首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Estimating viability of plant protoplasts using double and single staining   总被引:8,自引:0,他引:8  
Summary The utility of numerous dyes for determining the viability of barley (Hordeum vulgare L. cv. Himalaya) aleurone protoplasts was studied. Protoplasts isolated from the barley aleurone layer synthesize and secrete -amylase isozymes in response to treatment with gibberellic acid (GA) and Ca2+. These cells also undergo dramatic morphological changes which eventually result in cell death. To monitor the viability of protoplasts during incubation in GA and Ca2+, several types of fluorescent and nonfluorescent dyes were tested. Evans blue and methylene blue were selected as nonfluorescent dyes. Living cells exclude Evans blue, but dead cells and cell debris stain blue. Both living and dead cells take up methylene blue, but living cells reduce the dye to its colorless form whereas dead cells and cell debris stain blue. The relatively low extinction coefficient of these dyes sometimes makes it difficult to distinguish blue-stained cells against a background of blue dye. Several types of fluorescent dyes were tested for their ability to differentially stain dead or living cells. Tinopal CBS-X, for example, stains only dead cells, and its high extinction coefficient allows its ultraviolet fluorescence to be recorded even when preparations are simultaneously illuminated with visible light. To double-stain protoplasts, the most effective stain was a combination of fluorescein diacetate (FDA) and propidium iodide (PI). By employing a double-exposure method to record the fluorescence from cells stained with both FDA and PI, dead and living cells could be distinguished on the basis of fluorochromasia.  相似文献   

2.
For better color contrast with humus-colored dead organic matter, a bluish stain was sought for replacing the pinkish dyes in use for staining microorganisms in soil. Among dyes tried, fast acid blue R (C. I. 760) was found to stain selectively enough and optimally in hue. A didymium glass may serve for optical differentiation, if needed.  相似文献   

3.
目的:探讨宫颈人乳头状瘤病毒(HPV)16持续感染阶段宫颈P16和Ki67的表达及其与宫颈癌变的相关性。方法:采用P16/Ki67免疫组化双染法检测102例HPV16持续感染者、136例非持续感染者宫颈组织P16、Ki67蛋白的表达,并根据免疫组化结果分组为双染阳性组、双染阴性组。所有患者随访观察2年,比较两组患者的结局及宫颈癌前病变的发生率。结果:P16、Ki67及P16/Ki67双染的阳性率分别为40.3%、44.5%及34.0%,HPV16持续感染患者P16、Ki67及P16/Ki67双染的阳性率均显著高于非持续感染患者(P0.05)。HPV16持续感染患者的P16、Ki67蛋白表达呈显著正相关(P0.05)。HPV16持续感染患者中,双染阳性组的病情持续和进展比例明显高于双染阴性组,也明显高于HPV16非持续感染(双染阴性组、双染阳性组)患者(P0.05)。HPV16持续感染患者中,双染阳性组进展为HSIL及以上病变发生率为32.5%(13/40),显著高于双染阴性组6.5%(P0.05)。结论:P16,Ki67双染阳性在HPV16持续感染阶段与宫颈上皮内病变疾病进展成正相关,对HPV16持续感染进展为宫颈高度病变有预警价值,可作为HPV16阳性早期治疗的敏感指标。  相似文献   

4.
Becher's investigations upon the soluble metallic lakes of the oxazines have been re-investigated, extended and results described. Gallamin blue, gallocyanin and coelestin blue in combination with ferric ammonium sulfate gave the best results. The dyes are dissolved in a five per cent aqueous solution of ferric ammonium sulfate. The solution is boiled for 2–3 minutes, cooled, filtered and ready for immediate use. The iron lakes of these dyes stain nuclei excellently giving a deep blue or blue black in 3–5 minutes. No differentiation with acid is required. Coelestin blue gives the most stable solution and is recommended as a routine nuclear stain. The protoplasm remains practically colorless and counter-staining with acid dyes such as ethyl-eosin, orange G, or fuchsin gives pictures which cannot be distinguished from a good hematoxylin stain.

Counter-staining with van Gieson solution is also possible. Benda's modification of the van Gieson solution is recommended. Staining of fat with Sudan, scarlet red, etc., does not interfere with nuclear staining by these dyes.

As applied to the central nervous system these dyes are far superior to hematoxylin. Ganglion and glia cells are as excellently stained as with thionin.

