首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of Alzheimer's disease neuropathology has been intimately associated with the field of oxidative stress for nearly 20 years. Indeed, increased markers of oxidative stress have been associated with this neurodegenerative condition, resulting from oxidation of lipids, proteins and nucleic acids. Increased nuclear and mitochondrial DNA oxidation are observed in Alzheimer's disease, stemming from increased reactive oxygen species attack to DNA bases and from the impairment of DNA repair mechanisms. Moreover, mitochondrial DNA is found to be more extensively oxidized than nuclear DNA. This review is intended to summarizes the most important cellular reactive oxygen species producers and how mitochondrial dysfunction, redox-active metals dyshomeostasis and NADPH oxidases contribute to increased oxidative stress in Alzheimer's disease. A summary of the antioxidant system malfunction will also be provided. Moreover, we will highlight the mechanisms of DNA oxidation and repair. Importantly, we will discuss evidence relating the DNA repair machinery and accumulated DNA oxidation with Alzheimer's disease.  相似文献   

2.
Increasing evidence suggests that oxidative stress is associated with normal aging and several neurodegenerative diseases, including Alzheimer's disease (AD). Here we quantified multiple oxidized bases in nuclear and mitochondrial DNA of frontal, parietal, and temporal lobes and cerebellum from short postmortem interval AD brain and age-matched control subjects using gas chromatography/mass spectrometry with selective ion monitoring (GC/MS-SIM) and stable labeled internal standards. Nuclear and mitochondrial DNA were extracted from eight AD and eight age-matched control subjects. We found that levels of multiple oxidized bases in AD brain specimens were significantly (p < 0.05) higher in frontal, parietal, and temporal lobes compared to control subjects and that mitochondrial DNA had approximately 10-fold higher levels of oxidized bases than nuclear DNA. These data are consistent with higher levels of oxidative stress in mitochondria. Eight-hydroxyguanine, a widely studied biomarker of DNA damage, was approximately 10-fold higher than other oxidized base adducts in both AD and control subjects. DNA from temporal lobe showed the most oxidative damage, whereas cerebellum was only slightly affected in AD brains. These results suggest that oxidative damage to mitochondrial DNA may contribute to the neurodegeneration of AD.  相似文献   

3.
《Free radical research》2013,47(2):75-87
Oxidative damage to DNA has been measured by quantitating 8-hydroxy-2′-deoxyguanosine (8-OHdGuo) after enzymic digestion of DNA, followed by HPLC separation and electrochemical detection. Alternatively, 8-hydroxyguanine (and a wide range of other base-derived products of free radical attack) may be measured after acidic hydrolysis of DNA or chromatin, followed by derivatization and gas-chromatography/mass spectrometry. Both techniques have comparable sensitivity, but GC/MS enables determination of a wide variety of chemical changes to all four DNA bases and it can be applied to DNA-protein complexes. However, the two techniques do not always give similar results. Potential reasons for this are discussed. Greater attention to methodological questions is required before using measurement of 8-OHdGuo as a “routine” marker of oxidative DNA damage in vivo.  相似文献   

4.
This minireview gives an overview over the oxidation mechanisms of methionine (Met) relevant for analogous processes which may lead to the oxidation of beta-amyloid (betaA) peptides. The Cu(II)-catalyzed oxidation of a C-terminal Met(35) residue in betaA peptides may be a key to the known propensities of these peptides to form H2O2 and free radicals. Though the reduction potentials of Cu(II) and Met would seem unfavorable, there are several structural features of betaA, which may promote a one-electron oxidation of Met. The potentially close association of the Met sulfur with the C=O group C-terminal of Ile(31) in the C-terminus of betaA may support the formation of an S-O bonded radical cation intermediate. Evidence for such S-O bond formation has recently been obtained for a model, N-acetylmethionine amide. Additional support for a potential catalytic role of an oxygen-containing functional group comes from numerous studies with organic model sulfides.  相似文献   

