首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A high affinity (KD 35 nM) binding site for [3H]cocaine is detected in rat brain striatum present at 2-3 pmol/mg protein of synaptic membranes. This binding is displaced by cocaine analogues with the same rank order as their inhibition of [3H]dopamine ([3H]DA) uptake into striatal synaptosomes (r = 0.99), paralleling the order of their central stimulant activity. The potent DA uptake inhibitors nomifensine, mazindol, and benztropine are more potent inhibitors of this high affinity [3H]cocaine binding than desipramine and imipramine. Cathinone and amphetamine, which are more potent central stimulants than cocaine, displace the high affinity [3H]cocaine binding stereospecifically, but with lower potency (IC50 approximately equal to 1 microM) than does cocaine. It is suggested that the DA transporter in striatum is the putative "cocaine receptor." Binding of [3H]cocaine, measured in 10 mM Na2HPO4-0.32 M sucrose, pH 7.4 buffer, is inhibited by physiologic concentrations of Na+ and K+ and by biogenic amines. DA and Na+ reduce the affinity of the putative "cocaine receptor" for [3H]cocaine without changing the Bmax, suggesting that inhibition may be competitive. However, TRIS reduces [3H]cocaine binding noncompetitively while Na+ potentiates it in TRIS buffer. Binding of [3H]mazindol is inhibited competitively by cocaine. In phosphate-sucrose buffer, cocaine and mazindol are equally potent in inhibiting [3H]mazindol binding, but in TRIS-NaCl buffer cocaine has 10 times lower potency. It is suggested that the cocaine receptor in the striatum may be an allosteric protein with mazindol and cocaine binding to overlapping sites, while Na+ and DA are allosteric modulators, which stabilize a lower affinity state for cocaine.  相似文献   

2.
The present study addressed the hypothesis that the DA transporter ligand, [3H]mazindol, labels multiple sites/states associated with the dopamine (DA) transporter in striatal membranes. Incubations with [3H]mazindol proceeded for 18–24 hr at 4C in 55.2 mM sodium phosphate buffer, pH 7.4, with a protease inhibitor cocktail. In order to obtain data suitable for quantitative curve fitting, it was necessary to repurify the [3H]mazindol by HPLC before a series of experiments. Under these conditions, we observed greater than 80% specific binding. The method of binding surface analysis was used to characterize the interaction of GBR12935, BTCP, mazindol, and CFT with binding site/sites labeled by [3H]mazindol. A one site model fit the data as well as the two site model: Bmax=16911 fmol/mg protein, Kd of [3H]mazindol=75 nM, Ki of GBR12935 =8.1 nM, Ki of CFT=50 nM and Ki of BTCP=44 nM. The inhibitory mechanism (competitive or noncompetitive) of several drugs (GBR12935, CFT, BTCP, cocaine, cis-flupentixol, nomifensine, WIN35,065-2, bupropion, PCP, and benztropine) was determined. All drugs inhibited [3H]mazindol binding by a competitive mechanism. Although the ligand-selectivity of the [3H]mazindol binding site indicates that it is the uptake inhibitor recognition site of the classic DA transporter, the quantitative differences among the ligand-selectivities of different radioligands for the same site suggest that each radioligand labels different overlapping domains of the DA uptake inhibitor recognition site. It is likely that development of domain-selective drugs may further our under-standing of the DA transporter.  相似文献   