The most widely used fixatives, namely formaldehyde, Mueller-formaldehyde, Zenker's and alcohol, give equally as good results. The nature of the staining process is briefly discussed and a prospectus offered.  相似文献   

5.
SYNOPSIS. Cell coats were cytochemically demonstrated for the first time in myxamebae of Fuligo septica, Didymium iridis, Dictyostelium discoideum, Cavostelium apophysatum, and amebae of Naegleria gruberi. The stain enhances the cell coats of Physarum polycephalum plasmodia, Ceratiomyxa fruticulosa myxamebae, and Acanthamoeba sp. Cell coats usually unstained by cationic dyes stain intensely with the aid of the new cytochemical protocol utilizing 0.5% Alcian blue in the primary fixative and 0.05% ruthenium red in the secondary fixative.  相似文献   

6.
FAZYTAN, a system for fast automated cell segmentation, cell image analysis and extraction of nuclear features, was used to analyze cervical cell images variously stained by the conventional Papanicolaou stain, the new Papanicolaou stain and hematoxylin and thionin only; the last two dyes are used as the nuclear stains in the two versions of the Papanicolaou stain. Other dyes were also tried in cell classification experiments. All cell images in the variously stained samples could be described by the same nuclear features as had been adapted for the discrimination of conventional-Papanicolaou-stained cells. Variances were lower for thionin-stained cells as compared with hematoxylin-stained cells. By application of spectrophotometry, it was confirmed that the spectra of the cytoplasmic counterstains are superimposed on those of the nuclear stains. It appears that a variety of dyes are suitable as cytologic stains for cell classification by the FAZYTAN system, provided that they achieve sufficiently strong nuclear-cytoplasmic contrast by precisely delineating the chromatin texture.  相似文献   

7.
Abstract

An introduction to the nomenclature and concept of “Romanowsky stains” is followed by a brief account of the dyes involved and especially the crucial role of azure B and of the impurity of most commercial dye lots. Technical features of standardized and traditional Romanowsky stains are outlined, e.g., number and ratio of the acidic and basic dyes used, solvent effects, staining times, and fixation effects. The peculiar advantages of Romanowsky staining are noted, namely, the polychromasia achieved in a technically simple manner with the potential for stain intensification of “the color purple.” Accounts are provided of a variety of physicochemically relevant topics, namely, acidic and basic dyeing, peculiarities of acidic and basic dye mixtures, consequences of differential staining rates of different cell and tissue components and of different dyes, the chemical significance of “the color purple,” the substrate selectivity for purple color formation and its intensification in situ due to a template effect, effects of resin embedding and prior fixation. Based on these physicochemical phenomena, mechanisms for the various Romanowsky staining applications are outlined including for blood, marrow and cytological smears; G-bands of chromosomes; microorganisms and other single-cell entities; and paraffin and resin tissue sections. The common factors involved in these specific mechanisms are pulled together to generate a “universal” generic mechanism for these stains. Certain generic problems of Romanowsky stains are discussed including the instability of solutions of acidic dye–basic dye mixtures, the inherent heterogeneity of polychrome methylene blue, and the resulting problems of standardization. Finally, a rational trouble-shooting scheme is appended.  相似文献   

8.
Dyes of all major types were tested for their suitability as the primary dye in the Gram stain. When a counterstain was not used, some dyes of all types were found to differentiate Gram-positive from Gram-negative organisms. When a counterstain was used, these dyes were found to vary greatly in their suitability. Those dyes found to be good substitutes for crystal violet were: Brilliant green, malachite green, basic fuchsin, ethyl violet, Hoffmann's violet, methyl violet B, and Victoria blue R. All are basic triphenylmethane dyes. Acid dyes were generally not suitable. Differences in the reaction of Gram-positive and Gram-negative cells to Gram staining without the use of iodine were observed and discussed but a practical differentiation could not be achieved in this manner. Certain broad aspects of the chemical mechanism of dyes in the gram stain are discussed.  相似文献   

9.
Abstract

If the entire discipline of diagnostic cytopathology could be distilled into a single theme, it would be the Papanicolaou stain. Yet it was the Romanowsky stain upon which the discipline of cytopathology was founded. Both stains are used today in the cytopathology laboratory, each for a different and complementary purpose. We trace the history of cytopathological stains and discuss the advantages and limitations of Romanowsky-type stains for cytological evaluation. We also provide suggestions for the advantageous use of Romanowsky-type stains in cytopathology.  相似文献   

