首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidatively damaged DNA is implicated in various diseases, including neurodegenerative disorders, cancer, diabetes, cardiovascular and inflammatory diseases as well as aging. Several methods have been developed to detect oxidatively damaged DNA. They include chromatographic techniques, the Comet assay, (32)P-postlabelling and immunochemical methods that use antibodies to detect oxidized lesions. In this review, we discuss the detection of 8-oxo-7,8-dihydro-29-deoxyguanosine (8-oxodG), the most abundant oxidized nucleoside. This lesion is frequently used as a marker of exposure to oxidants, including environmental pollutants, as well as a potential marker of disease progression. We concentrate on studies published between the years 2000 and 2011 that used enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry to detect 8-oxodG in humans, laboratory animals and in cell lines. Oxidative damage observed in these organisms resulted from disease, exposure to environmental pollutants or from in vitro treatment with various chemical and physical factors.  相似文献   

2.
DNA repair may prevent increased levels of oxidatively damaged DNA from prolonged oxidative stress induced by, e.g. exposure to diesel exhaust particles (DEP). We studied oxidative damage to DNA in broncho-alveolar lavage cells, lungs, and liver after 4 × 1.5 h inhalations of DEP (20 mg/m3) in Ogg1? / ? and wild type (WT) mice with similar extent of inflammation. DEP exposure increased lung levels of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in Ogg1? / ? mice, whereas no effect on 8-oxodG or oxidized purines in terms of formamidopyrimidine DNA glycosylase (FPG) sites was observed in WT mice. In both unexposed and exposed Ogg1? / ? mice the level of FPG sites in the lungs was 3-fold higher than in WT mice. The high basal level of FPG sites in Ogg1? / ? mice probably saturated the assay and prevented detection of DEP-generated damage. In conclusion, Ogg1? / ? mice have elevated pulmonary levels of FPG sites and accumulate genomic 8-oxodG after repeated inhalations of DEP.  相似文献   

3.
《Free radical research》2013,47(12):1469-1478
ABSTRACT

Animal studies have shown that exposure to nonylphenol (NP) increases oxidative/nitrative stress, but whether it does so in humans is unknown. This study examines prenatal exposure to NP and its effects on oxidatively/nitratively damaged DNA, lipid peroxidation, and the activities of antioxidants. A total of 146 urine and blood specimens were collected during gestational weeks 27–38 and hospital admission for delivery, respectively. Urinary NP was analyzed by high-performance liquid chromatography (HPLC). Urinary biomarkers of oxidatively/nitratively damaged DNA and lipid peroxidation, including 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxodG), 8-nitroguanine (8-NO2Gua), 8-iso-prostaglandin F (8-isoPF) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), were simultaneously analyzed using isotope-dilution liquid-chromatography/electron spray ionization tandem mass spectrometry. The activities of maternal plasma superoxide dismutase and glutathione peroxidase were analyzed by enzyme-linked immunosorbent assay. Urinary NP level was significantly associated with 8-oxodG and 8-NO2Gua levels in late pregnancy, suggesting that NP may enhance oxidatively and nitratively damaged DNA. The adjusted odds ratios for high 8-oxodG level exhibited a significantly dose–response relationship with NP levels, stratified into four quartiles. 8-oxodG appears to be a more sensitive and effective biomarker of NP exposure than 8-NO2Gua. These relationships suggest NP may play a role in the pregnancy complications.  相似文献   

4.
DNA repair may prevent increased levels of oxidatively damaged DNA from prolonged oxidative stress induced by, e.g. exposure to diesel exhaust particles (DEP). We studied oxidative damage to DNA in broncho-alveolar lavage cells, lungs, and liver after 4 × 1.5 h inhalations of DEP (20 mg/m3) in Ogg1- / -  and wild type (WT) mice with similar extent of inflammation. DEP exposure increased lung levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in Ogg1- / -  mice, whereas no effect on 8-oxodG or oxidized purines in terms of formamidopyrimidine DNA glycosylase (FPG) sites was observed in WT mice. In both unexposed and exposed Ogg1- / -  mice the level of FPG sites in the lungs was 3-fold higher than in WT mice. The high basal level of FPG sites in Ogg1- / -  mice probably saturated the assay and prevented detection of DEP-generated damage. In conclusion, Ogg1- / -  mice have elevated pulmonary levels of FPG sites and accumulate genomic 8-oxodG after repeated inhalations of DEP.  相似文献   

