首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 396 毫秒
1.
Although siderophores are generally viewed as biological iron uptake agents, recent evidence has shown that they may play significant roles in the biogeochemical cycling and biological uptake of other metals. One such siderophore that is produced by A. vinelandii is the triscatecholate protochelin. In this study, we probe the solution chemistry of protochelin and its complexes with environmentally relevant trace metals to better understand its effect on metal uptake and cycling. Protochelin exhibits low solubility below pH 7.5 and degrades gradually in solution. Electrochemical measurements of protochelin and metal–protochelin complexes reveal a ligand half-wave potential of 200 mV. The Fe(III)Proto3− complex exhibits a salicylate shift in coordination mode at circumneutral to acidic pH. Coordination of Mn(II) by protochelin above pH 8.0 promotes gradual air oxidation of the metal center to Mn(III), which accelerates at higher pH values. The Mn(III)Proto3− complex was found to have a stability constant of log β110 = 41.6. Structural parameters derived from spectroscopic measurements and quantum mechanical calculations provide insights into the stability of the Fe(III)Proto3−, Fe(III)H3Proto, and Mn(III)Proto3− complexes. Complexation of Co(II) by protochelin results in redox cycling of Co, accompanied by accelerated degradation of the ligand at all solution pH values. These results are discussed in terms of the role of catecholate siderophores in environmental trace metal cycling and intracellular metal release.  相似文献   

2.
A new series of macrocyclic complexes of type [M(TML)X]X2, where M = Cr(III), Mn(III), or Fe(III), TML is tetradentate macrocyclic ligand, and X = Cl?, NO3?, CH3COO? for Cr(III), Fe(III) and X = CH3COO? for Mn (III), has been synthesized by condensation of benzil and succinyldihydrazide in the presence of metal salt. The complexes have been so formulated due to the 1:2 electrolytic nature of these complexes as shown by conductivity measurements. The complexes have been characterized with the help of various physicochemical techniques such as elemental analysis, molar conductance, electronic and infrared spectral studies, and magnetic susceptibility. On the basis of these studies, a five-coordinate distorted square pyramidal geometry, in which two nitrogens and two carbonyl oxygen atoms are suitably placed for coordination toward the metal ion, has been proposed for all the complexes. The complexes have been tested for their in vitro antibacterial activity. Some of the complexes show remarkable antibacterial activities against some selected bacterial strains. The minimum inhibitory concentrations shown by these complexes have been compared with those shown by some standard antibiotics such as linezolid and cefaclor.  相似文献   

3.
The pH-dependent heterometallic complex formation with p-sulfonatothiacalix[4]arene (TCAS) as bridging ligand in aqueous solutions was revealed by the use of spectrophotometry, nuclear magnetic relaxation and fluorimetry methods. The novelty of the structural motif presented is that the appendance of emission metal center ([Ru(bpy)3]2+) is achieved through the cooperative non-covalent interactions with the upper rim of TCAS. The second metal block (Fe(III), Fe(II) and Mn(II)), bound with the lower rim of TCAS in the inner sphere coordination mode is serving as quencher of [Ru(bpy)3]2+ emission. The difference between the complex ability of Fe(III) and Fe(II) ions provides pH conditions for redox-dependent emission of [Ru(bpy)3]2+.  相似文献   

4.
Potentiometric, conductometric and 31P NMR titrations have been applied to study interactions between myo-inositol hexakisphosphate (phytic acid), (±)-myo-inositol 1,2,3,5-tetrakisphosphate and (±)-myo-inositol 1,2,3-trisphosphate with iron(III) ions. Potentiometric and conductometric titrations of myo-inositol phosphates show that addition of iron increases acidity and consumption of hydroxide titrant. By increasing the Fe(III)/InsP6 ratio (from 0.5 to 4) 3 mol of protons are released per 2 mol of iron(III). At first, phytates coordinate iron octahedrally between P2 and P1,3. The second coordination site represents P5 and neighbouring P4,6 phosphate groups. Complexation is accompanied with the deprotonation of P1,3 and P4,6 phosphate oxygens. At higher concentration of iron(III) intermolecular P–O–Fe–O–P bonds trigger formation of a polymeric network and precipitation of the amorphous Fe(III)–InsP6 aggregates. 31P NMR titration data complement the above results and display the largest chemical shift changes at pD values between 5 and 10 in agreement with strong interactions between iron and myo-inositol phosphates. The differences in T1 relaxation times of phosphorous atoms have shown that phosphate groups at positions 1, 2 and 3 are complexated with iron(III). The interactions between iron(III) ions and inositol phosphates depend significantly on the metal to ligand ratio and an attempt to coordinate more than two irons per InsP6 molecule results in an unstable heterogeneous system.  相似文献   