10.
Weakly basic fluorescent dyes are used to visualize organelles within live cells due to their affinity to acidic subcellular organelles. In particular, they are used to stain the silica deposited in the silica deposition vesicles (SDVs) of diatoms during the course of their frustule synthesis. This study involved the synthesis of fluorescent dyes derived from oligopropylamines, compounds similar to those found in diatoms. The dyes were obtained by reacting oligopropylamines with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. The reaction was realized using methylated oligopropylamines with two or three nitrogen atoms and yielded two novel fluorescent dyes: NBD-N2 and NBD-N3. The dyes appeared to be highly efficient in the in vivo staining of growing siliceous frustules of diatoms at concentrations at least 10 times lower than those required for staining with HCK-123. NBD-N3 also efficiently stained other subcellular vesicles of eukaryotic unicellular algae. NBD-N2 stained only growing diatom frustules, whereas NBD-N3 also stained various subcellular organelles of different eukaryotic unicellular algae. NBD-N2 and NBD-N3 were not removed from stained diatom frustules by drastic treatments with H2SO4 and H2O2. Fluorescent silica can also be obtained by its chemical precipitation in the presence of NBD-N2 and NBD-N3.  相似文献   

11.
The fluorescent nucleic acid binding dyes hexidium iodide (HI) and SYTO 13 were used in combination as a Gram stain for unfixed organisms in suspension. HI penetrated gram-positive but not gram-negative organisms, whereas SYTO 13 penetrated both. When the dyes were used together, gram-negative organisms were rendered green fluorescent by SYTO 13; conversely, gram-positive organisms were rendered red-orange fluorescent by HI, which simultaneously quenched SYTO 13 green fluorescence. The technique correctly predicted the Gram status of 45 strains of clinically relevant organisms, including several known to be gram variable. In addition, representative strains of gram-positive anaerobic organisms, normally decolorized during the traditional Gram stain procedure, were classified correctly by this method.Gram’s staining method is considered fundamental in bacterial taxonomy. The outcome of the Gram reaction reflects major differences in the chemical composition and ultrastructure of bacterial cell walls. The Gram stain involves staining a heat-fixed smear of cells with a rosaniline dye such as crystal or methyl violet in the presence of iodine, with subsequent exposure to alcohol or acetone. Organisms that are decolorized by the alcohol or acetone are designated gram negative.Alternative Gram staining techniques have recently been proposed. Sizemore et al. (19) reported on the use of fluorescently labeled wheat germ agglutinin. This lectin binds specifically to N-acetylglucosamine in the peptidoglycan layer of gram-positive bacteria, whereas gram-negative organisms contain an outer membrane that prevents lectin binding. Although simpler and faster than the traditional Gram stain, this method requires heat fixation of organisms.Other Gram stain techniques suitable for live bacteria in suspension have been described. Allman et al. (1) demonstrated that rhodamine 123 (a lipophilic cationic dye) rendered gram-positive bacteria fluorescent, but its uptake by gram-negative organisms was poor. This reduced uptake by gram-negative bacteria was attributed to their outer membranes. The outer membrane can be made more permeable to lipophilic cations by exposure to the chelator EDTA (4). Shapiro (18) took advantage of this fact to form the basis of another Gram stain, one which involved comparing the uptake of a carbocyanine dye before and after permeabilizing organisms with EDTA. All of these methods, however, rely on one-color fluorescence, making analysis of mixed bacterial populations difficult.An alternative to the use of stains is the potassium hydroxide (KOH) test. The method categorizes organisms on the basis of differences in KOH solubility. After exposure to KOH, gram-negative bacteria are more easily disrupted than gram-positive organisms. This technique has been used to classify both aerobic and facultatively anaerobic bacteria, including gram-variable organisms (8). In a study by Halebian et al. (9), however, this technique incorrectly classified several anaerobic strains, giving rise to the recommendation that the method should only be used in conjunction with the traditional Gram stain.In this study we demonstrate a Gram staining technique for unfixed organisms in suspension, by using clinically relevant bacterial strains and organisms notorious for their gram variability. The method uses two fluorescent nucleic acid binding dyes, hexidium iodide (HI) and SYTO 13. Sales literature (11) published by the manufacturers of HI (Molecular Probes, Inc., Eugene, Oreg.), which displays a red fluorescence, suggests that the dye selectively stains gram-positive bacteria. SYTO 13 is one of a group of cell-permeating nucleic acid stains and fluoresces green (11). These dyes have been found to stain DNA and RNA in live or dead eukaryotic cells (16). Both dyes are excited at 490 nm, permitting their use in fluorescence instruments equipped with the most commonly available light sources. We reasoned that a combination of these two dyes applied to mixed bacterial populations would result in all bacteria being labeled, with differential labeling of gram-positive bacteria (HI and SYTO 13) and gram-negative bacteria (SYTO 13 only). The different fluorescence emission wavelengths of the two dyes would ensure differentiation of gram-positive from gram-negative bacteria by either epifluorescence microscopy or flow cytometry when equipped with the appropriate excitation and emission filters. While a commercial Gram stain kit produced by Molecular Probes includes HI and an alternative SYTO dye, SYTO 9, we are unaware of any peer-reviewed publications regarding either its use or its effectiveness with traditionally gram-variable organisms.  相似文献   

