was investigated using the free radical scavenging enzymes superoxide dismutase (SOD) and/or catalase with the in-vitro perfused rabbit ovary preparation. SOD (25 micrograms/ml) and SOD + catalase (25 micrograms/ml) significantly reduced the % of large follicles that ovulated during perfusion (P less than 0.005). Neither maturity nor degeneration of ovulated ova and follicular oocytes was affected by SOD and/or catalase. Progesterone concentration in the perfusate was significantly increased in the SOD + catalase treatment group (P less than 0.01). These results indicate a significant role for oxygen free radicals in the process of ovulation.  相似文献   

7.
《Free radical research》2013,47(6):295-305
The industrial pollutant 2, 4, 5-trichlorophenol (2, 4, 5-TCP) was metabolized with postmitochondrial liver fraction from Aroclor-1254 induced rats. The generated metabolites induced single strand breaks in PM2 DNA. Among the metabolites produced are the 3, 4, 6-trichlorocatechol (TCC) and the 2, 5-dichlorohydroquinone (DCH), whereby the induction of DNA scission by DCH was approximately one hundred times greater than that of TCC. In the 2, 4, 5-TCP metabolization mixture radicals were observed by ESR. They were identified as the semiquinones of TCC and DCH. ESR studies confirmed that both TCC and DCH autoxidize in aqueous solution to their semiquinone radicals. The involvement of reactive oxygen species in the DNA strand scission was demonstrated by using DMSO, SOD, and catalase as scavengers. Inhibition of strand breaks with the scavenger enzymes did not give homogeneous results for DCH and TCC. This indicated that the directly damaging species might be different for DCH and TCC.  相似文献   

8.
The aim of the present work was to evaluate the modulatory role of beta-carotene on the radiation-induced changes in certain biochemical and cytogenetic parameters. beta-Carotene was given by gavage at a dose of 5 mg/kg body weight for 7 consecutive days before whole body gamma irradiation with 7 Gy (single dose). The levels of beta-carotene in plasma, thiobarbituric acid-reactive substances (TBARS) in plasma and liver, the activities of superoxide dismutase (SOD) and catalase in blood and liver were the selected parameters. Furthermore, the frequency of micronuclei (MN) of polychromatic erythrocytes (PCEs), normochromatic erythrocytes (NCEs), the ratio of PCEs/NCEs and the mitotic index (MI) of bone marrow cells were also evaluated. The biochemical and cytogenetic determinations were carried out 1, 24, and 72 h after radiation exposure.The results obtained revealed that administration of beta-carotene pre-irradiation significantly inhibited the decrease in plasma beta-carotene, significantly reduced the levels of TBARS in plasma and liver. Significant protection of the radiation-induced changes in the activities of SOD and catalase was also recorded in the blood and liver of beta-carotene-treated and -irradiated rats. beta-Carotene resulted in significant inhibition in the frequency of radiation-induced MN, as well as in the ratio of PCEs/NCEs and the MI of bone marrow cells. These results suggest that beta-carotene as a natural product with its antioxidant capacity and capability of quenching singlet oxygen, could play a modulatory role against the cellular damage affected by free radicals induced by whole body irradiation.  相似文献   

9.
Polymorphonuclear leukocytes (PMN) may play a key role in acute lung injury and ARDS. The mechanisms of PMN-mediated lung injury include the release of inflammatory mediators, such as oxygen free radicals which cause direct tissue injury, and arachidonic acid metabolites which cause pulmonary vasoconstriction and increased vascular permeability. The goals of this in vitro study were 1) to assess the effects of PMN-activating agents (lipopolysaccharide, LPS; phorbol myristate acetate, PMA; tumor necrosis factor, TNF) on PMN thromboxane B2 (TXB2) release and oxygen free radical production and 2) to determine the effects of agents purported to suppress PMN activity (pentoxifylline, PTX; adenosine; dibutyryl cyclic AMP, DBcAMP; and terbutaline, TBN) on activator-induced PMN TXB2 release and oxygen free radical production. PMN TXB2 release was determined by radioimmunoassay and oxygen free radical production was monitored by chemiluminescence. Our results show that 1) LPS and PMA significantly increase PMN TXB2 release, whereas tumor necrosis factor (TNF) has no effect; 2) LPS and PMA significantly increase PMN chemiluminescence; 3) DBcAMP and TBN significantly reduce LPS-induced PMN TXB2 release whereas PTX and adenosine do not; 4) TBN significantly reduces PMA-induced PMN TXB2 release whereas other agents do not; 5) All agents (PTX, adenosine, DBcAMP, and TBN) significantly reduce LPS-induced PMN chemiluminescence but none attenuate PMA-induced PMN chemiluminescence. We conclude that: LPS and PMA activate PMN manifested by TXB2 release and chemiluminescence. Additionally, all the PMN suppressing agents do attenuate some PMN functions. Of interest, PTX, adenosine, DBcAMP, and TBN have different effects depending upon functional assay and activating agent. It will be important to investigate the mechanisms by which PMN suppressing agents alter signal transduction resulting in differential effects on PMN function.  相似文献   