5.
This work was undertaken to verify whether surface NADH oxidases or peroxidases are involved in the apoplastic reduction of Fe(III). The reduction of Fe(III)-ADP, linked to NADH-dependent activity of horseradish peroxidase (HRP), protoplasts and cells of Acer pseudoplatanus, was measured as Fe(II)-bathophenanthrolinedisulfonate (BPDS) chelate formation. In the presence of BPDS in the incubation medium (method 1), NADH-dependent HRP activity was associated with a rapid Fe(III)-ADP reduction that was almost completely inhibited by superoxide dismutase (SOD), while catalase only slowed down the rate of reduction. A. pseudoplatanus protoplasts and cells reduced extracellular Fe(III)-ADP in the absence of exogenously supplied NADH. The addition of NADH stimulated the reduction. SOD and catalase only inhibited the NADH-dependent Fe(III)-ADP reduction. Mn(II), known for its ability to scavenge O?2, inhibited both the independent and NADH-dependent Fe(III)-ADP reduction. The reductase activity of protoplasts and cells was also monitored in the absence of BPDS (method 2). The latter was added only at the end of the reaction to evaluate Fe(II) formed. Also, in this case, both preparations reduced Fe(III)-ADP. However, the addition of NADH did not stimulate Fe(III)-ADP reduction but, instead, lowered it. This may be related to a re-oxidation of Fe(II) by H2O2 that could also be produced during NADH-dependent peroxidase activity. Catalase and SOD made the Fe(III)-ADP reduction more efficient because, by removing H2O2 (catalase) or preventing H2O2 formation (SOD), they hindered the re-oxidation of Fe(II) not chelated by BPDS. As with the result obtained by method 1, Mn(II) inhibited Fe(III)-ADP reduction carried out in the presence or absence of NADH. The different effects of SOD and Mn(II), both scavengers of O?2, may depend on the ability of Mn(II) to permeate the cells more easily than SOD. These results show that A. pseudoplatanus protoplasts and cells reduce extracellular Fe(III)-ADP. Exogenously supplied NADH induces an additional reduction of Fe(III) by the activity of NADH peroxidases of the plasmalemma or cell wall. However, the latter can also trigger the formation of H2O2 that, reacting with Fe(II) (not chelated by BPDS), generates hydroxyl radicals and converts Fe(II) to Fe(III) (Fenton's reaction).  相似文献   

6.
There are five oxidation-reduction states of horseradish peroxidase which are interconvertible. These states are ferrous, ferric, Compound II (ferryl), Compound I (primary compound of peroxidase and H2O2), and Compound III (oxy-ferrous). The presence of heme-linked ionization groups was confirmed in the ferrous enzyme by spectrophotometric and pH stat titration experiments. The values of pK were 5.87 for isoenzyme A and 7.17 for isoenzymes (B + C). The proton was released when the ferrous enzyme was oxidized to the ferric enzyme while the uptake of the proton occurred when the ferrous enzyme reacted with oxygen to form Compound III. The results could be explained by assuming that the heme-linked ionization group is in the vicinity of the sixth ligand and forms a stable hydrogen bond with the ligand.The measurements of uptake and release of protons in various reactions also yielded the following stoichiometries: Ferric peroxidase + H2O2 → Compound I, Compound I + e? + H+ → Compound II, Compound II + e? + H+ → ferric peroxidase, Compound II + H2O2 → Compound III, Compound III + 3e? + 3H+ → ferric peroxidase.Based on the above stoichiometries and assuming the interaction between the sixth ligand and heme-linked ionization group of the protein, it was possible to picture simple models showing structural relations between five oxidation-reduction states of peroxidase. Tentative formulae are as follows: [Pr·Po·Fe-(II) $?PrH+·Po·Fe(II)] is for the ferrous enzyme, Pr·Po·Fe(III)OH2 for the ferric one, Pr·Po·Fe(IV)OH? for Compound II, Pr(OH?)·Po+·Fe(IV)OH? for Compound I, and PrH+·Po·Fe(III)O2? for Compound III, in which Pr stands for protein and Po for porphyrin. And by Fe(IV)OH?, for instance, is meant that OH? is coordinated at the sixth position of the heme iron and the formal oxidation state of the iron is four.  相似文献   