5.
We are attempting to resolve some of the problems encountered in measuring 8-hydroxy-2′-deoxyguanosine (8-oxodG) in human cellular DNA as a marker of oxidative stress. Samples of authentic 8-oxodG were distributed, and participating laboratories undertook to analyse this material within a specified period. Most HPLC procedures gave values for 8-oxodG within ±40% of the target, as did two of four GC-MS procedures, and both LC-MS-MS methods. Calf thymus DNA samples containing increasing amounts of 8-oxodG were also distributed for analysis. Fewer than half the procedures tested were able to detect the dose response; those that were successful tended to be procedures with low coefficients of variation. For the analysis of 8-oxodG in human cells, where it is likely to be present at much lower concentrations than in the calf thymus DNA, it is crucial to reduce analytical variation to a minimum; a coefficient of variation of less than 10% should be the aim, to give reasonable precision. HPLC with amperometric electrochemical detection is not recommended, as it is less sensitive than coulometric detection. Immunological detection, 32P-postlabelling and LC-MS-MS are alternative approaches to measurement of 8-oxodG in DNA that, on the grounds of precision and detection of dose response, cannot at present be recommended.  相似文献   

6.
This study assessed oxidatively damaged DNA and antioxidant enzyme activity in workers occupational exposure to metal oxides nanomaterials. Exposure to TiO2, SiO2, and ITO resulted in significant lower antioxidant enzymes (glutathione peroxidase and superoxide dismutase) and higher oxidative biomarkers 8-hydroxydeoxyguanosine (8-oxodG) than comparison workers. Statistically significant correlations were noted between plasma and urine 8-oxodG, between white blood cells (WBC) and urine 8-oxodG, and between WBC and plasma 8-oxodG. In addition, there were significant negative correlations between WBC 8-oxodG and SOD and between urinary 8-oxodG and GPx levels. The results showed that urinary 8-oxodG may be considered to be better biomarker.  相似文献   

7.
6-Hydroxydopamine (6-OHDA) is a neurotoxin to produce an animal model of Parkinson's disease. 6-OHDA increased the formation of 8-oxo-7, 8-dihydro-2′-deoxyguanosine (8-oxodG), a biomarker of oxidatively damaged DNA, and induced apoptosis in human neuroblastoma SH-SY5Y cells. Iron or copper chelators inhibited 6-OHDA-induced 8-oxodG formation and apoptosis. Thus, iron and copper are involved in the intracellular oxidatively generated damage to DNA, a stimulus for initiating apoptosis. This study examined DNA damage caused by 6-OHDA plus metal ions using 32P-5′-end-labelled DNA fragments. 6-OHDA increased levels of oxidatively damaged DNA in the presence of Fe(III)EDTA or Cu(II). Cu(II)-mediated DNA damage was stronger than Fe(III)-mediated DNA damage. The spectrophotometric detection of p-quinone and the scopoletin method showed that Cu(II) more effectively accelerated the 6-OHDA auto-oxidation and H2O2 generation than Fe(III)EDTA. This study suggests that copper, as well as iron, may play an important role in 6-OHDA-induced neuronal cell death.  相似文献   

8.
《Free radical research》2013,47(2):237-247
Abstract

There have been several reports describing elevation of oxidized RNA in ageing or age-related diseases, however RNA oxidation has been assessed solely based on 8-hydroxy-guanosine levels. In this study, Aldehyde Reactive Probe (ARP), which was originally developed to detect DNA abasic sites, was used to assess RNA oxidation. It was found that ARP reacted with depurinated tRNAPhe or chemically synthesized RNA containing abasic sites quantitatively to as little as 10 fmoles, indicating that abasic RNA is recognized by ARP. RNA oxidized by Fenton-type reactions, γ-irradiation or peroxynitrite increased ARP reactivity dose-dependently, indicating that ARP is capable of monitoring oxidized RNA mediated by reactive oxygen species or reactive nitrogen species. Furthermore, oxidative stress increased levels of ARP reactive RNA in cultured cells. These results indicate the versatility of the assay method for biologically relevant oxidation of RNA. Thus, this study developed a sensitive assay for analysis of oxidized RNA.  相似文献   