3.
Guanine nucleotides and Na+ are known to regulate ligand binding to cardiac muscarinic receptors, which are netagively couple to the adenylate cyclase system. In the present study, we found that NH4+ was more potent than Na+ or other monovalent cations in regulating the affinity of the muscarinic receptor for agonists and antagonists. The effect of NH4+ (or Na+) on the binding of the antagonist [3H]quinuclidinyl benzilate (QNB) to muscarinic receptors in homogenates of embryonic chick hearts depended on the assay buffer used. NH4+ increased Kd in phosphate buffer or histidine and increased Bmax in Tris. NHf4+ (0.1 M) increased the IC50 value for actylcholine inhibition of [3H]QNB binding 20-fold compared to 3–4-fold with 0.1 M Na+ or K+. Furthermore, NH4+ could substitute for and was more potent than Na+ in producing synergistic effects with Gpp[NH]p to reduce the affinity of the receptor of acetylcholine. Tris depressed these effects. Gpp[NH]p plus 0.4 M NH4Cl totally converted the receptor population to a low affinity agonist state and increased the IC50 for acetylcholine by more than 2000-fold. Two conclusions can be made from the present results. First, NH4+ appears to be the most potent effector yet studied of the monovalent cation site of the muscarinic receptor system. Second, the use of Tris in muscarinic receptor ligand binding assays will produce anomalous results concerning the properties of both agonist antagonist binding to the receptor.  相似文献   

4.
Dopamine transporters of bovine and rat striata were identified by their specific [3H]cocaine binding and cocaine-sensitive [3H]dopamine ([3H]DA) uptake. Both binding and uptake functions of bovine striatal transporters were potentiated by lectins. Concanavalin A (Con A) increased the velocity but did not change the affinity of the transporter for DA; however, it increased its affinity for cocaine without changing the number of binding sites. This suggests that the DA transporter is a glycoprotein and that Con A action on it produces conformational changes

Inorganic and organic mercury reagents inhibited both [3H]DA uptake and [3H]cocaine binding, though they were all more potent inhibitors of the former, n- Ethylmaleimide inhibited [3H]DA uptake totally but [3H]cocaine binding only partially. Also, n-pyrene maleimide had differential effects on uptake and binding, inhibiting uptake and potentiating binding. [3H]DA uptake was not affected by mercaptoethanol up to 100 mM, whereas [3H]cocaine binding was inhibited by concentrations above 10 mM. On the other hand, both uptake and binding were fairly sensitive to dimercaprol (< 1 mM). The effects of all these sulfhydryl reagents suggest that the DA transporter has one or more thiol group(s) important for both binding and uptake activities. The Ellman reagent and dithiopyridine were effective inhibitors of uptake and binding only at fairly high concentration (>10 mM). Loss of activity after treatment with the dithio reagents may be a result of reduction of a disulfide bond, which may affect the transporter conformation  相似文献   

5.
The effects of sodium, lithium, and magnesium on the in vitro binding properties of the D1 antagonist [3H]SCH23390 were examined with membrane preparations from rat neostriatum (CPU; caudate-putamen) and cerebral cortex (CTX). The saturation binding isotherms for both tissues performed in the presence of 120 mM of either Na+ or Li+ revealed an increase in the affinity, as compared to that observed when the incubation buffer was composed of Tris-Cl 50 mM with MgCl2 1 mM alone. For the CPU there were no changes in the maximum binding capacity (B max) in the different buffers used. In the case of the CTX, there was a loss of [3H]SCH23390 binding sites when either Na+ or Li+ 120 mM were added to the incubations, suggesting a lack of selectivity of this ligand in the absence of group IA cations. The agonist state of the [3H]SCH23390 binding site was studied in competition experiments with dopamine. The highest agonist affinity was obtained in 50 mM Tris-Cl buffer with 1 mM MgCl2 while the addition of 120 mM of either Na+ or Li+ caused a 3- to 5-fold decrease in the potency of dopamine to compete with specific [3H]SCH23390 binding in both CPU and CTX. The presence of magnesium was essential for the competition experiments; i.e.: a concentration of 1 mM MgCl2 was optimum to obtain dopamine antagonism of ligand binding, while increasing Mg2+ to 2 or 5 mM did not appear to further improve the inhibitions. The results support both agonist and antagonist affinity shifts for the dopamine D1 receptor labeled with [3H]SCH23390. Receptor affinity studies should take into account that pharmacological specificity may vary with the incubation buffer utilized, especially when comparing binding data from different laboratories performed under varying ionic conditions.  相似文献   