7.
We report the resonance Raman spectra in the frequency range 300–1800 cm?1 of Fe (III)-ovotransferrin and Fe (III)-human serum transferrin in aqueous solution at about 10?4M protein concentration. This is the first observation of resonance Raman scattering ascribable to amino acid ligand vibrational modes of a nonheme iron protein. The resonance Raman spectra of the transferrins are similar except that the resonance band near 1270 cm?1 is shifted to a higher frequency for Fe(III)-human serum transferrin than that for Fe(III)-ovotransferrin. The resonance Raman bands observed near 1170, 1270, 1500 and 1600 cm?1 may reflect resonance enhancement of p-hydroxy-phenyl frequencies of tyrosine residues and/or imidazolium frequencies of histidine residues.  相似文献   

8.
Bovine liver catalase (BLC), catalase-related allene oxide synthase (cAOS) from Plexaura homomalla, and a recently isolated protein from the cattle pathogen Mycobacterium avium ssp. paratuberculosis (MAP-2744c (MAP)) are all tyrosinate-ligated heme enzymes whose crystal structures have been reported. cAOS and MAP have low (< 20%) sequence similarity to, and significantly different catalytic functions from, BLC. cAOS transforms 8R-hydroperoxy-eicosatetraenoic acid to an allene epoxide, whereas the MAP protein is a putative organic peroxide-dependent peroxidase. To elucidate factors influencing the functions of these and related heme proteins, we have investigated the heme iron coordination properties of these tyrosinate-ligated heme enzymes in their ferric and ferrous states using magnetic circular dichroism and UV-visible absorption spectroscopy. The MAP protein shows remarkable spectral similarities to cAOS and BLC in its native Fe(III) state, but clear differences from ferric proximal heme ligand His93Tyr Mb (myoglobin) mutant, which may be attributed to the presence of an Arg+-Nω-H···¯O-Tyr (proximal heme axial ligand) hydrogen bond in the first three heme proteins. Furthermore, the spectra of Fe(III)-CN¯, Fe(III)-NO, Fe(II)-NO (except for five-coordinate MAP), Fe(II)-CO, and Fe(II)-O2 states of cAOS and MAP, but not H93Y Mb, are also similar to the corresponding six-coordinate complexes of BLC, suggesting that a tyrosinate (Tyr-O¯) is the heme axial ligand trans to the bound ligands in these complexes. The Arg+-Nω-H to ¯O-Tyr hydrogen bond would be expected to modulate the donor properties of the proximal tyrosinate oxyanion and, combined with the subtle differences in the catalytic site structures, affect the activities of cAOS, MAP and BLC.  相似文献   