12.
In search of a fluorescent dye suitable for monitoring membrane potentials of beating heart cells, we noticed that the carbocyanine dyes, CC5 and CC6, show a unique pattern of intracellular distribution in vital and glutaraldehyde-fixed cardiomyoblasts. This distribution is clearly different from that observed in fibroblasts. In heart cells, it parallels the localization of actin-myosin containing myofilaments as visualized by fluorescent antibody staining but it does not correspond to the localization of actin filaments or the microtubules. In fibroblasts these dyes stain only fine filaments and granules in the perinuclear space which correspond to the endoplasmic reticulum. This observation is evidence in support of the hypothesis that carbocyanine dyes accumulate selectively in the sarcoplasmic reticulum. It indicates that certain carbocyanine dyes may be useful tools to differentiate between muscle cells and connective tissue cells in cell cultures.  相似文献   

13.
Summary Using a pH signature criterion, it was found that whereas electrostatic attractions and repulsions were paramount in the binding of low molecular weight acid and basic dyes to tissue sections, high molecular weight dyes were also bound non-electrostatically.By studying the effects on staining of adding to aqueous dyebaths agents destroying the iceberg structure of water, the importance of hydrophobic bonding was established. It was noticed that the hydrophobic elastic fibres were stained by large dyes from dyebaths inhibitory both to electrostatic attractions and hydrophobic bonding (i.e. using acid dyes from alkaline aqueous-ethanol or aqueous-dimethylformamide dyebaths). This indicated that strong van der Waals attractions occurred, at least with some substrates. Supporting this idea was the observation that in tissue sections benzoylated before staining (i.e. made less acidophilic but more hydrophobic) additional structures were stained when using large acid dyes from alkaline aqueous-ethanol or aqueous-dimethylformamide dyebaths.Applications of the size-substantivity relationship were suggested, e.g. commenting on a standard stain for basic proteins; explaining the modes of action of traditional stains for elastic fibres and amyloid; rationalising the varied substantivities of tetrazolium salts; and finally suggesting guide lines for use in the design of new staining methods.  相似文献   

14.
Seven blue nucleic acid dyes from Molecular Probes Inc. (SYTO-9, SYTO-11, SYTO-13, SYTO-16, SYTO-BC, SYBR-I and SYBR-II) were compared with the DAPI (4′,6-diamidino-2-phenylindole) method for flow cytometric enumeration of live and fixed bacteria in aquatic systems. It was shown that SYBR-II and SYTO-9 are the most appropriate dyes for bacterial enumeration in nonsaline waters and can be applied to both live and dead bacteria. The fluorescence signal/noise ratio was improved when SYTO-9 was used to stain living bacteria in nonsaline waters. Inversely, SYBR-II is more appropriate than SYTO dyes for bacterial enumeration of unfixed and fixed seawater samples.  相似文献   

15.
16.
Twenty three novel cyanine dyes have been applied as fluorescent stains for the detection of nucleic acids in agarose gel electrophoresis. Significant fluorescence enhancement of these dyes in the presence of double stranded DNA was observed. Five dyes offered superior sensitivity in the detection and quantification of DNA, over Ethidium Bromide, the most commonly used nucleic acid stain.  相似文献   

17.
Summary Metaphase chromosomes were stained in a routine G-banding procedure with 39 basic dyes of varied structures substituted for the Giemsa stain. Staining outcomes were categorized as: iverstained, differentially stained, trivially or unstained. Certain structural features of the dyes were described numerically, namely, largest conjugated fragment (LCF), conjugated bond number (CBN) and cationic weight. The staining, outcomes were compared to these numerical structural parameters, and structure-staining correlations sought. Dyes with large conjugated systems (and high LCF values) were seen to be overstained; dyes with low LCF values were often non-staining. At intermediate LCF values, the more hydrophobic dyes (with high Hansch values) stained differentially; the more hydrophilic dyes failed to stain. Expressed numerically, 89% of the dyes with the following characteristics stained differentially: 30LCF10; Hansch >–5.0. It was concluded that contributions to dye-chromosome affinity included coulombic forces and van der Waals attractions and that the selectivity of G-banding was largely due to hydrophobic bonding. Induction of bands could be due to the loss of hydrophilic, histones, amplifying underlying variations in the hydrophobic-hydrophilic character of the chromosome structure. Relatively hydrophobic sites include AT-rich DNA and disulphide-rich proteins.The effects on Romanowsky G-banding of chemically modifying chromosomes were in keeping with this model. Overstaining resulted from formation of either hydrophobic or conjugated derivatives or both, whereas trivial or non-staining arose from the formation of hydrophilic derivatives. Intriguingly, the efficacy of the dyes used for Q-banding also correlated positively with their hydrophobic character.  相似文献   