9.
BackgroundArsenic (As) causes oxidative stress through generation of reactive oxygen species. 8-Oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG), a sensitive marker of oxidative DNA damage, has been associated with As exposure in some studies, but not in others, possibly due to population-specific genetic factors.ObjectivesTo evaluate the association between As and 8-oxodG in urine in a population with a low urinary monomethylated As (%MMA) and high dimethylated As (%DMA), as well as the genetic impact on (a) 8-oxodG concentrations and (b) the association between As and 8-oxodG.Materials and methodsWomen (N = 108) in the Argentinean Andes were interviewed and urine was analyzed for arsenic metabolites (ICPMS) and 8-oxodG (LC–MS/MS). Twenty-seven polymorphisms in genes related to oxidative stress and one in As(+III)methyltransferase (AS3MT) were studied.ResultsMedian concentration of 8-oxodG was 4.7 nmol/L (adjusted for specific weight; range 1.6–13, corresponding to 1.7 μg/g creatinine, range 0.57–4.8) and of total urinary As metabolites (U-As) 290 μg/L (range 94–720; 380 μg/g creatinine, range 140–1100). Concentrations of 8-oxodG were positively associated with %MMA (strongest association, p = 0.013), and weakly associated with U-As (positively) and %DMA (negatively). These associations were strengthened when taking ethnicity into account, possibly reflecting genetic differences in As metabolism and genes regulating oxidative stress and DNA maintenance. A genetic influence on 8-oxodG concentrations was seen for polymorphisms in apurinic/apyrimidinic endonuclease 1 (APEX1), DNA-methyltransferases 1 and 3b (DNMT1, DNMT3B), thioredoxin reductase 1 (TXNRD1) and 2 (TXNRD2) and glutaredoxin (GLRX).ConclusionDespite high As exposure, the concentrations of 8-oxodG in this population were low compared with other As-exposed populations studied. The strongest association was found for %MMA, stressing that some inconsistencies between As and 8-oxodG partly depend on population variations in As metabolism. We found evidence of genetic impact on 8-oxodG concentrations.  相似文献   

10.
Genotoxic end-points are routinely measured in various sentinel organisms in aquatic environments in order to monitor the impact of water pollution on organisms. As a first step towards the evaluation of oxidative DNA damage (8-oxodG) in organisms exposed to chemical water pollution, we have optimized the association between the comet assay and the hOGG1 enzyme for use on zebra mussel (Dreissena polymorpha) gill cells by in vitro exposure to H?O?. Firstly, we observed that in vitro exposure of D. polymorpha gill cells to benzo[a]pyrene (B[a]P, 98.4nM) induced an increase of the Olive Tail Moment (OTM) in both the comet-hOGG1 and comet-Fpg assays, indicating that B[a]P causes oxidative DNA damage. By contrast, methylmethane sulfonate (MMS, 33μM) only induced an increase of the Fpg-sensitive sites, indicating that MMS caused alkylating DNA damage and confirming that hOGG1 does not detect alkylating damage. Thus, the hOGG1 enzyme seems to be more specific towards oxidative DNA damage, such as 8-oxodG than Fpg. Secondly, as was observed in vitro, the in vivo exposure of D. polymorpha to B[a]P (24.6 and 98.4nM) increased oxidative DNA damage in gill cells, whereas only Fpg-sensitive sites were detected in mussels exposed to MMS (240μM). These results show that the comet-hOGG1 assay detects oxidative DNA lesions induced in vitro by H?O? and in vivo with BaP. The comet-hOGG1 assay will be used to detect oxidative DNA lesions (8-oxodG) in mussels exposed in situ.  相似文献   

11.
Ciprofloxacin induced an increment of reactive oxygen species in sensitive strains of Staphylococcus aureus leading to oxidative stress detected by chemiluminescence while resistant strains did not suffer such stress. Oxidation of lipids was performed by employing thiobarbituric acid reaction to detect the formation of the amplified intermediate between reactive species oxygen and cytoplasmic macromolecules, namely malondialdehyde (MDA). The sensitive strain presented higher peroxidation of lipids than the resistant strain. The oxidative consequence for DNA was investigated by means of bacteria incubation with ciprofloxacin and posterior extraction of DNA, which was studied by high performance liquid chromatography (HPLC). Sensitive S. aureus ATCC 29213 showed an increase of 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) respect controls without antibiotic; there was evident increase of the ratio between 8-oxodG and deoxyguanosine (dG) as a consequence of oxidation of dG to 8-oxodG considered the major DNA marker of oxidative stress. The resistant strain showed low oxidation of DNA and the analysis of 8-oxodG/dG ratio indicated lesser formation of 8-oxodG than S. aureus ATCC 29213.  相似文献   

