首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
Phosphatidylethanolamine N-methyltransferase (PEMT) converts phosphatidylethanolamine (PE) to phosphatidylcholine (PC), mainly in the liver. Pemt?/? mice are protected from high-fat diet (HFD)-induced obesity and insulin resistance, but develop severe non-alcoholic fatty liver disease (NAFLD) when fed a HFD, mostly due to impaired VLDL secretion. Oxidative stress is thought to be an essential factor in the progression from simple steatosis to steatohepatitis. Vitamin E is an antioxidant that has been clinically used to improve NAFLD pathology. Our aim was to determine whether supplementation of the diet with vitamin E could attenuate HFD-induced hepatic steatosis and its progression to NASH in Pemt?/? mice. Treatment with vitamin E (0.5?g/kg) for 3?weeks improved VLDL-TG secretion and normalized cholesterol metabolism, but failed to reduce hepatic TG content. Moreover, vitamin E treatment was able to reduce hepatic oxidative stress, inflammation and fibrosis. We also observed abnormal ceramide metabolism in Pemt?/? mice fed a HFD, with elevation of ceramides and other sphingolipids and higher expression of mRNAs for acid ceramidase (Asah1) and ceramide kinase (Cerk). Interestingly, vitamin E supplementation restored Asah1 and Cerk mRNA and sphingolipid levels. Together this study shows that vitamin E treatment efficiently prevented the progression from simple steatosis to steatohepatitis in mice lacking PEMT.  相似文献   

3.
酒精性肝病发病过程中氧化应激指标的变化   总被引:1,自引:0,他引:1  
目的酒精性肝病发病过程中氧化应激指标的变化。方法用酒精灌胃建立大鼠酒精性肝病模型,分别于4、8、12和16周留取血清和肝组织,用OLYMPUSAU-600全自动生化分析仪(日本)检测血清丙氨酸氨基转移酶(ALT)、天门冬氨酸氨基转移酶(AST)、胆碱酯酶(CHE);用生化比色法检测肝匀浆6-酮-前列腺素F1α(6-K-PGF1α)、血栓素B2(TXB2)、甘油三酯(TG)、氧自由基(ORF)、抗超氧阴离子(ASOA)、超氧化物歧化酶(SOD)及丙二醛(MDA)含量;用HE染色、苏丹Ⅳ染色和天狼星红染色观察肝组织病理学改变。结果随着病程进展,酒精性肝病大鼠肝脏呈现肝细胞脂肪变性、小叶内炎性坏死灶、窦周纤维化和汇管区纤维间隔形成等病理改变,血清ALT和AST逐渐升高,CHE降低,肝组织匀浆TG、OFR、MDA和TXB2含量逐渐升高,SOD、ASOA和6-K-PGF1α降低,与正常对照组比较P<0·05或P<0·01。结论ALD发病过程中存在氧化应激,氧化应激在酒精性肝病发病中发挥着重要作用。  相似文献   

4.
    
Non-alcoholic fatty liver disease (NAFLD) has emerged as a significant health challenge, characterized by its widespread prevalence, intricate natural progression and multifaceted pathogenesis. Although NAFLD initially presents as benign fat accumulation, it may progress to steatosis, non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. Mesenchymal stem cells (MSCs) are recognized for their intrinsic self-renewal, superior biocompatibility, and minimal immunogenicity, positioning them as a therapeutic innovation for liver diseases. Therefore, this review aims to elucidate the potential roles of MSCs in alleviating the progression of NAFLD by alteration of underlying molecular pathways, including glycolipid metabolism, inflammation, oxidative stress, endoplasmic reticulum stress, and fibrosis. The insights are expected to provide further understanding of the potential of MSCs in NAFLD therapeutics, and support the development of MSC-based therapy in the treatment of NAFLD.  相似文献   

5.
王涛  陈东凤 《生物磁学》2013,(26):5168-5172
近年来,由于内质网应激/未折叠蛋白反应可影响物质代谢途径中的许多环节,故在非酒精性脂肪性肝病中起的作用越来越受到重视。现就内质网应激/未折叠蛋白反应在非酒精性脂肪性肝病中的作用和影响作一综述。  相似文献   

6.
7.
    