6.
We studied the characteristics of [3H]cocaine binding to membranes prepared from whole guinea pig brain. Cocaine binding was specific and saturable. A one-site binding model fit the data adequately: the Kd value of [3H]cocaine was 44 nM with a Bmax value of 280 fmol/mg protein. The rank order of potency for the [3H]cocaine binding site was paroxetine > clomipramine > (–)-cocaine > fluoxetine > mazindol > desipramine > GBR12909 > phencyclidine > benztropine > GBR12935 > (+)-cocaine. The IC50 values of these drugs for inhibition of [3H]cocaine binding were highly correlated with their IC50 values for inhibition of [3H]5-HT uptake into synaptosomes prepared from whole guinea pig brain. High affinity 5-HT uptake inhibitors produced dose-dependent wash-resistant (pseudoirreversible) inhibition of [3H]cocaine binding. The wash-resistant inhibition produced by paroxetine was due to an increase in the Kd of [3H]cocaine binding sites, and was accompanied by an increase in the dissociation rate, consistent with an allosteric mechanism. These studies suggest that, using membranes prepared from whole guinea pig brain, [3H]cocaine labels a binding site associated with serotonin transporter and that paroxetine and cocaine bind to different sites on the serotonin transporter.Abbreviations GBR12909 1-(2-{bis(4-fluorophenyl)methoxy}ethyl)-4-{3-phenylpropyl}piperazine - TCP 1-{1-(2-thienyl)cyclohexyl}piperidine - BTCP N-{1-(2-benzo(b)thiophenyl)cyclohexyl}piperidine - PCP 1-(1-phenylcyclohexyl)piperidine - GBR12935 (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine) - CMI clomipramine  相似文献   

7.
Abstract: In rat striatal membranes, NaCl induced a twofold increase in the maximal number of cocaine binding sites but did not alter the affinity of these sites for cocaine. This effect was concentration-dependent, specific to sodium ions, and occurred in membranes prepared from corpus striatum but not from other brain regions. Lesions with 6-hydroxydopamine but not with kainic acid eliminated the sodium-induced increase in binding and produced a decrease in the Bmax of binding measured in the presence of NaCl. The capacity of a series of drugs to interfere with Na+–dependent cocaine binding correlated well with their capacity to inhibit [3H]dopamine uptake into rat striatal synaptosomes. The present results suggest that Na+–dependent cocaine binding sites are localized presynaptically on dopaminergic nerve terminals in corpus striatum, and may be related to dopamine uptake sites.  相似文献   

8.
Abstract: The present study examines the interaction of Na+ and K+ with the binding of the cocaine analogue 3β-(4-[125I]iodophenyl)tropane-2β-carboxylic acid isopropyl ester to dopamine transporters (DATs) in rat striatal synaptosomal membranes at 37°C. The binding increases with [Na+] from 10 to 100 mM and decreases with higher [Na+]. The presence of K+ reduces the maximal stimulatory effect of Na+ and causes a nonlinear EC50 shift for Na+. K+ strongly inhibits the binding at low [Na+]. Increasing [Na+] produces a linear IC50 shift for K+. Saturation analysis indicates a single binding site changing its affinity for the radioligand depending on [K+]/[Na+] ratio in the assay buffer. A reduced Bmax was observed in the presence of 10 mM Na+ and 30 mM K+. Both high [Na+] and high [K+] accelerate the dissociation of the binding, and K+-induced acceleration was abolished by increasing [Na+]. Least squares model fitting of equilibrium data and kinetic analysis of dissociation rates reveal competitive interactions between Na+ and K+ at two sites allosterically linked on the DAT: One site mediates the stimulatory effect of Na+, and the other site involves the radioligand binding and the inhibitory effect of cations on the binding. Various uptake blockers and substrates, dopamine in particular, display reduced potency in inhibiting the binding at a higher [K+]/[Na+] ratio.  相似文献   