10.
In this study, the changes of arachidonic acid metabolites after an ischemia-reperfusion (I/R) period are investigated. The cyclooxygenase and lipoxygenase metabolites were found to be significantly increased after a 45 min period of ischemia followed by 5 min of reperfusion. Prostaglandin E2 (PGE2)- and leukotriene C4 (LTC4)-like activities did not change in the ischemic period, but they both increased after reperfusion. A cyclooxygenase inhibitor indomethacin and lipoxygenase inhibitor nordehydroguaretic acid (NDGA) decreased PGE2- and LTC4-like activities, respectively, while allopurinol and superoxide dismutase (SOD) decreased both activities.According to our results, it can be assumed that free oxygen radicals are responsible for the elevation of PGE2- and LTC4-like activities and both of these arachidonic acid metabolites and free oxygen radicals are the main necrotizing agents in ischemia-reperfusion induced damage.  相似文献   

11.
Shen JZ  Zheng XF  Kwan CY 《Life sciences》2000,66(21):PL291-PL296
This study aims to examine the effects of different reactive oxygen species (ROS) on the resting tension of endothelium-denuded rat aortic rings. In these preparations, H2O2 (30 microM) induced a fast and transient contraction, which could be abolished by pretreatment of catalase (800 U/ml), but not affected by superoxide anion scavenger, superoxide dismutase (SOD; 150 U/ml) or the hydroxyl free radical scavenger, DMSO/mannitol (each 3 mM). In contrast, pyrogallol, a putative superoxide anion donor, induced a biphasic contraction, which could be abolished by SOD, but not by catalase or DMSO/mannitol. Unlike H2O2 and pyrogallol, Vitamin C(VitC)/Fe2+ (each 100 microM), a commonly used hydroxyl radical-generating system, triggered a tonic contraction which could be prevented by DMSO/mannitol, but not by SOD or catalase. Interestingly, H2O2-induced contraction could be concentration-dependently (10-100 microM) inhibited by suramin and reactive blue-2 (RB-2), two widely used ATP receptor antagonists. On the other hand, suramin or RB-2, at concentration up to 100 microM, affected neither pyrogallol nor VitC/Fe2+-induced contraction. In conclusion, we showed for the first time that different ROS could contract rat aorta with different mechanisms of action, and H2O2 elicits a transient contraction probably as a result of the ATP receptor activation.  相似文献   

12.
1. Many studies have demonstrated that endothelial cells from several species can generate oxygen free radicals when subjected to anoxia and reoxygenation. However, due to the heterogeneity of the endothelium within different organs and species, the effects of superoxide dismutase (SOD), catalase, and allopurinol on reoxygenated cultured cells remain quite controversial.2. This review outlines the possible sources of oxygen free radicals within brain endothelial cells.3. We examine the aspects of the effects of SOD catalase and allopurinol on cultured human brain capillary endothelial cells upon reoxygenation.4. Also, we introduce briefly a method of culturing human brain capillary endothelial cells and present our experimental results on the effects of SOD, catalase, and allopurinol in these cultured cells following anoxia and reoxygenation.  相似文献   

13.
During in vitro senescence (chlorophyll loss) of oat ( Avena sativa L. cv. Victory) leaf segments and of leaf discs of Rumex obtusifolius L, the activity of catalase decreases and lipid peroxidation increases. The activity of superoxide dismutase (SOD) decreases in Rumex leaf discs but changes little in oat leaf segments. Kinetin treatment of oat leaf segments, and GA3 treatment of Rumex leaf discs, inhibit decline in the enzyme activities and increase in the level of lipid peroxidation and strongly inhibit senescence. In either leaf tissue a treatment with ethanol or vitamin E (scavengers of free radicals) or with diphenylisobenzofuran (scavenger of singlet oxygen) results in a strong inhibition of lipid peroxidation and senescence, but does not affect much the decline in the SOD and catalase activities. It is concluded that, i) senscence-associated lipid peroxidation is induced by free radicals and singlet oxygen; and, ii) kinetin and GA3 inhibit senescence mainly by a modulation of lipid peroxidation through maintaining high levels of such cellular scavengers as SOD and catalase.  相似文献   