BackgroundEvidence indicates the positive effects of zinc on insulin resistance and oxidative stress in metabolic syndrome or diabetes. Non-alcoholic fatty liver disease (NAFLD) is the main hepatic manifestation of insulin resistance and metabolic syndrome. The present study is the first clinical trial that evaluated the effects of zinc supplementation on metabolic and oxidative stress status in overweight/obese patients with NAFLD undergoing calorie- restriction diet. Methods: Fifty six overweight/obese patients with confirmed mild to moderate NAFLD using ultrasonography were randomly allocated to receive 30 mg elemental zinc supplement (n = 29) or placebo (n = 27) along with weight loss diet for 12 weeks. Serum levels of zinc, homeostasis model of assessment-estimated insulin resistance (HOMA-IR), lipid profile, serum superoxide dismutas1 (SOD1) and malondialdhyde (MDA) levels were assessed.ResultsSerum levels of insulin, SOD1, MDA and HOMA-IR were improved in the treatment group (p < 0.05). Within group comparison showed significant reduction in serum FBS, HbA1C, TC, LDL-c and TG in the treatment group. Conclusion: Zinc supplementation for three months improved insulin resistance and oxidative stress status in overweight/obese NAFLD patients with no beneficial effects on lipid profiles over weight loss diet. Registration ID in IRCT (IRCT NO: 20181005041238N1).  相似文献   

8.
9.
10.
11.
目的探讨腺苷蛋氨酸(SAM)防治大鼠酒精性肝病的作用机制。方法健康雄性wistar大鼠30只,随机分为对照组、模型组和SAM干预组。模型组大鼠采用逐渐增加浓度(30%-60%)和剂量(5-9g·kg-1·d-1)的方法酒精灌胃16周,干预组增加SAM(100mg/kg)灌胃,其它同模型组。16周末随机处死动物,检测血清总同型半胱氨酸(tHcy)的浓度和肝组织胱硫醚β合成酶(CBS)的活性;分别采用免疫组化方法和RT-PCR法检测肝组织中GRP-78、calpain 2及其caspase-12的表达;采用TUNEL染色法检测肝细胞凋亡。结果模型组大鼠16周末出现肝细胞弥漫小泡性脂肪变性,窦周纤维化,汇管区纤维组织增生并有纤维间隔形成。SAM组病理改变较模型组明显减轻。SAM组血清tHcy的浓度(7.00±0.79)较模型组(9.85±0.12)明显降低,而CBS的活性(511.60±57.44)较模型组(390.45±31.17)升高,F值分别为147.28和41.14,P值均<0.01;免疫组化和RT-PCR结果显示SAM组GRP-78、Calpain 2、caspase-12的表达较模型组减弱;SAM组的肝细胞凋亡指数(31.24±2.65)较模型组(65.71±9.78)降低,F值为301.79,P<0.01。结论在大鼠酒精性肝病中,腺苷蛋氨酸通过提高胱硫醚β合成酶活性,改善内质网应激,减少肝细胞凋亡,减轻肝脏损伤。  相似文献   

12.
《Free radical research》2013,47(5):432-446
Abstract

Several studies have shown that oxidative stress induces apoptosis in many cellular systems including pancreatic acinar cells. However, the exact molecular mechanisms leading to apoptosis remain partially understood. This study aimed to investigate the role of the cytosolic cysteine protease calpain in H2O2-induced apoptosis in pancreatic AR42J cells. Apoptosis was evaluated using flow cytometric analysis of sub-G1 DNA populations, electron-microscopic analysis, caspase-3-specific αII-spectrin breakdown, and measuring the proteolytic activities of the initiator caspase-12 and caspase-8, and the executioner caspase-3. H2O2 induced an increase in the calpain proteolytic activity immediately after starting the experiments that tended to return to a nearly normal level after 8 h and could be attributed to m-calpain. Whereas no caspase-12, caspase-8 and caspase-3 activations could be detected within the first 0.5 h, significantly increased proteolytic activities were observed after 8 h compared with the control. At the same time, the cells showed first ultrastructural hallmarks of apoptosis and a decreased viability. In addition, αII-spectrin fragmentation was identified using immunoblotting that could be attributed to both calpain and caspase-3. Calpain inhibition reduced the activities of caspase-12, caspase-8, and caspase-3 leading to a decrease in the number of apoptotic cells. Immunoblotting analyses of caspase-12 and caspase-8 indicate that calpain may be involved in the activation process of both proteases. The results suggest that H2O2-induced apoptosis of AR42J cells requires activation of m-calpain initiating the endoplasmic reticulum stress-induced caspase-12 pathway and a caspase-8-dependent pathway. The findings also suggest that calpain may be involved in the execution phase of apoptosis.  相似文献   

13.
Non-alcoholic fatty liver disease (NAFLD) is and will continue to be a major liver health issue worldwide in the coming decades. There are no leading drug candidates at this point, although there are several promising concepts in drug development. Recent studies have proposed a possible role of intestinal bacterial overgrowth in the development of non-alcoholic steatohepatitis, thus indicated probiotics maybe a potential specific liver drug for NAFLD in the future.  相似文献   

14.
    