9.
Abstract— The treatment of cerebellar membranes of rat brain with a low concentration of Triton X-100 followed by sufficient washing results in an increase of the Na+-independent binding of [3H]GABA and a total loss of the Na +-dependent binding of [3H]GABA. The Na+-independent binding of [3H]GABA was more abundant in membranes of cerebellum than in membranes of other rat brain regions and mainly localized in the synaptic membrane fraction of a cerebellar homogenate. In the Triton-treated membranes, the Na+-independent binding of [3H]GABA was a saturable process, which could be resolved into two components, a high and a low affinity component with dissociation constants of 4.5 and 30 nm , respectively. The neurophysiological agonists, muscimol, GABA, and imidazole acetic acid, and the antagonist, bicuculline, inhibited the high affinity Na+-independent binding of [3H]GABA by 50% at 0.003, 0.012, 0.3 and 10 μm respectively. These data suggest that the Na+-independent binding of [3H]GABA in the Triton-treated cerebellar membranes represents the synaptic receptors of GABA. It is emphasized that extensive washing of the membranes after a Triton treatment is necessary in order to detect the high affinity Na+-independent binding of [3H]GABA.  相似文献   

10.
[3H]Spiperone ([3H]SPI) binding sites in rat or bovine striata have been solubilized using CHAPS or digitonin detergents. Solubilized sites retained the binding characteristics of those in native membrane preparations. The same solubilized material, however, did not bind [3H]tyramine ([3H]PTA), thus indicating that [3H]PTA binding sites and DA receptors are different chemico-physical entities. In membrane preparations or crude synaptosomes obtained from the c.striatum of neonatally-rendered hypothyroid rats, when central DA-pathways are impaired, both [3H]PTA binding and [3H]DA uptake processes were markedly decreased, with no effect on [3H]mazindol ([3H]MAZ) binding, compared to euthyroids. Reserpine, a well-known inhibitor of DA-uptake into a variety of secretory vesicles, and a potent in vivo andin vitro inhibitor of [3H]PTA binding, did not affect the [3H]MAZ binding process. This further supported the suggestion that while [3H]PTA binding sites are almost totally associated with the vesicular transporter for DA, [3H]MAZ does label a site involved in the DA-translocation across the neuronal membrane. The latter process seems to be rather insensitive to thyroid hypofunction, when however the intracellular storage of DA might be consistently impaired. In conclusion, PTA might be well exploited as a marker of the DA vesicular transporter through its molecular characterization, whenever possible.Special issue dedicated to Dr. Paola S. Timiras  相似文献   

11.
The dopamine (DA) uptake system was investigated in the mesostriatal system of normal and weaver mutant mice, which lose mesencephalic DA neurons, as well as in weaver mutants with ventral mesencephalic grafts to the striatum. Assays of [3H]DA uptake in striatal synaptosomal fractions in vitro and autoradiography of [3H]mazindol binding in brain sections were carried out in wild-type mice (+/+) and in the two hemispheres of homozygous weaver mutants (wv/wv) that had received unilateral grafts of mesencephalic cell suspensions to the right side. Net [3H]DA uptake, expressed as pmol/mg-protein/2-min, was on the average 50.6 in the striatum of wild-type mice, 7.9 in the non-grafted, and 10.1 in the transplanted striatum of weaver mutants. [3]DA uptake in wild-type mice differed significantly from both the grafted and non-grafted weaver striata (P<0.001). Paired comparisons for [3H]DA uptake between right and left sides of recipient weaver mice showed a significant side effect (P<0.02), the right side being 28–38% higher than the left side [mean of all individual (R-L)/L values]. The results of amphetamine-induced turning behavior tests were compared with the biochemical findings. Mice with grafts to the right side rotated an average of 22 turns to the left and 7 turns to the right during the five one-minute sessions; the mean value L/(L+R) was 64%. A plot of (L-R) rotations against (R-L) [3H]DA uptake gave a correlation coefficient of 0.552 (P<0.05), indicating that animals with a strong rotational bias to the left tended to have higher [3H]DA on the right. Similarly, the animals that were used for [3H]mazindol binding autoradiographic studies displayed on the average 72% rotations to the left side. In the [3H]mazindol binding data, non-grafted weaver mutants showed the severest depletion relative to wild-type in the dorsomedial and dorsolateral caudate-putamen (86% and 87%, respectively). Mice with unilateral grafts to the right side showed an increase in [3H]mazindol binding signal in the transplanted side of 40–64% (depending on dorsoventral topography) over the contralateral, non-grafted side. These findings attest to the functional effects of the grafts at the anatomical, biochemical, and behavioral levels. The parallel measurements of motor performance and DA uptake in the same animals offers an index of behavioral recovery as a function of transmitter-related activity. Furthermore, by conducting measurements of the synaptosomal DA uptake in vitro and of the binding characteristics of mazindol in brain slices by autoradiography, one has the advantage of combining the anatomical resolution of uptake site visualization with a dynamic indicator of function for DA uptake in the nerve terminal.Special issue dedicated to Professor Sidney Ochs  相似文献   