12.
We investigated the seasonal variability of 8-oxodeoxyguanosine (8-oxodG), a marker of oxidative damage to DNA, in urine of 50 bus drivers and 50 controls in Prague, Czech Republic, in three seasons with different levels of air pollution: winter 2005, summer 2006 and winter 2006. The exposure to environmental pollutants (carcinogenic polycyclic aromatic hydrocarbons, c-PAHs, particulate matter (PM), and volatile organic compounds (VOC)) was monitored by personal and/or stationary monitors. For the analysis of 8-oxodG levels, the ELISA technique was used. Bus drivers were exposed to significantly higher levels of c-PAHs in winter 2006, while in the other two seasons the exposure of controls was unexpectedly higher than that of bus drivers. We did not see any difference in VOC exposure between both groups in summer 2006 and in winter 2006; VOC were not monitored in winter 2005. 8-OxodG levels were higher in bus drivers than in controls in all seasons. The median levels of 8-oxodG (nmol/mmol creatinine) in bus drivers vs. controls were as follows: winter 2005: 7.79 vs. 6.12 (p=0.01); summer 2006: 6.91 vs. 5.11 (p<0.01); winter 2006: 5.73 vs. 3.94 (p<0.001). Multivariate logistic regression analysis identified PM2.5 and PM10 levels, measured by stationary monitors during a 3-day period before urine collection, as the only factors significantly affecting 8-oxodG levels, while the levels of c-PAHs had no significant influence.  相似文献   

13.
Abnormal spermatozoa frequently display typical features of oxidative stress, i.e. excessive level of reactive oxygen species (ROS) and depleted antioxidant capacity. Moreover, it has been found that a high level of oxidatively damaged DNA is associated with abnormal spermatozoa and male infertility. Therefore, the aim of our study was the comparison of oxidative stress/DNA damage in semen and blood of fertile and infertile men. The broad range of parameters which describe oxidative stress and oxidatively damaged DNA and repair were analyzed in the blood plasma and seminal plasma of groups of fertile and infertile subjects. These parameters include: (i) 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) and 8-oxo-7,8-dihydroguanine (8-oxoGua) levels in urine; (ii) 8-oxodG level in DNA isolated from leukocytes and spermatozoa; (iii) antioxidant vitamins (A, C and E) and uric acid. Urinary excretion of 8-oxodG and 8-oxoGua and the level of oxidatively damaged DNA in leukocytes as well as the level of antioxidant vitamins were analyzed using HPLC and HPLC/GC/MS methods.The results of our study demonstrate that 8-oxodG level significantly correlated with every parameter which describe sperm quality: sperm count, motility and morphology. Moreover, the data indicate a higher level of 8-oxodG in sperm DNA compared with DNA of surrogate tissue (leukocytes) in infertile men as well as in healthy control group. For the whole study population the median values of 8-oxodG/106 dG were respectively 7.85 and 5.87 (p = 0.000000002). Since 8-oxodG level in sperm DNA is inversely correlated with urinary excretion rate of 8-oxoGua, which is the product of OGG1 activity, we hypothesize that integrity of spermatozoa DNA may be highly dependent on OGG1 activity. No relationship between the whole body oxidative stress and that of sperm plasma was found, which suggests that the redox status of semen may be rather independent on this characteristic for other tissues.  相似文献   

14.
Abstract

Oxidative stress has been implicated in the pathogenesis of various chronic diseases, such as cancer, cardiovascular disease and inflammatory conditions, as well as in ageing. Although a number of markers are now available, little is known about the reliability of single measurements of such markers in healthy individuals. The study examined the distribution of variance for three oxidative stress markers, 8-oxo-2′-deoxyguanosine (8-oxodG), 5-hydroxymethyl-2′-deoxyuridine (5-OHmdU) and total 8-isoprostane-F2α, which were measured every 3–6 months over 1 year in blood and breast nipple aspirate fluid (NAF) for 103 premenopausal women. For both plasma and NAF, the between-subject variances of 8-isoprostane-F2α were consistently greater than the within-subject variances. Consequently, their reliability coefficients were close to the level of those for cholesterol. On the other hand, the within-subject variances were much greater than the between-subjects variances for blood 5-OHmdU, resulting in low reliability coefficients, i.e. <0.3. Overall, the reliability coefficients for blood 8-oxodG were between those of 8-isoprostane-F2α and 5-OHmdU, but closer to those of 8-isoprostane-F2α. The results suggest that the reliability of oxidative stress markers may vary considerably depending on the type of marker. Caution should be exercised in selecting markers as well as in determining the number of study subjects or the number of samples per subject in a study. There also may be ample room to optimize laboratory techniques to quantify markers of oxidative DNA damage.  相似文献   