Congenital hypothyroidism with biallelic thyroglobulin (Tg protein, encoded by the TG gene) mutation is an endoplasmic reticulum (ER) storage disease. Many patients (and animal models) grow an enlarged thyroid (goiter), yet some do not. In adulthood, hypothyroid TGcog/cog mice (bearing a Tg-L2263P mutation) exhibit a large goiter, whereas adult WIC rats bearing the TGrdw/rdw mutation (Tg-G2298R) exhibit a hypoplastic thyroid. Homozygous TG mutation has been linked to thyroid cell death, and cytotoxicity of the Tg-G2298R protein was previously thought to explain the lack of goiter in WIC-TGrdw/rdw rats. However, recent studies revealed that TGcog/cog mice also exhibit widespread ER stress–mediated thyrocyte death, yet under continuous feedback stimulation, thyroid cells proliferate in excess of their demise. Here, to examine the relative proteotoxicity of the Tg-G2298R protein, we have used CRISPR–CRISPR-associated protein 9 technology to generate homozygous TGrdw/rdw knock-in mice in a strain background identical to that of TGcog/cog mice. TGrdw/rdw mice exhibit similar phenotypes of defective Tg protein folding, thyroid histological abnormalities, hypothyroidism, and growth retardation. TGrdw/rdw mice do not show evidence of greater ER stress response or stress-mediated cell death than TGcog/cog mice, and both mouse models exhibit sustained thyrocyte proliferation, with comparable goiter growth. In contrast, in WIC-TGrdw/rdw rats, as a function of aging, the thyrocyte proliferation rate declines precipitously. We conclude that the mutant Tg-G2298R protein is not intrinsically more proteotoxic than Tg-L2263P; rather, aging-dependent difference in maintenance of cell proliferation is the limiting factor, which accounts for the absence of goiter in adult WIC-TGrdw/rdw rats.  相似文献   

15.
Obesity is associated with chronic diseases such as fatty liver, type 2 diabetes, cardiovascular disease, and severe metabolic syndrome. Obesity causes metabolic impairment including excessive lipid accumulation and fibrosis in the hepatic tissue as well as the increase in oxidative stress. In order to investigate the effect of mulberry leaf (Morus alba L.) extract (MLE) on obesity-induced oxidative stress, lipogenesis, and fibrosis in liver, MLE has been gavaged for 12 weeks in high-fat diet (HFD)-induced obese mice. MLE treatment significantly ameliorated LXRα-mediated lipogenesis and hepatic fibrosis markers such as α-smooth muscle actin, while MLE up-regulated lipolysis-associated markers such as lipoprotein lipase in the HFD-fed mice. Moreover, MLE normalized the activities of antioxidant enzymes including heme oxygenase-1 and glutathione peroxidase in accordance with protein levels of 4-hydroxynonenal in the HFD-fed mice. MLE has beneficial effects on obesity-related fatty liver disease by regulation of hepatic lipid metabolism, fibrosis, and antioxidant defense system. MLE supplementation might be a potential therapeutic approach for obesity-related disease including non-alcoholic fatty liver disease.  相似文献   

16.
The human genome is exposed to oxidative/genotoxic stress by several endogenous and exogenous compounds. These events evoke DNA damage and activate poly(ADP-ribose) polymerase-1 (PARP-1), the key enzyme involved in DNA repair. The massive stress and over-activation of this DNA-bound enzyme can be responsible for an energy crisis and neuronal death. The last data indicated that product of PARP-1, i.e. poly(ADP-ribose) (PAR), acts as a signalling molecule and plays a significant role in nucleus-mitochondria cross-talk. PAR translocated to the mitochondria can be involved in mitochondrial permeability, the release of an apoptosis-inducing factor (AIF). Its translocation into the nucleus leads to chromatin condensation, fragmentation and cell death. The exact mechanism of this novel death pathway has not yet fully been understood.  相似文献   

17.
非酒精性脂肪性肝病(Non-alcoholic fatty liver disease,NAFLD)是遗传-环境-代谢应激相关因素所致的以肝细胞脂肪变性为主的临床病理综合征,其发生、发展均与细胞因子及脂肪细胞因子密切相关.本文回顾了肿瘤坏死因子-α(Tumor necrosis factor-α,INF-α)、白介素-6(interleukin-6,IL-6)、脂联素等经典因子与NAFLD的关系研究新进展,并介绍了视黄醇结合蛋白4(retinol binding protein4,RBP4)、apelin、visfatin等新脂肪细胞因子在NAFLD中的作用.  相似文献   