12.
Dopamine transporters of bovine and rat striata were identified by their specific [3H]cocaine binding and cocaine-sensitive [3H]dopamine [( 3H]DA) uptake. Both binding and uptake functions of bovine striatal transporters were potentiated by lectins. Concanavalin A (Con A) increased the velocity but did not change the affinity of the transporter for DA; however, it increased its affinity for cocaine without changing the number of binding sites. This suggests that the DA transporter is a glycoprotein and that Con A action on it produces conformational changes. Inorganic and organic mercury reagents inhibited both [3H]DA uptake and [3H]cocaine binding, though they were all more potent inhibitors of the former. n-Ethylmaleimide inhibited [3H]DA uptake totally but [3H]cocaine binding only partially. Also, n-pyrene maleimide had differential effects on uptake and binding, inhibiting uptake and potentiating binding. [3H]DA uptake was not affected by mercaptoethanol up to 100 mM, whereas [3H]cocaine binding was inhibited by concentrations above 10 mM. On the other hand, both uptake and binding were fairly sensitive to dimercaprol (less than 1 mM). The effects of all these sulfhydryl reagents suggest that the DA transporter has one or more thiol group(s) important for both binding and uptake activities. The Ellman reagent and dithiopyridine were effective inhibitors of uptake and binding only at fairly high concentration (greater than 10 mM). Loss of activity after treatment with the dithio reagents may be a result of reduction of a disulfide bond, which may affect the transporter conformation.  相似文献   

13.
Abstract: Binding of the selective dopamine (DA) uptake inhibitor [3H]GBR 12935 to rat striatal membranes was characterized biochemically and pharmacologically. [3H]-GBR 12935 binding at 0°C was reversible and saturable and Scatchard analysis indicated a single binding site with a KD of 5.5 nM and a Bmax of 760 pmol/mg tissue. [3H]GBR 12935 labeled two binding sites. One binding site was identified as the classic DA uptake site, since methylphenidate, cocaine, diclofensine, and Lu 19–005 potently inhibited [3H]GBR 12935 binding to it. Binding to the second site was inhibited by high concentrations of the above compounds. IC50 values for inhibition of [3H]GBR 12935 binding to the DA uptake site were proportional to IC50 values for inhibition of DA uptake. However, substrates of DA uptake, e.g., DA and 1-methyl-4-phenylpyridine, and DA releasers, e.g., the amphetamines, inhibited [3H]GBR 12935 binding less than DA uptake. Rate experiments excluded the possibility that these “weak” inhibitors affected the binding by alloste-ric coupled binding sites. The second binding site was not a noradrenergic, serotonergic, or GABAergic uptake site. Neither was it a dopaminergic, acetylcholinergic, histaminic, serotonergic, or adrenergic receptor. However, [3H]GBR 12935 was potently displaced from it by disubstituted piper-azine derivatives, i.e., flupentixol and piflutixol. DA uptake and the DA uptake binding site of [3H]GBR 12935 were located primarily in the striatum, but the piperazine acceptor site was distributed uniformly throughout the brain. Also only the DA uptake binding site was destroyed by 6-OH-DA. Thus, [3H]GBR 12935 labels the classic DA uptake site in rat striatum and also a piperazine acceptor site. Substrates for DA uptake and releasers of DA inhibited [3H]GBR 12935 binding with low potency, but did not alter the rate constants for [3H]GBR 12935 binding. Therefore inhibitors of DA uptake label the carrier site and prevent the carrier process.  相似文献   