5.
《Free radical research》2013,47(8):973-983
Abstract

The oxidized nucleoside 8-hydroxy-2’-deoxyguanosine has been widely studied as a marker of DNA oxidation; however, data on the occurrence of other metabolites in plasma that are related to DNA damage are scarce. We have applied an improved, sensitive, robust, and reliable method, involving solid phase extraction and ultrahigh-performance liquid chromatography (UHPLC)–tandem mass spectrometry (MS/MS), to the precise quantitation of seven metabolites in the plasma of 15 elite triathletes after a 2-week training program. All compounds were eluted in the first 1.6 min, with limits of detection and quantification ranging between 0.001 and 0.3 ng.mL?1 and 0.009 and 0.6 ng.mL?1, respectively. Four compounds were detected in plasma: guanosine-3’-5’-cyclic monophosphate, 8-hydroxyguanine, 8-hydroxy-2’-deoxyguanosine, and 8-nitroguanosine. After two weeks of training, 8-hydroxyguanine exhibited the highest increase (from 0.031 ± 0.008 nM to 0.036 ± 0.012 nM) (p < 0.05), which could be related to the enhanced activity of DNA-repairing enzymes that excise this oxidized base. Increased levels of guanosine-3’-5’-cyclic monophosphate and 8-hydroxy-2’-deoxyguanosine were also observed. In contrast, levels of 8-nitroguanosine (p < 0.05) were significantly reduced, which might be a protective measure as this compound strongly stimulates the generation of superoxide radicals, and its excess is related to pathologies such as microbial (viral) infections and other inflammatory and degenerative disorders. The results obtained indicate an induced adaptive response to the increased oxidative stress related to elite training, and point to the benefits associated with regular exercise.  相似文献   

6.
Increasing evidence suggests that oxidative damage is associated with normal aging and several neurodegenerative diseases. Mild cognitive impairment (MCI), the phase between normal aging and early dementia, is a common problem in the elderly with many subjects going on to develop Alzheimer's disease (AD). Although increased DNA oxidation is observed in the AD brain, it is unclear when the oxidative damage begins. To determine if DNA oxidation occurs in the brain of subjects with MCI, we quantified multiple oxidized bases in nuclear and mitochondrial DNA isolated from frontal, parietal and temporal lobes and cerebellum of short post-mortem interval autopsies of eight amnestic patients with MCI and six age-matched control subjects using gas chromatography/mass spectrometry with selective ion monitoring. We found statistically significant elevations (p < 0.05) of 8-hydroxyguanine, a widely studied biomarker of DNA damage, in MCI nuclear DNA from frontal and temporal lobe and in mitochondrial DNA from the temporal lobe compared with age-matched control subjects. Levels of 8-hydroxyadenine and 4,6-diamino-5-formamidopyrimidine were significantly elevated in nuclear DNA from all three neocortical regions in MCI. Statistically significant elevations of 4,6-diamino-5-formamidopyrimidine were also observed in mitochondrial DNA of MCI temporal, frontal and parietal lobes. These results suggest that oxidative damage to nuclear and mitochondrial DNA occurs in the earliest detectable phase of AD and may play a meaningful role in the pathogenesis of this disease.  相似文献   

7.
8-Hydroxydeoxyguanosine (8-OHdG) is now widely used as a sensitive marker of oxidative damage to DNA. When human granulocytes are stimulated with TPA, they release a large quantity of reactive oxygen species (superoxide, hydrogen peroxide) which might be expected to generate hydroxyl radicals (OH-) which in turn could produce 8-OHdG in the DNA. There had been considerable debate as to whether OH -is detectable in stimulated granulocytes; most workers now agree that none can be detected, unless exogenous iron is added. An earlier report had described that 8-OHdG (a marker of OH -) was increased in the DNA of TPA-stimulated, compared to control, granulocytes. We have repeated this experiment and have been unable to reproduce this Finding. We conclude that the amount of 8-OHdG produced in the DNA of TPA-stimulated human ganulocytes is indistinguishable from that seen in control (unstimulated) cells (less than one 8- OHdG/105 dG).  相似文献   

