首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Since several decades ago, the application of pervaporation (PV) technology has been mainly aimed at the separation of different types of water-organic, organic-water and organic–organic mixtures, reaching its large-scale application in industry for the dehydration of organics. Today, the versatility and high selectivity toward specific compounds have led its consideration to other types of application such as the assisted chemical and bio-chemical reactions. The focus of this review is to provide a compelling overview on the recent developments of PV combined with chemical and bio-chemical reactions. After a general introduction of PV and its theoretical background, particular emphasis is given to the results obtained in the field for different reactions considered, identifying the key features and weak points of PV in such particular applications. Furthermore, future trends and perspectives are also addressed according to the latest literature reports.  相似文献   

2.
The coupling of proton and electron transfers is a key part of the chemistry of photosynthesis. The oxidative side of photosystem II (PS II) in particular seems to involve a number of proton-coupled electron transfer (PCET) steps in the S-state transitions. This mini-review presents an overview of recent studies of PCET model systems in the authors’ laboratory. PCET is defined as a chemical reaction involving concerted transfer of one electron and one proton. These are thus distinguished from stepwise pathways involving initial electron transfer (ET) or initial proton transfer (PT). Hydrogen atom transfer (HAT) reactions are one class of PCET, in which H+ and e are transferred from one reagent to another: AH+B→A+BH, roughly along the same path. Rate constants for many HAT reactions are found to be well predicted by the thermochemistry of hydrogen transfer and by Marcus Theory. This includes organic HAT reactions and reactions of iron-tris(α-diimine) and manganese-(μ-oxo) complexes. In PS II, HAT has been proposed as the mechanism by which the tyrosine Z radical (YZ) oxidizes the manganese cluster (the oxygen evolving complex, OEC). Another class of PCET reactions involves transfer of H+ and e in different directions, for instance when the proton and electron acceptors are different reagents, as in AH–B+C+→A–HB++C. The oxidation of YZ by the chlorophyll P680 + has been suggested to occur by this mechanism. Models for this process – the oxidation of phenols with a pendent base – are described. The oxidation of the OEC by YZ could also occur by this second class of PCET reactions, involving an Mn–O–H fragment of the OEC. Initial attempts to model such a process using ruthenium-aquo complexes are described. An erratum to this article can be found at  相似文献   

3.
In this overview we present recent combined electrochemical, spectroelectrochemical, spectroscopic and computational studies from our group on the electron transfer reactions of cytochrome c and of the primary electron acceptor of cytochrome c oxidase, the CuA site, in biomimetic complexes. Based on these results, we discuss how protein dynamics and thermal fluctuations may impact on protein ET reactions, comment on the possible physiological relevance of these results, and finally propose a regulatory mechanism that may operate in the Cyt/CcO electron transfer reaction in vivo. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

4.
《Free radical research》2013,47(8):927-939
Abstract

This review outlines recent advances in the investigation of the chemical properties, molecular interactions and health effects of hazardous compounds in atmospheric aerosols, in particular reactive oxygen species (ROS), soot, polycyclic aromatic compounds (PACs) and allergenic proteins. Epidemiological studies show correlations between air particulate matter and adverse health effects of air pollution including allergy, asthma, cardiovascular and respiratory diseases, but the causative relations and mechanisms of interaction on the molecular level are still unclear. ROS generated by photochemical and heterogeneous reactions in the atmosphere seem to play a key role in aerosol health effects and provide a direct link between atmospheric and physiological multiphase processes. Soot and PACs can trigger formation of ROS in vivo, leading to inflammation and cellular damage. PACs as well as allergenic proteins are efficiently oxygenated and nitrated upon exposure to ozone and nitrogen dioxide, which leads to an enhancement of their toxicity and allergenicity.  相似文献   

5.
PurposePositron emitting isotopes such as 11C and 10C can be used for vital dose verification in hadron therapy. These isotopes are produced when the high energy 12C primary beam particles undergo nuclear reactions within the patient.MethodsWe discuss a model for calculating cross sections for the production 11C in 12C + 12C collisions, applicable at hadron therapy energies.ResultsGood agreement with the available cross section measurements is found for 12C(−1n), though more detailed, systematic measurements would be very valuable.ConclusionsNuclear structure plays a crucial role in the reactions of light nuclei, particularly when those reactions are peripheral and involve only a few nucleons. For such reactions, nuclear structure has a strong influence on the energy and angular distribution of the cross section, and is an important consideration for reliable dose verification using 11C in hadron therapy.  相似文献   