9.
Boris K. Semin  Michael Seibert 《BBA》2006,1757(3):189-197
The role of carboxylic residues at the high-affinity, Mn-binding site in the ligation of iron cations blocking the site [Biochemistry 41 (2000) 5854] was studied, using a method developed to extract the iron cations blocking the site. We found that specifically bound Fe(III) cations can be extracted with citrate buffer at pH 3.0. Furthermore, citrate can also prevent the photooxidation of Fe(II) cations by YZ. Participation of a COOH group(s) in the ligation of Fe(III) at the high-affinity site was investigated using 1-ethyl-3-[(3-dimethylamino)propyl] carbodiimide (EDC), a chemical modifier of carboxylic amino acid residues. Modification of the COOH groups inhibits the light-induced oxidation of exogenous Mn(II) cations by Mn-depleted photosystem II (PSII[−Mn]) membranes. The rate of Mn(II) oxidation saturates at ≥10 μM in PSII(−Mn) membranes and ≥500 μM in EDC-treated PSII (−Mn) samples. Intact PSII(−Mn) membranes have only one site for Mn(II) oxidation via YZ (dissociation constant, Kd = 0.64 μM), while EDC-treated PSII(−Mn) samples have two sites (Kd = 1.52 and 22 μM; the latter is the low-affinity site). When PSII(−Mn) membranes were incubated with Fe(II) before modifier treatment (to block the high-affinity site) and the blocking iron cations were extracted with citrate (pH 3.0) after modification, the membranes contained only one site (Kd = 2.3 μM) for exogenous Mn(II) oxidation by YZ radical. In this case, the rate of electron donation via YZ saturated at a Mn(II) concentration ≥15 μM. These results indicate that the carboxylic residue participating in Mn(II) coordination and the binding of oxidized manganese cations at the HAZ site is protected from the action of the modifier by the iron cations blocking the HAZ site. We concluded that the carboxylic residue (D1 Asp-170) participating in the coordination of the manganese cation at the HAZ site (Mn4 in the tetranuclear manganese cluster [Science 303 (2004) 1831]) is also involved in the ligation of the Fe cation(s) blocking the high-affinity Mn-binding site.  相似文献   

10.
《FEBS letters》1996,387(1):33-35
EPR signals of Cyt b-559 heme Fe(III) ligated by OH and the multiline signal of the Mn cluster in PS-II membrane fragments have been investigated. In 2,3-dicyano-5,6-dichloro-p-benzoquinone-oxidized PS-II membrane fragments the light-induced decrease of the EPR signal of the heme Fe(III)-OH is accompanied by the appearance of the EPR multiline signal of the Mn cluster. Addition of F ions, which act as a stronger ligand for heme Fe(III) than OH, decreases to the same extent the dark- and light-induced signal of the heme Fe(III)-OH and the light-induced multiline signal of the Mn cluster. These results are discussed in terms of the light-induced formation of a bound OH′ radical shared between the Cyt b-559 heme Fe and the Mn cluster as a first step of water oxidation.  相似文献   

11.
Light-induced interaction of Fe(II) cations with the donor side of Mn-depleted photosystem II (PS II(–Mn)) results in the binding of iron cations and blocking of the high-affinity (HAZ) Mn-binding site. The pH dependence of the blocking was measured using the diphenylcarbazide/2,6-dichlorophenolindophenol test. The curve of the pH dependence is bell-shaped with pK 1 = 5.8 and pK 2 = 8.0. The pH dependence of the O2-evolution mediated by PS II membranes is also bellshaped (pK 2 = 7.6). The pH dependence of the process of electron donation from exogenous donors in PS II(–Mn) was studied to determine the location of the alkaline pH sensitive site of the electron transport chain. The data of the study showed that the decrease in the iron cation binding efficiency at pH > 7.0 during blocking was determined by the donor side of the PS II(–Mn). Mössbauer spectroscopy revealed that incubation of PS II(–Mn) membranes in a buffer solution containing 57Fe(II) + 57Fe(III) was accompanied by binding only Fe(III) cations. The pH dependence of the nonspecific Fe(III) cation binding is also described by the same bell-shaped curve with pK 2 = 8.1. The treatment of the PS II(–Mn) membranes with the histidine modifier diethylpyrocarbonate resulted in an increase in the iron binding strength at alkaline pH. It is suggested that blocking efficiency at alkaline pH is determined by competition between OH and histidine ligand for Fe(III). Because the high-affinity Mn-binding site contains no histidine residue, this fact can be regarded as evidence that histidine is located at another (other than high-affinity) Fe(III) binding site. In other words, this means that the blockage of the high-affinity Mn-binding site is determined by at least two iron cations. We assume that inactivation of oxygen-evolving complex and inhibition of photoactivation in the alkaline pH region are also determined by competition between OH and a histidine residue involved in coordination of manganese cation outside the high-affinity site.  相似文献   