8.
Oxidative base lesions, such as 8-oxoguanine (8-oxoG), accumulate in nuclear and mitochondrial DNAs under oxidative stress, resulting in cell death. However, it is not known which form of DNA is involved, whether nuclear or mitochondrial, nor is it known how the death order is executed. We established cells which selectively accumulate 8-oxoG in either type of DNA by expression of a nuclear or mitochondrial form of human 8-oxoG DNA glycosylase in OGG1-null mouse cells. The accumulation of 8-oxoG in nuclear DNA caused poly-ADP-ribose polymerase (PARP)-dependent nuclear translocation of apoptosis-inducing factor, whereas that in mitochondrial DNA caused mitochondrial dysfunction and Ca2+ release, thereby activating calpain. Both cell deaths were triggered by single-strand breaks (SSBs) that had accumulated in the respective DNAs, and were suppressed by knockdown of adenine DNA glycosylase encoded by MutY homolog, thus indicating that excision of adenine opposite 8-oxoG lead to the accumulation of SSBs in each type of DNA. SSBs in nuclear DNA activated PARP, whereas those in mitochondrial DNA caused their depletion, thereby initiating the two distinct pathways of cell death.  相似文献   

9.
GC-MS is a widely used tool to measure oxidative DNA damage because of its ability to identify a wide range of base modification products. However, it has been suggested that the derivatization procedures required to form volatile products prior to GC-MS analysis can sometimes produce artifactual formation of certain base oxidation products, although these studies did not replicate previously-used reaction conditions, e.g. they failed to remove air from the derivatization vials. A systematic examination of this problem revealed that levels of 8-hydroxyguanine, 8-hydroxyadenine,5-hydroxycytosine and 5-(hydroxymethyluracil) in commercial calf thymus DNA determined by GC-MS are elevated by increasing the temperature at which derivatization is performed in our laboratory. In particular, 8-hydroxyguanine levels after silylation at 140°C were raised 8-fold compared to derivatization at 23°C. Experiments on the derivatization of each undamaged base revealed that the artifactual oxidation of guanine, adenine, cytosine and thymine respectively was responsible. Formation of the above products was potentiated by not purging with nitrogen prior to derivatization. Increasing the temperature to 140°C or allowing air to be present during derivatization did not significantly increase levels of the other oxidized bases measured.

This work suggests that artifactual oxidation during derivatization is restricted to certain products (8-hydroxyguanine, 8-hydroxyadenine, 5-hydroxycytosine and 5-[hydroxymethyluracil]) and can be decreased by reducing the temperature of the derivatization reaction to 23°C and excluding as much air possible. Despite some recent reports, we were easily able to detect formamidopyrimidines in acid-hydrolyzed DNA. Artifacts of derivatization are less marked than has been claimed in some papers and may vary between laboratories, depending on the experimental procedures used, in particular the efficiency of exclusion of O2 during the derivatization process.  相似文献   

10.
11.
线粒体疾病与核基因-线粒体基因的表达调控   总被引:5,自引:0,他引:5  
严庆丰  管敏鑫 《生命科学》2008,20(4):496-505
线粒体与疾病是当前生物医学领域最前沿之一。本文简单介绍线粒体生物医学的基础知识、线粒体疾病的遗传模式,综述了近年来在线粒体DNA(mtDNA)突变和疾病、核基因突变和疾病等领域的研究进展,着重阐明核基因(特别是核修饰基因)调控mtDNA突变致病表达的分子机制。  相似文献   

12.
13.
Oxidation has been proposed to be an important factor in the pathogenesis of Alzheimer's disease (AD) and amyloid beta is considered to induce oxidation. In biological fluids, including cerebrospinal fluid (CSF), amyloid beta is found complexed to lipoproteins. On the basis of these observations, we investigated the potential role of lipoprotein oxidation in the pathology of AD. Lipoprotein oxidizability was measured in vitro in CSF and plasma from 29 AD patients and found to be significantly increased in comparison to 29 nondemented controls. The levels of the hydrophilic antioxidant ascorbate were significantly lower in CSF and plasma from AD patients. In plasma, alpha-carotene was significantly lower in AD patients compared to controls while alpha-tocopherol levels were indistinguishable between patients and controls. In CSF, a nonsignificant trend to lower alpha-tocopherol levels among AD patients was found. Polyunsaturated fatty acids, the lipid substrate for oxidation, were significantly lower in the CSF of AD patients. Our findings suggest that (i) lipoprotein oxidation may be important in the development of AD and (ii) the in vitro measurement of lipid peroxidation in CSF might become a useful additional marker for diagnosis of AD.  相似文献   