6.
Abstract

A new semiempirical method is developed to deal with the proton transfer in liquid water. In the previous work, we have shown that two- and three-body charge transfer interactions and electrostatic interactions are the most important factors to describe the potential energy surfaces (PES) of the proton transfer in liquid water [Chemical Physics 180, 239–269, 1994], In order to take account of these factors, we develop a semiempirical method imposing the principle of electronegativity equalization to the Atoms in Molecule (AIM) method. The method is free from the well-known discrepancy of the traditional AIM methods, that is, the fractional molecular charges at large molecular separation, and thus can be applied to the charge transfer reactions. Intra- and intermolecular physical quantities, such as total energies, force vectors, dipole moment vectors and intermolecular charge transfer, obtained by the present method are found to be in good agreement with those by ab initio calculation.  相似文献   

7.
ABSTRACT

Diclofenac and related derivatives become more toxic after biotransformation reactions in the body by electron or hydrogen transfers. The structure–reactivity study on regioselective hydroxylation of diclofenac acid was elucidated by using quantum chemistry calculations at level of DFT/B3LYP/6-31G(d,p). HOMO, ionisation potential, bond dissociation energy, and spin density distributions were used as chemical reactivity parameters. Also, some properties are related to lumiracoxib and fenclofenac. The higher flexibility of lumiracoxib can be responsible for the increase of COX2 selectivity. Diphenyl-amine moiety is responsible for their potent antioxidant capacity. Chloro atoms have a strong effect under electron transfer capacity when compared to acetic acid group. Hydroxylation for the 5-hydroxydiclofenac is more favoured in either electron or hydrogen transfers. Both hydroxylation increased the electron donation and antioxidant capacity. These properties were observed to the fenclofenac derivatives and can be related to their toxicity by redox mechanism.  相似文献   

8.
Being a proven photocatalyst, nano-anatase is capable of undergoing electron transfer reactions under light. In previous studies we had proven that nano-anatase improved photosynthesis and greatly promoted spinach growth. The mechanisms by which nano-anatase promotes energy transfer and the conversion efficiency of the process are still not clearly understood. In the present paper, we report the results obtained with the photosystem II (PSII) isolated from spinach and treated by nano-anatase TiO2 and studied the effect of nano-anatase TiO2 on energy transfer in PSII by spectroscopy and on oxygen evolution. The results showed that nano-anatase TiO2 treatment at a suitable concentration could significantly change PSII microenvironment and increase absorbance for visible light, improve energy transfer among amino acids within PSII protein complex, and accelerate energy transport from tyrosine residue to chlorophyll a. The photochemical activity of PSII (fluorescence quantum yield) and its oxygen-evolving rate were enhanced by nano-anatase TiO2. This is viewed as evidence that nano-anatase TiO2 can promote energy transfer and oxygen evolution in PSII of spinach.  相似文献   

9.
10.
Although photooxidation of water and numerous other species which are part of reversible redox couples is poorly efficient at nanocrystalline TiO2, conversely high photocurrent efficiencies are observed for the oxidation of various organic molecules.This is associated with the fact that in most cases photooxidation of organic molecules does not produce species able to act as electron scavengers. The behaviour of nanocrystalline TiO2 photoelectrodes is clearly dominated by the indirect recombination or redox cycling where intermediates or products of the hole transfer act in turn as electron scavengers. These processes occur whatever the applied anodic bias showing that the actual potential in most of the nanocrystalline TiO2 film is disconnected from that imposed to the conducting substrate.  相似文献   

11.
PurposeA reliable model to simulate nuclear interactions is fundamental for Ion-therapy. We already showed how BLOB (“Boltzmann-Langevin One Body”), a model developed to simulate heavy ion interactions up to few hundreds of MeV/u, could simulate also 12C reactions in the same energy domain. However, its computation time is too long for any medical application. For this reason we present the possibility of emulating it with a Deep Learning algorithm.MethodsThe BLOB final state is a Probability Density Function (PDF) of finding a nucleon in a position of the phase space. We discretised this PDF and trained a Variational Auto-Encoder (VAE) to reproduce such a discrete PDF. As a proof of concept, we developed and trained a VAE to emulate BLOB in simulating the interactions of 12C with 12C at 62 MeV/u. To have more control on the generation, we forced the VAE latent space to be organised with respect to the impact parameter (b) training a classifier of b jointly with the VAE.ResultsThe distributions obtained from the VAE are similar to the input ones and the computation time needed to use the VAE as a generator is negligible.ConclusionsWe show that it is possible to use a Deep Learning approach to emulate a model developed to simulate nuclear reactions in the energy range of interest for Ion-therapy. We foresee the implementation of the generation part in C++ and to interface it with the most used Monte Carlo toolkit: Geant4.  相似文献   