12.
Purple acid phosphatases (PAPs) are a group of heterovalent binuclear metalloenzymes that catalyze the hydrolysis of phosphomonoesters at acidic to neutral pH. While the metal ions are essential for catalysis, their precise roles are not fully understood. Here, the Fe(III)Ni(II) derivative of pig PAP (uteroferrin) was generated and its properties were compared with those of the native Fe(III)Fe(II) enzyme. The k cat of the Fe(III)Ni(II) derivative (approximately 60 s−1) is approximately 20% of that of native uteroferrin, and the Ni(II) uptake is considerably faster than the reconstitution of full enzymatic activity, suggesting a slow conformational change is required to attain optimal reactivity. An analysis of the pH dependence of the catalytic properties of Fe(III)Ni(II) uteroferrin indicates that the μ-hydroxide is the likely nucleophile. Thus, the Ni(II) derivative employs a mechanism similar to that proposed for the Ga(III)Zn(II) derivative of uteroferrin, but different from that of the native enzyme, which uses a terminal Fe(III)-bound nucleophile to initiate catalysis. Binuclear Fe(III)Ni(II) biomimetics with coordination environments similar to the coordination environment of uteroferrin were generated to provide both experimental benchmarks (structural and spectroscopic) and further insight into the catalytic mechanism of hydrolysis. The data are consistent with a reaction mechanism employing an Fe(III)-bound terminal hydroxide as a nucleophile, similar to that proposed for native uteroferrin and various related isostructural biomimetics. Thus, only in the uteroferrin-catalyzed reaction are the precise details of the catalytic mechanism sensitive to the metal ion composition, illustrating the significance of the dynamic ligand environment in the protein active site for the optimization of the catalytic efficiency. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Luminescent lanthanide (III) ions have been exploited for circularly polarized luminescence (CPL) for decades. However, very few of these studies have involved chiral samarium (III) complexes. Complexes are prepared by mixing axial chiral ligands (R/S))‐2,2’‐bis(diphenylphosphoryl)‐1,1′‐binaphthyl (BINAPO) with europium and samarium Tris (trifluoromethane sulfonate) (Eu (OTf)3 and Sm (OTf)3). Luminescence‐based titration shows that the complex formed is Ln((R/S)‐BINAPO)2(OTf)3, where Ln = Eu or Sm. The CPL spectra are reported for Eu((R/S)‐BINAPO)2(OTf)3 and Sm((R/S)‐BINAPO)2(OTf)3. The sign of the dissymmetry factors, gem, was dependent upon the chirality of the BINAPO ligand, and the magnitudes were relatively large. Of all of the complexes in this study, Sm((S)‐BINAPO)2(OTf)3 has the largest gem = 0.272, which is one of the largest recorded for a chiral Sm3+ complex. A theoretical three‐dimensional structural model of the complex that is consistent with the experimental observations is developed and refined. This report also shows that (R/S)‐BINAPO are the only reported ligands where gem (Sm3+) > gem (Eu3+).  相似文献   