15.
Thiopurine antimetabolites, such as azathioprine (Aza) and 6-thioguanine (6-TG), are widely used in the treatment of cancer, inflammatory conditions and organ transplantation patients. Recent work has shown that cells treated with 6-TG and UVA generate ROS, with implied oxidatively generated modification of DNA. In a study of urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) in renal transplant patients, we provided the first in vivo evidence linking Aza and oxidatively damaged DNA. Using the hOGG1 comet assay, we herein demonstrate high levels of 8-oxodG and alkali-labile sites (ALS) in cells treated with biologically relevant doses of 6-TG, or Aza, plus UVA. This damage was induced dose-dependently. Surprisingly, given the involvement of 6-TG incorporation into DNA in its therapeutic effect, significant amounts of 8-oxodG and ALS were induced in quiescent cells, although less than in proliferating cells. We speculate that some activity of hOGG1 towards unirradiated, 6-TG treated cells, implies possible recognition of 6-TG or derivatives thereof. This is the first report to conclusively demonstrate oxidatively damaged DNA in cells treated with thiopurines and UVA. These data indicate that Aza-derived oxidative stress will occur in the skin of patients on Aza, following even low level UVA exposure. This is a probable contributor to the increased risk of non-melanoma skin cancer in these patients. However, as oxidative stress is unlikely to be involved in the therapeutic effects of Aza, intercepting ROS production in the skin could be a viable route by which this side effect may be minimised.  相似文献   

16.
7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxodG) is a well-known marker of oxidative stress. We report a mechanistic analysis of several pathways by which 8-oxodG is converted to nucleotide triphosphates and incorporated into both DNA and RNA. Exposure of MCF-7 cells to [14C]8-oxodG combined with specific inhibitors of several nucleotide salvage enzymes followed with accelerator mass spectrometry provided precise quantitation of the resulting radiocarbon-labeled species. Concentrations of exogenously dosed nucleobase in RNA reached one per 106 nucleotides, 5–6-fold higher than the maximum observed in DNA. Radiocarbon incorporation into DNA and RNA was abrogated by Immucillin H, an inhibitor of human purine nucleoside phosphorylase (PNP). Inhibition of ribonucleotide reductase (RR) decreased the radiocarbon content of the DNA, but not in RNA, indicating an important role for RR in the formation of 8-oxodG-derived deoxyribonucleotides. Inhibition of deoxycytidine kinase had little effect on radiocarbon incorporation in DNA, which is in contrast to the known ability of mammalian cells to phosphorylate dG. Our data indicate that PNP and RR enable nucleotide salvage of 8-oxodG in MCF-7 cells, a previously unrecognized mechanism that may contribute to mutagenesis and carcinogenesis.  相似文献   

17.
Epidemiological studies conducted in metropolitan areas have demonstrated that exposure to environmental air pollution is associated with increases in mortality. Carcinogenic polycyclic aromatic hydrocarbons (c-PAHs) are the major source of genotoxic activities of organic mixtures associated with respirable particulate matter, which is a constituent of environmental air pollution. In this study,we wanted to evaluate the relationship between exposure to these genotoxic compounds present in the air and endogenous oxidative DNA damage in three different human populations exposed to varying levels of environmental air pollution. As measures of oxidative DNA damage we have determined 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxodG) by liquid chromatography–tandem mass spectrometry (LC–MS/MS) and cyclic pyrimidopurinone N-1,N2 malondialdehyde-2′-deoxyguanosine (M1dG) by the immunoslot blot assay from lymphocyte DNA of participating individuals. The level of endogenous oxidative DNA damage was significantly increased in individuals exposed to environmental air pollution compared to unexposed individuals from Kosice (8-oxodG adducts) and Sofia (M1dG adducts). However, there was no significant difference in the level of endogenous oxidative DNA and exposure to environmental air pollution in individuals from Prague (8-oxodG and M1dG adducts) and Kosice (M1dG adducts). The average level of M1dG adducts was significantly lower in unexposed and exposed individuals from Kosice compared to those from Prague and Sofia. The average level of 8-oxodG adducts was significantly higher in unexposed and exposed individuals from Kosice compared to those from Prague. A significant increasing trend according to the interaction of c-PAHs exposure and smoking status was observed in levels of 8-oxodG adducts in individuals from Kosice. However, no other relationship was observed for M1dG and 8-oxodG adduct levels with regard to the smoking status and c-PAH exposure status of the individuals. The conclusion that can be made from this study is that environmental air pollution may alter the endogenous oxidative DNA damage levels in humans but the effect appears to be related to the country where the individuals reside. Genetic polymorphisms of the genes involved in metabolism and detoxification and also differences in the DNA repair capacity and antioxidant status of the individuals could be possible explanations for the variation observed in the level of endogenous oxidative DNA damage for the different populations.  相似文献   