14.
Contribution of macrophages to immediate hypersensitivity reaction   总被引:3,自引:0,他引:3  
The interaction of mast cells with other leukocytes during immediate hypersensitivity reactions was tested by in vivo and in vitro experiments. Intraperitoneal challenge of passively sensitized rats with antigen caused the production of peptidoleukotrienes, leukotriene (LT)B4, thromboxane (TX)B2, and 6-keto-prostaglandin (PG) F1 alpha in the peritoneal cavity. Pretreatment of the rats with thioglycollate i.p. markedly changed the amount of eicosanoids formed. When polymorphonuclear leukocytes were the predominant cell type in the peritoneal exudate, both LTC4 and 6-keto-PGF1 alpha were decreased by 75% each and TXB2 by 50%. When elicited macrophages were predominant, there was an additional reduction in LTC4 by 68% as compared with 18 hr after thioglycollate treatment, but no additional change in the other arachidonic acid metabolites. In vitro antigen challenge of passively sensitized mouse bone marrow-derived mast cells caused the release of LTC4, LTB4, 6-trans-LTB4, 5-hydroxyeicosatetraenoic (5-HETE), and TXB2. Exposure to antigen of these mast cells in the presence of resident peritoneal macrophages markedly altered eicosanoid formation. Early in the time course (2 to 15 min), macrophages markedly enhanced all 5-lipoxygenase products. However, later in the time course (30 to 120 min), these products were decreased. This decrease was reversed by catalase and superoxide dismutase, which suggests the involvement of oxygen radicals. These active oxygen species also seemed to be generated by mast cells, because these enzymes caused an increase in 5-lipoxygenase products when mast cells were challenged alone. RIA of cyclooxygenase products showed that mast cells released only TXB2 when stimulated with antigen. When they were stimulated in the presence of macrophages, TXB2 and also PGE2 and 6-keto-PGF1 alpha were synthesized. Therefore, macrophages probably contribute the PGE2 and 6-keto-PGF1 alpha. Because the same amount of TXB2 was generated whether macrophages were present or not, the mast cells seem to be the major source of this compound. These data indicate that macrophages and possibly polymorphonuclear leukocytes participate in immediate hypersensitivity reactions.  相似文献   

15.
T Ochi  M Ohsawa 《Mutation research》1985,143(3):137-142
The effect of various scavengers of active oxygen species on the induction of chromosomal aberrations by cadmium chloride (CdCl2) was investigated in cultured Chinese hamster V79 cells. Incidences of chromosomal aberrations by CdCl2 were partially or fully reduced by the presence of catalase, mannitol (a scavenger of hydroxyl radicals) and butylated hydroxytoluene (BHT, an antioxidant). These findings may indicate participation of the active oxygen species such as hydrogen peroxide (H2O2) or hydroxyl radicals in the clastogenicity of cadmium. In contrast, superoxide dismutase (SOD) and dimethylfuran (a scavenger of singlet oxygen) did not influence incidences of chromosomal aberrations by CdCl2. These results suggest that superoxide anion and singlet oxygen are not directly involved in the clastogenicity of the metal. The presence of aminotriazole (an inhibitor of catalase) increased incidences of chromosomal aberrations by CdCl2. This emphasizes participation of H2O2 in the clastogenicity of cadmium.  相似文献   

16.
The effects of administration of oxidized rapeseed oil and α-lipoic acid on activities of blood antioxidant enzymes and malondialdehyde (MDA) concentration were studied in laboratory rats fed a high-fat diet. Addition of oxidized oil resulted in increased production of oxygen radicals, evidenced by elevated plasma MDA production. Such effect was counteracted by administration of α-lipoic acid. There was an increase of the activities of superoxide dismutase (total and Cu/Zn-SOD) and catalase in rats fed a high-fat diet to which 10% oxidized oil was added. Administration of α-lipoic acid resulted in a decrease of the activities of these enzymes.  相似文献   

17.
During the early stages of acute pancreatitis, acute respiratory distress syndrome often occurs. This is associated with the release of proinflammatory mediators into the blood, but it remains unclear why these mediators induce inflammation especially in the lung. One of the first events occurring during the progression of acute pancreatitis is the induction of P-selectin expression in the endothelial cells of the lung. This expression has been associated with the generation of superoxide radicals by circulating xanthine oxidase. Because this enzyme needs molecular oxygen to perform the reaction, we have hypothesized that oxygen present in the alveolar space favors the generation of free radicals by xanthine oxidase and explains why P-selectin is expressed only in the lung. For this purpose, we evaluated the progression of the inflammatory process in rats with induced acute pancreatitis and one lung breathing nitrogen while the other lung continued breathing air. Acute pancreatitis was induced by intraductal administration of taurocholate and myeloperoxidase; P-selectin expression was measured 3 h after induction. Results indicated that, in the absence of oxygen in the alveolar space, the xanthine oxidase-dependent P-selectin expression did not occur and lung inflammation was significantly reduced.  相似文献   