14.
Effects of two triterpene glycosides, isolated from the holothurian Psolus fabricii, on rat brain Na+,K+-ATPase (Na,K-pump; EC 3.6.1.3) were investigated. Psolusosides A and B (PsA and PsB) inhibited rat brain Na+,K+-ATPase with I50 values of 1×10−4 M and 3×10−4 M, respectively. PsA significantly stimulated [3H]ATP binding to Na+,K+-ATPase, weakly increased [3H]ouabain binding to the enzyme, and inhibited K+-phosphatase activity to a smaller degree than the total reaction of ATP hydrolysis. In contrast, PsB decreased [3H]ATP binding to Na+,K+-ATPase, and had no effect on [3H]ouabain binding to the enzyme. K+-Phosphatase activity was inhibited by PsB in parallel with Na+,K+-ATPase activity. The fluorescence intensity of tryptophanyl residues of Na+,K+-ATPase was increased by PsA and decreased by PsB in a dose-dependent manner. The excimer formation of pyrene, a hydrophobic fluorescent probe, was decreased by PsA only. The different characteristics of inhibition mode for these substances were explained by peculiarities of their chemical structures and distinctive affinity to membrane cholesterol.  相似文献   

15.
The effects of 5-(N-methyl-N-isobutyl)-amiloride (MIA), an amiloride analog, was tested on the Na+/H+ antiport activity of intact vacuoles and tonoplast vesicles isolated from sugar beet (Beta vulgaris L.) cell suspension cultures. MIA inhibited Na+/H+ exchange in a competitive manner with a Ki of 2.5 and 5.9 micromolar for ΔpH-dependent 22Na+ influx in tonoplast vesicles and Na+-dependent H+ efflux in intact vacuoles, respectively. Scatchard analysis of the binding of [3H]MIA to tonoplast membranes revealed a high affinity binding component with a Kd of 1.3 micromolar. The close relationship between the dissociation constant value obtained and the constants of inhibition for MIA obtained by fluorescence quenching and isotope exchange suggests that the high affinity component represents a class of sites associated with the tonoplast Na+/H+ antiport. Photolabeling of the tonoplast with [3H]MIA revealed two sets of polypeptides with a different affinity to amiloride and its analog.  相似文献   

16.
At 0°C, when Na+ was the only cation present in the incubation medium, increasing the Na+ concentration from 3 to 10 mM enhanced the affinity of [3H]l-[2-(di-phenylmethoxy)ethyl]-4-(3-phenyl-2-propenyl)piperazine ([3H]GBR 12783) for the specific binding site present in rat striatal membranes without affecting the 5max. For higher Na+ concentrations, specific binding values plateaued and then slightly decreased at 130 mM Na+. In a 10 mM Na+ medium, the KD and the Bmax were, respectively, 0.23 nM and 12.9 pmol/mg of protein. In the presence of 0.4 nM [3H]GBR 12783, the half-maximal specific binding occurred at 5 mM Na+. A similar Na+ dependence was observed at 20°C. Scatchard plots indicated that K+, Ca2+, Mg2+, and Tris+ acted like competitive inhibitors of the specific binding of [3H]GBR 12783. The inhibitory potency of various cations (K+, Ca2+, Mg2+, Tris+, Li+ and choline) was enhanced when the Na+ concentration was decreased from 130 to 10 mM. In a 10 mM Na+ medium, the rank order of inhibitory potency was Ca2+ (0.13 mM) > Mg2+ > Tris+ > K+ (15 mM). The requirement for Na+ was rather specific, because none of the other cations acted as a substitute for Na+. No anionic requirement was found: Cl-, Br-, and F- were equipotent. These results suggest that low Na+ concentrations are required for maximal binding; higher Na+ concentrations protect the specific binding site against the inhibitory effect of other cations.  相似文献   