12.
UV-visible and 13C NMR measurements described in the literature and our 31P NMR measurements support the following mechanism of proton transfer reactions in aqueous solutions of pyridoxamine phosphate: Only the tautomeric equilibrium between neutral form, A N, and zwitterion, A Z, which is analogous to the tautomeric equilibrium of 3-hydroxypyridine in aqueous solution, is important, and that equilibrium does not change upon the dissociation of the second phosphate proton. With these simplifying assumption, we have simulated the relaxation spectrum of the proton transfer reactions of pyridoxamine phosphate in water using parameters from analogous reactions and compared it with our ultrasound and temperature jump measurements. We have found that the relaxation process measured by the temperature jump experiment is mainly caused by the overall reaction A N=A Z (or A N - =A Z - ) and the ultrasound absorption at the isoelectric point between pK2 and pK3 is mainly caused by the overall reaction .  相似文献   

13.
In this article, hollow fiber renewal liquid membrane (HFRLM) technique was used for recovery of penicillin G from aqueous solution. The organic solution of 7 vol % di‐n‐octylamine (DOA) + 30 vol % iso‐octanol + kerosene was used as liquid membrane phase, and Na2CO3 aqueous solution was used as stripping phase. Experiments were performed as a function of carrier concentration in the organic phase, organic/aqueous volume ratio, pH, and initial penicillin G concentration in the feed phase, pH in the stripping phase, flow rates, etc. The results showed that the HFRLM process was stable and could carry out simultaneous extraction and concentration of penicillin G from aqueous solutions. As a carrier facilitated transport process, the addition of DOA in organic phase could greatly enhance the mass transfer rate; and there was a favorable organic/aqueous volume ratio of 1:20 to 1:30 for this system. The mass transfer flux and overall mass transfer coefficient increased with decreasing pH in the feed phase and increasing pH in the stripping phase, because of variation of the mass transfer driving force caused by pH gradient and distribution equilibrium. The flow rate of the shell side had significant influence on the mass transfer performance, whereas the effect of flow rate of lumen side on the mass transfer performance was slight because of the mass transfer intensification of renewal effect in the lumen side. The results indicated that the HFRLM process was a promising method for the recovery of penicillin G from aqueous solutions. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

14.
王爱文  李盛英  陈辉 《微生物学报》2023,63(5):1917-1929
电活性微生物具有独特的在细胞内外环境之间传递电子的能力。在对天然电活性微生物电子传递机制充分研究的基础上,通过合成生物学方法异源构建天然电活性微生物电子传递结构基础也可以将遗传背景清晰的非电活性大肠杆菌改造为电活性微生物。构建获得的工程化电活性大肠杆菌可以直接应用于微生物燃料电池和生物传感器等领域,同时也可以作为底盘细胞整合相应的目标产物合成通路实现电能驱动的生物合成。本文以合成生物学方法构建电活性大肠杆菌为主题,详细阐述天然电活性微生物电子传递的机理及结构基础,总结了工程化电活性大肠杆菌的构建策略、成功案例以及应用领域,并对合成生物学方法构建电活性大肠杆菌未来的研究方向进行了展望。  相似文献   

15.
The photochemical release of inorganic nitrogen from dissolved organic matter is an important source of bio-available nitrogen (N) in N-limited aquatic ecosystems. We conducted photochemical experiments and used mathematical models based on pseudo-first-order reaction kinetics to quantify the photochemical transformations of individual N species and their seasonal effects on N cycling in a mountain forest stream and lake (Plešné Lake, Czech Republic). Results from laboratory experiments on photochemical changes in N speciation were compared to measured lake N budgets. Concentrations of organic nitrogen (Norg; 40–58 µmol L−1) decreased from 3 to 26% during 48-hour laboratory irradiation (an equivalent of 4–5 days of natural solar insolation) due to photochemical mineralization to ammonium (NH4 +) and other N forms (Nx; possibly N oxides and N2). In addition to Norg mineralization, Nx also originated from photochemical nitrate (NO3 ) reduction. Laboratory exposure of a first-order forest stream water samples showed a high amount of seasonality, with the maximum rates of Norg mineralization and NH4 + production in winter and spring, and the maximum NO3 reduction occurring in summer. These photochemical changes could have an ecologically significant effect on NH4 + concentrations in streams (doubling their terrestrial fluxes from soils) and on concentrations of dissolved Norg in the lake. In contrast, photochemical reactions reduced NO3 fluxes by a negligible (<1%) amount and had a negligible effect on the aquatic cycle of this N form.  相似文献   