14.
《Inorganica chimica acta》1988,149(2):193-208
The reactions of Fe(CO)3(R-DAB; R1, H(4e)) (1a: R = i-Pr, R1 = H; 1b: R = t-Bu, R1 = H; 1c: R = c-Hex, R1 = H; 1e: R = p-Tol, R1 = H; 1f: R = i-Pr, R1 = Me) with Ru3(CO)12 and of Ru(CO)3(R-DAB; R1, H(4e)) (2a: R = i-Pr, R1 = H; 2d: R = CH(i-Pr)2, R1 = H) with Fe2(CO)9 in refluxing heptane both afforded FeRu(CO)6(R-DAB; R1, H(6e)) (3) in yields between 50 and 65%.The coordination mode of the ligand has been studied by a single crystal X-ray structure determination of FeRu(CO)6(i-Pr-DAB(6e)) (3a). Crystals of 3a are monoclinic, space group P21/a, with four molecules in a unit cell of dimensions: a = 22.436(3), b = 8.136(3), c = 10.266(1) Å and β = 99.57(1)°. The structure was refined to R = 0.049 and Rw = 0.052 using 3045 reflections above the 2.5σ(I) level. The molecule contains an FeRu bond of 2.6602(9) Å, three terminally bonded carbonyls to Fe, three terminally bonded carbonyls to Ru and bridging 6e donating i-Pr-DAB ligand. The i-Pr-DAB ligand is coordinated to Ru via N(1) and N(2) occupying an apical and equatorial site respectively (RuN(1) = 2.138(4) RuN(2) = 2.102(3) Å). The C(2)N(2) moiety of the ligand is η2-coordinated to Fe with C(2) in an apical and N(2) in an equatorial site (FeC(2) = 2.070(5) and FeN(2) = 1.942(3) Å).The 1H and 13C NMR data indicate that in all FeRu(CO)6(R-DAB(6e)) complexes (3a to 3f) exclusively η2-CN coordination to the Fe atom and not to the Ru atom is present irrespective of whether 3 was prepared by reaction of Fe(CO)3(R-DAB(4e)) (1) with Ru3(CO)12 or by reaction of Ru(CO)3(R-DAB(4e)) (2) with Fe2(CO)9. In the case of FeRu(CO)6(i-Pr-DAB; Me, H(6e)) (3f) the NMR data show that only the complex with the C(Me)N moiety of the ligand σ-N coordinated to the Ru atom and the C(H)N moiety η2-coordinated to the Fe atom was formed. Variable temperature NMR experiments up to 140 °C showed that the α-diimine ligand in 3a is stereochemically rigid bonded.FeRu(CO)6(R-DAB(6e)) (3a and 3e) reacted with allene to give FeRu(CO)5(R-DAB(4e))(C3H4) (4a and 4e). A single crystal X-ray structure determination of FeRu(CO)5(i-Pr-DAB(4e))(C3H4) (4a) was performed. Crystals of 4a are triclinic, space group P1, with two molecules in a unit cell of dimensions: a = 9.7882(7), b = 12.2609(9), c = 8.3343(7) Å, α = 99.77(1)°, β = 91.47(1)° and γ = 86.00(1)°. The structure was refined to R = 0.028 and Rw = 0.043 using 4598 reflections above the 2σ(I) level. The molecule contains an FeRu bond of 2.7405(7) Å and three terminally bonded carbonyls to iron. Two carbonyls are terminally bonded to the Ru atom together with a chelating 4e donating i-Pr-DAB ligand [RuN = 2.110(1) (mean)]. The allene ligand is coordinated in an η3-allylic fashion to the Fe atom while the central carbon of the allene moiety is σ-bonded to the Ru atom (FeC(14) = 2.166(3), FeC(15) = 1.970(2), FeC(16) = 2.127(3) and RuC(15) = 2.075(2) Å). The 1H and 13C NMR data show that in solution the coordination modes of the R-DAB and the allene ligands are the same as in the solid state.Thermolysis reactions of 3a with R-DAB or carbodiimides gave decomposition and did not afford C(imine)C(reactant) coupling products. Thermolysis reactions of 3a with M3(CO)12 (M = Ru, Os) and Me3NO gave decomposition. When the reaction of 3a with Me3NO was performed in the presence of dimethylacetylenedicarboxylate (DMADC) the known complex FeRu(CO)4(i-Pr-DAB(8e))(DMADC) (5a) was formed in low yield. In 5a the R-DAB ligand is in the 8e coordination mode with both the imine bonds η2-coordinated to iron. The acetylene ligand is coordinated in a bridging fashion, parallel with the FeRu bond.  相似文献   