17.
[3H]Muscimol binding at 23°C and muscimol stimulated [3H]flunitrazepam binding at 37°C to membranes of rat cerebral cortex have been investigated. In washed membrane preparations, 2 apparent populations of [3H]muscimol binding sites can be observed. At 23°C [3H]muscimol binding is more sensitive to inhibition by NaCl and by other salts than at 0°C. The CNS depressants etazolate and pentobarbital reversibly enhance [3H]muscimol binding and they increase the affinity of muscimol as a stimulator of [3H]flunitrazepam binding. Conversely the CNS convulsants picrotoxin, picrotoxinin and isopropylbicyclophosphate (IPTBO) reversibly interfere with [3H]muscimol binding when NaCl is present and these drugs antagonize the effects of etazolate. In the presence of NaCl, picrotoxin, picrotoxinin and IPTBO also decrease the apparent affinity of muscimol or GABA as stimulator of [3H]flunitrazepam binding. Binding of [3H]muscimol to GABA recognition sites of rat cerebral cortex is enhanced by Ag+, Hg+ and Cu2+ in μM concentrations, Ag+ being most potent. The effects of 100 μM AgNO3 persist after repeated washing of the membranes. When membranes are pretreated with AgNO3 only one apparent population of [3H]muscimol binding sites with high affinity (Kd: 6–8 nM) is found. In AgNO3 pretreated membranes, the affinity of muscimol as stimulator of [3H]flunitrazepam binding is increased 18 times (EC50 14 nM) when compared to control membranes, (EC50 253 nM). In AgNO3 pretreated membranes, etazolate, pentobarbital and IPTBO fail to perturb either [3H]muscimol binding or baseline and muscimol stimulated [3H]flunitrazepam binding. The results demonstrate that the apparent sensitivity of GABA binding sites of the GABA-benzodiazepine-picrotoxin receptor complex can be increased by etazolate and pentobarbital and decreased by picrotoxin and IPTBO. These drugs have in common that they interfere with [3H]dihydropicrotoxinin binding.  相似文献   

18.
In order to determine whether repeated cocaine administration produced persistent changes in dopamine (DA) receptor binding and release consistent with behavioral sensitization, rats were treated with either cocaine (25 mg/kg ip) or saline twice daily for 14 consecutive days followed by a 3-d withdrawal period. The DA transporter site was assayed using [3H]GBR 12935, whereas D1 and D2 sites were assayed using [3H]SCH 23390 and [3H]spiperone, respectively. The density (B max) of the DA transporter binding sites in the ST of the cocaine-treated group increased significantly (p<0.05) over controls 3 d after the last injection, whereas the density of striatal D1 and D2 binding sites remained unchanged. The DA transporter in the nucleus accumbens (NA) was also studied with [3H]GBR 12935 and was unchanged following drug treatment. D1 and D2 binding parameters for the NA were not determined in this study. Furthermore, cocaine administration did not affect the affinities (K d ) of the radioligands used to label the transporter, D1, or D2 sites in any of the studies performed. In addition, striatal DA release was measured using in vivo microdialysis in anesthetized rats. Linear regression analysis on maximal decreases in DA release after apomorphine (0.02, 0.2, and 2.0 mg/kg sc) injection showed no difference in the functional capacity of the ST to modulate DA transmission between control and treated groups. Moreover, animals pretreated with cocaine showed a significant (p<0.01) decrease in locomotor activity (LA) after a presynaptic, autoregulating dose of apomorphine (0.03 mg/kg sc) was given. These results suggest that the effects seen after repeated exposure to cocaine may be regulated, in part, by changes in striatal DA transporter binding site densities and not necessarily by DA-releasing mechanisms or D1 and D2 receptor modification.  相似文献   