14.
DNA primase from yeast mitochondria was shown to have a molecular weight of 67 kDa by SDS-PAGE and an S value of 5.5. It was shown to have preference for SS mitochondrial DNA especially fragments containing origins of replication, as a template to initiate DNA replication. Further examination of the enzyme showed its possible association with a ribonucleotide moiety essential for enzyme activity.  相似文献   

15.
Various molecular and cellular pathways are active in eukaryotes to control the quality and integrity of mitochondria. These pathways are involved in keeping a ‘healthy’ population of this essential organelle during the lifetime of the organism. Quality control (QC) systems counteract processes that lead to organellar dysfunction manifesting as degenerative diseases and ageing. We discuss disease- and ageing-related pathways involved in mitochondrial QC: mtDNA repair and reorganization, regeneration of oxidized amino acids, refolding and degradation of severely damaged proteins, degradation of whole mitochondria by mitophagy and finally programmed cell death. The control of the integrity of mtDNA and regulation of its expression is essential to remodel single proteins as well as mitochondrial complexes that determine mitochondrial functions. The redundancy of components, such as proteases, and the hierarchies of the QC raise questions about crosstalk between systems and their precise regulation. The understanding of the underlying mechanisms on the genomic, proteomic, organellar and cellular levels holds the key for the development of interventions for mitochondrial dysfunctions, degenerative processes, ageing and age-related diseases resulting from impairments of mitochondria.  相似文献   

16.
基于归1000密码子使用频次,从垂直和水平两个方向比较研究了不同进化阶层生物线粒体基因和核基因密码子使用的若干统计特征及其关联.结果表明:线粒体基因密码子多样性、相对分子质量和相对π电子共振能低于相应核基因且变异较大;不同进化阶层生物线粒体基因和核基因归1000密码子的相对π电子共振能呈极显著负相关且两者之和接近定值:真菌-真菌线粒体、植物-植物线粒体、无脊椎动物-无脊椎动物线粒体的密码子使用频次匹配较好;线粒体基因AU含量、密码子第三位碱基AU3s含量高于相应核基因;给出了密码子各位点碱基含量随进化以及在线粒体一核间的变化规律.由于线粒体环境不如核环境稳定,线粒体基因密码子的多个统计特征较核基因在不同进化阶层生物间变异较大,但二者在归1000密码子相对π电子共振能等若干特征方面仍存在明显关联.  相似文献   

17.
Quinone derivatives are among the rare compounds successfully used as therapeutic reagents to fight mitochondrial diseases. However, their beneficial effect appears to depend on their side chain which presumably governs their interaction with the respiratory chain. The effect of four quinone derivatives was comparatively studied on NADH- and succinate-competitive oxidation by a sub-mitochondrial fraction. Under our experimental conditions, the less hydrophobic derivatives (menadione, duroquinone) poorly affected electron flow from either NADH or succinate to oxygen, yet readily diverting electrons from isolated complex I. This latter effect was abolished by succinate addition. More hydrophobic derivatives (idebenone, decylubiquinone) stimulated oxygen uptake from succinate. But while NADH oxidation was slightly inhibited by idebenone, it was somewhat increased by decylubiquinone. As a result, idebenone strongly favoured succinate over NADH oxidation. This study therefore suggests that any therapeutic use of quinone analogues should take into account their specific effect on each respiratory chain dehydrogenase.  相似文献   

18.
19.
Alzheimer's disease (AD) exhibits extensive oxidative stress throughout the body, being detected peripherally as well as associated with the vulnerable regions of the brain affected in disease. Abundant evidence not only demonstrates the full spectrum of oxidative damage to neuronal macromolecules, but also reveals the occurrence of oxidative events early in the course of the disease and prior to the formation of the pathology, which support an important role of oxidative stress in AD. As a disease of abnormal aging, AD demonstrates oxidative damage at levels that significantly surpass that of elderly controls, which suggests the involvement of additional factor(s). Structurally and functionally damaged mitochondria, which are more proficient at producing reactive oxygen species but less so in ATP, are also an early and prominent feature of the disease. Since mitochondria are also vulnerable to oxidative stress, it is likely that a vicious downward spiral involving the interactions between mitochondrial dysfunction and oxidative stress contributes to the initiation and/or amplification of reactive oxygen species that is critical to the pathogenesis of AD. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction and Neurodegenerative Diseases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号