15.
 The interaction of Fe(II) and Fe(III) with the novel Fe(II) chelator N,N′N″-tris(2-pyridylmethyl)-cis,cis-1,3,5-triaminocyclohexane (referred to as tachpyr) gives rise to six-coordinate, low-spin, cationic complexes of Fe(II). Tachpyr also displays a cytotoxicity toward cultured bladder cancer cells that is believed to involve coordination of intracellular iron. The anaerobic reaction of tachpyr with Fe(II) salts affords the Fe(II)-tachpyr2+ complex, but in presence of oxygen, oxidative dehydrogenation of one or two of the aminomethylene group(s) of the ligand occurs, with formal loss of H2: R—N(H)—C(H)2—(2-py) → R—N=C(H)—(2-py)+H2. The resulting mono- and diimino Fe(II) complexes (denoted as [Fe(tachpyr-H2)]2+ and [Fe(tachpyr-2H2)]2+) are an inseparable mixture, but they may be fully oxidized by H2O2 to the known tris(imino) complex Fe(II)[cis,cis-1,3,5-tris(pyridine-2-carboxaldimino)cyclohexane]2+ (or [Fe(tachpyr-3H2)]2+). Cyclic voltammetry of the imino complex mixture reveals an irreversible anodic wave at +0.78 V vs. NHE. Tachpyr acts as a reducing agent toward Fe(IIII) salts, affording the same two Fe(II) imino complexes as products. Tachpyr also reductively removes Fe(III) from an Fe(III)(ATP)3 complex (which is a putative form of intracellular iron), producing the two Fe(II) imino complexes. Novel N-alkylated derivatives of tachpyr have been synthesized. N-Alkylation has two effects on tachpyr: lowering metal affinity through increased steric hindrance, and preventing Fe(III) reduction because oxidative dehydrogenation of nitrogen is blocked. The N-methyl tachpyr derivative binds Fe(II) only weakly as a high-spin complex, and no complexation or reduction of Fe(III) is observed. Corresponding to their inability to bind iron, the N-alkylated chelators are nontoxic to cultured bladder cancer cells. A tach-based chelator with three N-propyleneamino arms is also synthesized. Studies of the chemical and biochemical properties of this chelator further support a relationship between intracellular iron chelation, iron reduction, and cytotoxicity. Received: 23 March 1998 / Accepted: 1 June 1998  相似文献   

16.
Groundwaters at nuclear sites can be characterized by low pH and high nitrate concentrations (10–100 mM). These conditions are challenging for bioremediation, often inhibiting microbial Fe(III)-reduction which can limit radionuclide migration. Here, sediment microcosms representative of the UK Sellafield site were used to study the influence of variable pH and nitrate concentrations on microbially-mediated TEAP (terminal electron accepting processes) progression. The rate of reduction through the terminal electron accepting cascade NO? 3 > NO? 2 > Mn(IV)/Fe(III) > SO2? 4 at low pH (~5.5) was slower than that in bicarbonate buffered systems (pH ~ 7.0), but in the low pH systems, denitrification and associated pH buffering resulted in conditioning of the sediments for subsequent Fe(III) and sulfate-reduction. Under very high nitrate conditions (100 mM), bicarbonate buffering (pH ~ 7.0) was necessary for TEAP progression beyond denitrification and the reduction of 100 mM nitrate created alkaline conditions (pH 9.5). 16S rRNA gene analysis showed that close relatives of known nitrate reducers Bacillus niacini and Ochrobactrum grignonense dominated the microbial communities in this reduced sediment. In Fe(III)-reducing enrichment cultures from the 100 mM nitrate system, close relatives of the Fe(III)-reducing species Alkaliphilus crotonatoxidans and Serratia liquifaciens were observed. These results highlight that under certain conditions and contrary to expectations, denitrification may support bioreduction via pH conditioning for optimal metal reduction and radionuclide immobilization.  相似文献   