18.
We previously reported that marchantin M (Mar) is an active agent to induce apoptosis in human prostate cancer (PCa), but the molecular mechanisms of action remain largely unknown. Here, we demonstrate that Mar potently inhibited chymotrypsin-like and peptidyl-glutamyl peptide-hydrolyzing activities of 20S proteasome both in in vitro and intracellular systems and significantly induced the accumulation of polyubiquitinated proteins in PCa cells. The computational modeling analysis suggested that Mar non-covalently bound to active sites of proteasome β5 and β1 subunits, resulting in a non-competitive inhibition. Proteasome inhibition by Mar subsequently resulted in endoplasmic reticulum (ER) stress, as evidenced by elevated glucose-regulated protein 78 and CHOP, increased phospho-eukaryotic translation initiation factor 2α (eIF2α), splicing of X-box-binding protein-1 and dilation of the ER. However, Mar-mediated cell death was not completely impaired by a pan inhibitor of caspases. Further studies revealed that the Mar-induced cell death was greatly associated with the activation of autophagy, as indicated by the significant induction of microtubule-associated protein-1 light chain-3 beta (LC3B) expression and conversion. Electron microscopic and green fluorescent protein-tagged LC3B analyses further demonstrated the ability of autophagy induction by Mar. Time kinetic studies revealed that Mar induced a rapid and highly sustained processing of LC3B in treated cells and simultaneously decreased the expression of p62/SQSTM1. Pharmacological blockade or knockdown of LC3B and Atg5 attenuated Mar-mediated cell death. The autophagic response triggered by Mar required the activation of RNA-dependent protein kinase-like ER kinase/eIF2α and suppression of the phosphatidylinositol-3 kinase/Akt/mammalian target of rapamycin axis via preventing activation and expression of Akt. Our results identified a novel mechanism for the cytotoxic effect of Mar, which strengthens it as a potential agent in cancer chemotherapy.  相似文献   

19.
Lipid accumulation in non-adipose tissues leads to cell dysfunction and apoptosis, a phenomenon known as lipotoxicity. Recent evidence suggests that lipotoxicity in hepatocytes involves endoplasmic reticulum (ER) stress and c-Jun NH2-terminal kinase-mediated apoptosis. The present study examined (1) the dose–response and time course characteristics of fatty acid-mediated ER stress and apoptosis in H4IIE liver cells; (2) whether saturated fatty acid-induced apoptosis involved the ER-associated caspase-12; and (3) whether trans-10, cis-12-conjugated linoleic acid, an inhibitor of stearoyl-CoA desaturase, influenced fatty acid-mediated ER stress and apoptosis. Saturated fatty acids induced ER stress in a dose-dependent manner with a time course that was delayed relative to chemical-induction of ER stress. Saturated fatty acids increased caspase-9 and caspase-3 activity, however increased caspase-12 activity was not observed. Inhibition of stearoyl-CoA desaturase, using conjugated linoleic acid (trans-10, cis-12), augmented saturated fatty acid-induced ER stress and apoptosis. These data suggest that saturated fatty acids induce ER stress and apoptosis at physiologic concentrations and with a relatively rapid time course. It would appear that saturated fatty acid-mediated apoptosis occurs independently of caspase-12 activation. Since conjugated linoleic acid inhibited stearoyl-CoA desaturase activity, it is hypothesized that saturation, per se, plays a role in lipotoxicity in liver cells.  相似文献   

20.
The C/EBP-homologous protein (CHOP) acts as a mediator of endoplasmic reticulum (ER) stress-induced pancreatic insulin-producing β cell death, a key element in the pathogenesis of diabetes. Chemicals that inhibit the expression of CHOP might therefore protect β cells from ER stress-induced apoptosis and prevent or ameliorate diabetes. Here, we used high-throughput screening to identify a series of 1,2,3-triazole amide derivatives that inhibit ER stress-induced CHOP-luciferase reporter activity. Our SAR studies indicate that compounds with an N,1-diphenyl-5-methyl-1H-1,2,3-triazole-4-carboxamide backbone potently protect β cell against ER stress. Several representative compounds inhibit ER stress-induced up-regulation of CHOP mRNA and protein, without affecting the basal level of CHOP expression. We further show that a 1,2,3-triazole derivative 4e protects β cell function and survival against ER stress in a CHOP-dependent fashion, as it is inactive in CHOP-deficient β cells. Finally, we show that 4e significantly lowers blood glucose levels and increases concomitant β cell survival and number in a streptozotocin-induced diabetic mouse model. Identification of small molecule inhibitors of CHOP expression that prevent ER stress-induced β cell dysfunction and death may provide a new modality for the treatment of diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号