18.
The importance of pH in staining tissue is emphasized. The effect of pH upon the selectivity and intensity of staining with iron hematoxylin, malachite green, and eosin Y is considered. Many difficulties may be avoided by staining in the higher alcohols and directions are given for the preparation of buffer solutions from pH 1.2-8 in alcohol. The concentration of stains, time of staining, and order of staining are discussed for progressive and regressive staining. At pH 8 in 95% alcohol very few tissues stain with malachite green at a concentration of 1/1000 saturated. At pH 6 most cytoplasmic elements stain with malachite green at a concentration of 1/1000 saturated or with eosin Y at 1/250 saturated. As the pH is lowered more tissue elements stain until the nucleus is completely stained. This behavior is in accord with the theory of chemical combination of dyes with proteins, which states that proteins combine with basic dyes on the basic side of their isoelectric points and with acid dyes on the acid side of their isoelectric points. With hematoxylin stain the pH range is much shorter. A satisfactory hematoxylin stain is composed of 0.1% hematoxylin, 0.1% FeCl3, and HCl to bring the pH to 1.2-1.6 in 80% alcohol. With this stain, which may be used immediately, the nuclei of most tissues begin to stain at pH 1.2 and much of the cytoplasm will be stained if the pH is raised to 1.4. The shortness of this effective pH range is thought to be due to the dissociation of the hematoxylin-iron-protein complex. The use of different dyes successively at different pH values, such as hematoxylin at 1.3, malachite green at 8, and eosin at 6, permits better differentiation of the tissue elements, and intelligent variations in the staining technic.  相似文献   

19.
ABSTRACT

Methyl green (MG) is an inexpensive, nonproprietary, traditional histological stain for cell nuclei. When bound to DNA and upon excitation with orange-red light, it fluoresces brightly in the far red region. We compared MG with ethidium bromide (EtBr), the conventional stain for DNA in gels, and Serva DNA stain G? (SDsG), a proprietary stain marketed as a safer alternative to EtBr for staining of electrophoresed DNA bands in agarose and polyacrylamide gels. DNA-MG fluorescence was recorded and 2.4 μg/ml MG produced crisp images of electrophoresed DNA after incubation for 10 min. Stain solutions were stable and detection limits for faint bands as well as relative densitometric quantitation were equivalent to EtBr. MG, EtBr and SDsG cost 0.0192, 0.024 and 157.5 US cents/test, respectively. MG is an effective stain for visualizing DNA in agarose and polyacrylamide gels. Its major advantages including low cost, comparable quality of staining, storage at room temperature, photo-resistance and low mutagenic profile outweigh its disadvantages such as staining of tracking dye and requirement for a gel documentation system with a red filter.  相似文献   

20.
【目的】为了获得能够在高盐环境下脱色偶氮染料的嗜盐菌群及其降解机理。【方法】采用富集驯化的方法获得一个嗜盐菌群,采用Illumina HiSeq2500测序平台对其群落结构进行测定;采用分光光度法测定了其降解特性;采用GC-MS和红外图谱分析了其降解机理;采用微核实验的方法比较了偶氮染料降解前后的毒性。【结果】该菌群在10%的盐度下,使100mg/L的酸性金黄G在8h内脱色。菌群主要由Zobellella、Rheinheimera、Exiguobacterium和Marinobacterium组成。最适宜的脱色条件是:pH=6,酵母粉为碳源,蛋白胨或硝酸钾作为氮源,盐度为1%–10%。酸性金黄G降解产物的毒性比降解前降低。酸性金黄G主要的降解产物是对氨基二苯胺和二苯胺。此外,该菌群还能使酸性大红GR和直接湖蓝5B等多种偶氮染料脱色,具有较好的脱色广谱性。【结论】获得了快速降解偶氮染料的嗜盐菌群及降解机理,为该嗜盐菌群应用于高盐印染废水的处理提供菌种资源和理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号