17.
A novel series of complexes of the type [M(C36H22N6)X]X2, where M = Cr(III), Mn(III), Fe(III); X = Cl?, NO3?, CH3COO?; and (C36H22N6) corresponds to the tetradentate macrocyclic ligand, have been synthesized by condensation of 1,8-diaminonaphthalene and isatin in the presence of trivalent metal salts in methanolic medium. The complexes have been characterized by elemental analysis, conductance and magnetic measurements, and UV/Vis, IR, and mass spectroscopy. On the basis of these studies, a five coordinate square pyramidal geometry for all of these complexes is proposed. All synthesized macrocyclic complexes have been tested for in vitro antimicrobial activities against some pathogenic bacterial strains, viz. Staphylococcus aureus, Bacillus subtilis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and two fungal strains, viz. Aspergillus niger, Aspergillus flavus. The MICs shown by the complexes against these microbial strains have been compared with MICs shown by standard antibiotic ciprofloxacin and the antifungal drug amphotericin-B.  相似文献   

18.
Pyridine-2,6-bis(monothiocarboxylic acid) (pdtc),a natural metal chelator produced by Pseudomonas stutzeri and Pseudomonas putidathat promotes the degradation of carbon tetrachloride, was synthesized and studiedby potentiometric and spectrophotometric techniques. The first two stepwise protonationconstants (pK) for successive proton addition to pdtc were found to be 5.48 and2.58. The third stepwise protonation constant was estimated to be 1.3. The stability (affinity)constants for iron(III), nickel(II), and cobalt(III) were determined by potentiometric orspectrophotometric titration. The results show that pdtc has strong affinity for Fe(III)and comparable affinities for various other metals. The stability constants (log K) are 33.93 for Co(pdtc)2 1-; 33.36 for Fe(pdtc)2 1-; and 33.28 for Ni(pdtc)2 2-. These protonationconstants and high affinity constants show that over a physiological pH range theferric pdtc complex has one of the highest effective stability constants for ironbinding among known bacterial chelators.  相似文献   

19.
The Raman spectrum of protocatechuate 3,4-dioxygenase [EC 1.13.11.3] shows four principal resonance-enhanced peaks at 1602, 1503, 1263 and 1171 cm?1 with 514.5 nm laser excitation. These frequencies are associated with ringmode vibrations of one or more tyrosinate residues coordinated with the Fe(III) at the active site. These data provide the first direct evidence for the identity of a permanent iron ligand in this enzyme. The great similarity in the resonance Raman spectrum of protocatechuate 3,4-dioxygenase with those of iron-transferrins suggests the existence of a class of proteins characterized by Fe(III)-tyrosinate coordination.  相似文献   

20.
《BBA》2019,1860(12):148060
Oxygen (O2) activation is a central challenge in chemistry and catalyzed at prototypic dimetal cofactors in biological enzymes with diverse functions. Analysis of intermediates is required to elucidate the reaction paths of reductive O2 cleavage. An oxidase protein from the bacterium Geobacillus kaustophilus, R2lox, was used for aerobic in-vitro reconstitution with only 57Fe(II) or Mn(II) plus 57Fe(II) ions to yield [FeFe] or [MnFe] cofactors under various oxygen and solvent isotopic conditions including 16/18O and H/D exchange. 57Fe-specific X-ray scattering techniques were employed to collect nuclear forward scattering (NFS) and nuclear resonance vibrational spectroscopy (NRVS) data of the R2lox proteins. NFS revealed Fe/Mn(III)Fe(III) cofactor states and Mössbauer quadrupole splitting energies. Quantum chemical calculations of NRVS spectra assigned molecular structures, vibrational modes, and protonation patterns of the cofactors, featuring a terminal water (H2O) bound at iron or manganese in site 1 and a metal-bridging hydroxide (μOH) ligand. A procedure for quantitation and correlation of experimental and computational NRVS difference signals due to isotope labeling was developed. This approach revealed that the protons of the ligands as well as the terminal water at the R2lox cofactors exchange with the bulk solvent whereas 18O from 18O2 cleavage is incorporated in the hydroxide bridge. In R2lox, the two water molecules from four-electron O2 reduction are released in a two-step reaction to the solvent. These results establish combined NRVS and QM/MM for tracking of iron-based oxygen activation in biological and chemical catalysts and clarify the reductive O2 cleavage route in an enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号