16.
The reactivity of triesters is discussed in the general context of phosphate transfer, as usually studied for the reactions of mono- and diesters. Systematic work has typically concentrated on the Linear Free Energy Relationships measuring the dependence of reactivity on the nucleophile and the leaving group, but new results indicate that it can depend equally strongly on the two non-leaving (sometimes known as spectator) groups. This conclusion is supported by first results from theoretical calculations: which also predict that a two-step mechanism can be favored over a concerted SN2(P) mechanism even for reactions involving leaving groups as good as p-nitrophenolate. This article is part of a Special Issue entitled: Chemistry and mechanism of phosphatases, diesterases and triesterases.  相似文献   

17.
Perylenes are well‐known pigments with excellent chemical, thermal, and photochemical stabilities and have been used in various optical and electronic fields. Although for sensitized mesoscopic solar cells there is rapid progress of metal‐free thiophene dyes, which now reach over 11.5% power conversion efficiency (PCE) at air mass 1.5 global (AM1.5G) conditions, the so far reported highest PCE of a perylene dye is only 6.8%. Here, a new metal‐free organic donor‐acceptor (D‐A) dye ( C261 ) featuring a bisarylamino functionalized N‐annulated perylene electron‐releasing segment and a cyanoacrylic acid electron‐withdrawing unit is synthesized. Combining a mesoporous titania film grafted by this structurally simple perylene dye with a non‐corrosive cobalt redox shuttle, an 8.8% PCE is achieved at an irradiance of the AM1.5G sunlight. By selecting the model dye G221 as a reference, theoretical calculations, steady‐state and time‐resolved spectroscopies, and electrical measurements are used to compare the energy‐levels, light absorptions, and mutichannel charge transfer dynamics that contribute to the photovoltaic behavior.  相似文献   

18.
Photodimerization reactions of compounds 4–6 gave four new cyclobutane-containing compounds (7–9) with full control over the stereochemistry at the four stereogenic centers. These new cyclobutane-containing compounds had β-truxinic (7a), δ-truxinic (7b and 9), and ε-truxillic (8) structures. However, o-, m-, and p-hydroxy 4-azachalcones (1–3) did not give photochemical cyclization products under any conditions (in solvent or in their solid or molten states). Experimental data suggested the possibility of frontier orbital control over stereochemical behavior, so some theoretical calculations were performed. Full geometrical optimization of compounds 1–9 was performed via DFT B3LYP/6-31+G**, and their electronic structures were also investigated. The geometries of the singlet and triplet states were initially optimized by density functional theory (DFT) and the configuration interaction singles (CIS) B3LYP/3-21+G** level. An additional calculation was performed for the triplet state using the ground-state geometry. The possible photochemical dimerization products of compounds 7–9 (a–g) and the intrinsic reaction coordinates (IRCs) of the reactions of compounds 4–6 were calculated theoretically by the DFT/3-21+G** method. The configurations (reactant, transition state, product, and reaction pathway) corresponding to the stationary points (minima or saddle points) were determined. The intrinsic reaction coordinates were followed to verify the energy profiles that connect each TS to the appropriate local minimum. The dimeric products expected from the calculations coincided with the dimers produced experimentally.  相似文献   

19.
Abstract

Representations of the chemical structures of dyes and fluorochromes often are used to illustrate staining mechanisms and histochemical reactions. Unfortunately, inaccurate chemical structures sometimes are used, which results in problems for teaching and research in histochemistry. We comment here on published examples of inadequate chemical drawing and modeling. In particular, omission of hydrogen atoms can lead to misleading hydrogen-bonding interactions, and inaccurate drawing and modeling procedures result in a variety of implausible molecular structures. The examples and arguments given here are easily intelligible for non-chemists and could be used as part of a training approach to help avoid publication of misleading or puzzling dye structures and molecular models for illustrating biological staining and histochemical studies.  相似文献   

20.
The photochemical activities of various species of unicellular algae (Anacystis nidulans, Chlorella pyrenoidosa, and Porphyridium cruentum) were studied following chemical fixation. Fixation with formaldehyde and glutaraldehyde yielded cells which retained their ability to perform photosystem I and photosystem II reactions. The photochemical efficiencies of some fixed algae are as great as those of unfixed spinach chloroplasts. Fixed algae containing accessory pigments appear to be useful models for further studies of the light reactions of photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号