18.
Particulate matter from wood smoke may cause health effects through generation of oxidative stress with resulting damage to DNA. We investigated oxidatively damaged DNA and related repair capacity in peripheral blood mononuclear cells (PBMC) and measured the urinary excretion of repair products after controlled short-term exposure of human volunteers to wood smoke. Thirteen healthy adults were exposed first to clean air and then to wood smoke in a chamber during 4h sessions, 1 week apart. Blood samples were taken 3h after exposure and on the following morning, and urine was collected after exposure, from bedtime until the next morning. We measured the levels of DNA strand breaks (SB), oxidized purines as formamidopyrimidine-DNA-glycosylase (FPG) sites and activity of oxoguanine glycosylase 1 (hOGG1) in PBMC by the comet assay, whereas mRNA levels of hOGG1, nucleoside diphosphate linked moiety X-type motif 1 (hNUDT1) and heme oxygenase 1 (hHO1) were determined by real-time RT-PCR. The excretion of 8-oxo-7,8-dihydro-oxoguanine (8-oxoGua) and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in urine was measured by high performance liquid chromatography purification followed by gas chromatography with mass spectrometry. The morning following exposure to wood smoke the PBMC levels of SB were significantly decreased and the mRNA levels of hOGG1 significantly increased. FPG sites, hOGG1 activity, expression of hNUDT1 and hHO1, urinary excretion of 8-oxodG and 8-oxoGua did not change significantly. Our findings support that exposure to wood smoke causes systemic effects, although we could not demonstrate genotoxic effects, possibly explained by enhanced repair and timing of sampling.  相似文献   

19.
The free radical generating activity of airborne particulate matter (PM10) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2′-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5–150 μg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM10 collected daily (24 h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libuš and Smíchov), Košice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Košice, summer sampling. In this case, 2 h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 106 nucleotides with a value 3.5 per 106 nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value).Based on these data we believe that EOM samples extracted from airborne particle PM10 play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions (additive or synergistic) with other PM components or physical factors (UV-A radiation) and in this way they might enhance/multiply the adverse health effects of air pollution.  相似文献   

20.
We investigated whether plasma and synovial fluid (SF) samples from patients with rheumatoid arthritis (RA) contained extracellular mitochondrial DNA (mtDNA) or the oxidatively damaged DNA adduct 8-hydroxy-2'-deoxyguanosine (8-oxodG). Moreover, we correlated the laboratory findings of the patients with RA with their levels of mtDNA and 8-oxodG. SF and plasma samples from 54 patients with RA, SF from 30 non-arthritic control subjects, and plasma from 22 healthy volunteers were collected. The samples were subjected to polymerase chain reaction (PCR) using mitochondrial genomic primers, and the products were analyzed by SDS–polyacrylamide-gel electrophoresis. The intensities of the PCR-amplified bands were quantified and normalized to a reference sample. Furthermore, the SF samples were assayed by enzyme-linked immunosorbent assay for 8-oxodG. Extracellular PCR-amplifiable mtDNA was detected in the SF of 38 of 54 (70%) patients with RA, but not in any of the SF controls. PCR-amplifiable mtDNA was detected in the plasma of 30 of 54 (56%) of patients with RA and in 6 of 22 (27%) of the healthy volunteers. The levels of mtDNA in the plasma and SF samples of patients with RA were significantly higher (P < 0.0001) than in the respective control samples. The presence of both mtDNA and 8-oxodG in SF was significantly correlated with the presence of rheumatoid factor in the patients with RA. Extracellular mtDNA and oxidized DNA were detected in the SF of the great majority of patients with RA, but were absent or present at low levels in the control SF. These findings indicate that endogenous nucleic acid compounds might participate in joint inflammation by activating immune cells in the joints to produce proinflammatory cytokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号