19.
Lakatos  M.  Baranyi  M.  Erőss  L.  Nardai  S.  Török  T. L.  Sperlágh  B.  Vizi  E. S. 《Neurochemical research》2020,45(1):16-33

The release of [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) in acutely perfused rat striatal and cortical slice preparations was measured at 37 °C and 17 °C under ischemic conditions. The ischemia was simulated by the removal of oxygen and glucose from the Krebs solution. At 37 °C, resting release rates in response to ischemia were increased; in contrast, at 17 °C, resting release rates were significantly reduced, or resting release was completely prevented. The removal of extracellular Ca2+ further increased the release rates of [3H]DA and [3H]NA induced by ischemic conditions. This finding indicated that the Na+/Ca2+ exchanger (NCX), working in reverse in the absence of extracellular Ca2+, fails to trigger the influx of Ca2+ in exchange for Na+ and fails to counteract ischemia by further increasing the intracellular Na+ concentration ([Na+]i). KB-R7943, an inhibitor of NCX, significantly reduced the cytoplasmic resting release rate of catecholamines under ischemic conditions and under conditions where Ca2+ was removed. Hypothermia inhibited the excessive release of [3H]DA in response to ischemia, even in the absence of Ca2+. These findings further indicate that the NCX plays an important role in maintaining a high [Na+]i, a condition that may lead to the reversal of monoamine transporter functions; this effect consequently leads to the excessive cytoplasmic tonic release of monoamines and the reversal of the NCX. Using HPLC combined with scintillation spectrometry, hypothermia, which enhances the stimulation-evoked release of DA, was found to inhibit the efflux of toxic DA metabolites, such as 3,4-dihydroxyphenylacetaldehyde (DOPAL). In slices prepared from human cortical brain tissue removed during elective neurosurgery, the uptake and release values for [3H]NA did not differ from those measured at 37 °C in slices that were previously maintained under hypoxic conditions at 8 °C for 20 h. This result indicates that hypothermia preserves the functions of the transport and release mechanisms, even under hypoxic conditions. Oxidative stress (H2O2), a mediator of ischemic brain injury enhanced the striatal resting release of [3H]DA and its toxic metabolites (DOPAL, quinone). The study supports our earlier findings that during ischemia transmitters are released from the cytoplasm. In addition, the major findings of this study that hypothermia of brain slice preparations prevents the extracellular calcium concentration ([Ca2+]o)-independent non-vesicular transmitter release induced by ischemic insults, inhibiting Na+/Cl?-dependent membrane transport of monoamines and their toxic metabolites into the extracellular space, where they can exert toxic effects.

  相似文献   

20.
Abstract

In the present study, we have provided evidence that [3H] rauwolscine and [3H] idazoxan bind to different sites in rabbit urethra. The [3H] idazoxan capacity and affinity was 215 ± 14 fmol/mg protein and 1.59 ± 0.16 nM while [3H] rauwolscine binding parameters were 45.9 ± 3.4 fmol/mg protein and 2.39 ± 0.27 nM. [3H] idazoxan specific binding was inhibited only by compounds possessing an imidazoli(di)ne or a guanidinium moiety, while [3H] rauwolscine specific binding was inhibited by phenylethanolamines and classical α-antagonists. [3H] idazoxan was inhibited by KCI in a competitive and by MnCI2 in a non-competitive way, while other cations such as Na+, Li+ and Mg2+ did not inhibit [3H] idazoxan binding. Moreover, we investigated the regional distribution of [3H] idazoxan and [3H] rauwolscine along the rabbit urethra using quantitative autoradiography. Analysis of the films revealed a different distribution of these two binding sites on the urethral sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号