18.
Significant increases of TXB2 and PGE2 are reported to occur in pancreas transplantation. These increases are prevented with scavengers of oxygen-free radicals. In this communication, we report on changes of prostacyclin metabolites such as tissue 6-keto prostaglandin F1 alpha and urinary 2,3-dinor 6-keto prostaglandin F1 alpha in rats subjected to pancreas transplantation after different periods of organ cold preservation ischemia as well as the effect of superoxide dismutase (SOD) on these changes. For this purpose, male Lewis rats were classified as follows: Group I, Control; Group II, syngenic pancreas transplantation after 15 min of organ preservation in Collins solution at 4 degrees C; Group III, same as II but with 12 hours of organ preservation; Group IV, same as III, but with SOD pretreatment. Results have shown significant posttransplantation increases of both tissue 6-keto PGF1 alpha and urinary 2, 3 dinor 6-keto PGF1 alpha, the latter being a useful marker to evaluate systemic prostacyclin (PGI2) production by rat pancreas. This effect was prevented when the organ had been exposed to SOD during the period of cold preservation ischemia. These results confirm the implication of oxygen-free radicals (OFR) in the ischemia-reperfusion process associated to rat pancreas transplantation leading to enhanced arachidonic acid metabolism.  相似文献   

19.
Anti-platelet effects of fenflumizole, a new cyclo-oxygenase inhibitor, were studied in man ex vivo. Fenflumizole was given to male volunteers at the oral doses of 25, 50 or 100 mg per day, each dose for a period of seven days. The formation of thromboxane B2 (TXB2) during whole blood clotting, platelet aggregation induced by arachidonic acid and ADP, the formation of TXB2 during aggregation as well as serum concentration of fenflumizole were measured repeatedly during drug administration and for a fortnight after drug discontinuation. TXB2 formation during whole blood clotting was decreased dose-dependently by fenflumizole. The degree of inhibition of TXB2 formation was proportional to fenflumizole concentration in serum within each individual. The lag phase of platelet aggregation induced by arachidonic acid was prolonged and the formation of TXB2 during aggregation decreased by fenflumizole. No total inhibition of either TXB2 synthesis or platelet aggregation was caused by the fenflumizole doses used. The results show that the degree of inhibition of platelet thromboxane forming capacity by repeated doses of fenflumizole is closely related to the concentration of the drug in blood. Platelet aggregation however is less sensitive to changes in fenflumizole levels and cannot be assessed solely on the basis of cyclo-oxygenase activity.  相似文献   

20.
Preincubation of brain membranes with phospholipase A2 (PLA2) has been shown previously to affect the binding characteristics of various recognition sites associated with the gamma-aminobutyric acid (GABA) receptor complex. In the present study, we have investigated the effects of PLA2 (from Naja naja siamensis venom) on the functional activity of the GABA receptor/chloride ion channel. PLA2 (0.001-0.02 U/mg protein) preincubation decreased pentobarbital-induced 36Cl- efflux and muscimol-induced 36Cl- uptake in rat cerebral cortical synaptoneurosomes. The effect of PLA2 was prevented by EGTA and two nonselective PLA2 inhibitors, mepacrine and bromophenacyl bromide. The removal of free fatty acids by addition of bovine serum albumin both prevented and reversed the effect of PLA2. Products of the catalytic activity of PLA2, such as the unsaturated free fatty acids, arachidonic and oleic acids, mimicked the effect of PLA2. However, the saturated fatty acid, palmitic acid, and lysophosphatidyl choline had no effect on pentobarbital-induced 36Cl- efflux. Because unsaturated free fatty acids are highly susceptible to peroxidation by oxygen radicals, the role of oxygen radicals was investigated. Xanthine plus xanthine oxidase, a superoxide radical generating system, mimicked the effect of PLA2, whereas the superoxide radical scavenger, superoxide dismutase, diminished the effects of PLA2 and arachidonic acid on pentobarbital-induced 36Cl- efflux. Similarly, the effect of PLA2 was also inhibited by methanol (1 mM), a scavenger of the hydroxyl radical, and by catalase. These data indicate that exogenously added PLA2 induces alterations in membrane phospholipids, possibly promoting the generation of oxygen radicals and fatty acid peroxides which can ultimately modulate GABA/barbiturate receptor function in brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号