首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luo P  Chen T  Zhao Y  Xu H  Huo K  Zhao M  Yang Y  Fei Z 《Free radical research》2012,46(6):766-776
Oxidative stress-induced cell damage is involved in many neurological diseases. Homer protein, as an important scaffold protein at postsynaptic density, regulates synaptic structure and function. Here, we reported that hydrogen peroxide (H(2)O(2)) induced the expression of Homer 1a. Down-regulation of Homer 1a with a specific small interfering RNA (siRNA) exacerbated H(2)O(2)-induced cell injury. Up-regulation of Homer 1a by lentivirus transfection did not affect the anti-oxidant activity, but significantly reduced the reactive oxygen species (ROS) production and lipid peroxidation after H(2)O(2)-induced oxidative stress. Overexpression of Homer 1a attenuated the loss of mitochondrial membrane potential (MMP) and ATP production induced by H(2)O(2), and subsequently inhibited mitochondrial dysfunction-induced cytochrome c release, increase of Bax/Bcl-2 ratio and caspase-9/caspase-3 activity. Furthermore, in the presence of BAPTA-AM, an intracellular free-calcium (Ca(2+)) chelator, overexpression of Homer 1a had no significant effects on H(2)O(2)-induced oxidative stress. These results suggest that Homer 1a has protective effects against H(2)O(2)-induced oxidative stress by reducing ROS accumulation and activation of mitochondrial apoptotic pathway, and these protective effects are dependent on the regulation of intracellular Ca(2+) homeostasis.  相似文献   

2.
Oxidative stress is an established event in the pathology of neurobiological diseases. Previous studies indicated that store-operated Ca2+ entry (SOCE) has been involved in oxidative stress. The present study was carried out to investigate the effects of SOCE inhibition on neuronal oxidative stress injury induced by hydrogen peroxide (H2O2) in HT22 cells, a murine hippocampal neuronal model. H2O2 insult induced significant intracellular Ca2+ overload, mitochondrial dysfunction and cell viability decrease. Inhibition of SOCE by pharmacological inhibitor and STIM1 RNAi significantly alleviated intracellular Ca2+ overload, restored the mitochondrial membrane potential (MMP), decreased cytochrome C release and eventually inhibited H2O2-induced cell apoptosis. These findings suggest that SOCE inhibition exhibited neuroprotection against oxidative stress induced by H2O2 and SOCE might be a useful therapeutic target in neurobiological disorders.  相似文献   

3.
Oxidative stress has an important role in neurodegenerative diseases and cerebral ischemic injury. It is reported that d-β-hydroxybutyrate (DβHB), the major component of ketone bodies, is neuroprotective in recent studies. Therefore, in the present work the neuroprotective effects of DβHB on H2O2-induced apoptosis mediated by oxidative stress was investigated. PC12 cells were exposed to H2O2 with different concentrations of H2O2 for different times after DβHB pretreatment. MTT assay, apoptotic rates, intracellular reactive oxygen species (ROS) level, GSH content, mitochondrial membrane potential (MMP) and caspase-3 activity were determined. The results showed that DβHB inhibited the decrease of cell viability induced by H2O2 in PC12 cells. DβHB decreased the apoptotic rates induced by H2O2. The changes of intracellular ROS, GSH, MMP and caspase-3 activity due to H2O2 exposure were partially reversed in PC12 cells. So DβHB inhibited the apoptosis of PC12 cells induced by H2O2 via inhibiting oxidative stress.  相似文献   

4.
The present study was designed to investigate ex vivo the protective mechanisms of heat-shock response against H2O2-induced oxidative stress in peripheral blood mononuclear cells (PBMCs) of rats. Twenty-four hours later, heat-shock treatment was executed in vivo; rat PBMCs were collected and treated with H2O2. The accumulation of reactive oxygen species and the mitochondrial membrane potential were evaluated by intracellular fluorescent dHE and JC-1 dye staining, respectively, and expression of HSP72 and cytochrome c was detected by Western blot analysis. Cellular apoptosis was assayed by TUNEL staining and double staining of Annexin V and PI. The results showed that H2O2-induced oxidative stress leads to intracellular superoxide accumulation and collapse of the mitochondrial membrane potential in rat PBMCs. Moreover, cellular apoptosis was detected after H2O2 treatment, and the release of mitochondrial cytochrome c from mitochondria to cytosol was significantly enhanced. Heat-shock pretreatment decreases the accumulation of intracellular superoxide in PBMCs during H2O2-induced oxidative stress. Moreover, heat-shock treatment prevents the collapse of the mitochondrial membrane potential and cytochrome c release from mitochondria during H2O2-induced oxidative stress. In conclusion, mitochondria are critical organelles of the protective effects of heat-shock treatment. Cellular apoptosis during H2O2-induced oxidative stress is decreased by heat-shock treatment through a decrease in superoxide induction and preservation of the mitochondrial membrane potential.  相似文献   

5.
Agmatine, at concentrations of 10 μM or 100 μM, is able to induce oxidative stress in rat liver mitochondria (RLM), as evidenced by increased oxygen uptake, H2O2 generation, and oxidation of sulfhydryl groups and glutathione. One proposal for the production of H2O2 and, most probably, other reactive oxygen species (ROS), is that they are the reaction products of agmatine oxidation by an unknown mitochondrial amine oxidase. Alternatively, by interacting with an iron-sulfur center of the respiratory chain, agmatine can produce an imino radical and subsequently the superoxide anion and other ROS. The observed oxidative stress causes a drop in ATP synthesis and amplification of the mitochondrial permeability transition (MPT) induced by Ca2+. Instead, 1 mM agmatine generates larger amounts of H2O2 than the lower concentrations, but does not affect RLM respiration or redox levels of thiols and glutathione. Indeed, it maintains the normal level of ATP synthesis and prevents Ca2+-induced MPT in the presence of phosphate. The self-scavenging effect against ROS production by agmatine at higher concentrations is also proposed.  相似文献   

6.
Oxidative stress, as mediated by ROS (reactive oxygen species), is a significant factor in initiating the cells damaged by affecting cellular macromolecules and impairing their biological functions; SelX, a selenoprotein also known as MsrB1 belonging to the methionine sulfoxide reductase (Msr) family, is the redox repairing enzyme and involved in redox-related functions. In order to more precisely analyze the relationship between oxidative stress, cell oxidative damage, and SelX, we stably overexpressed porcine Selx full-length cDNA in human normal hepatocyte (LO2) cells. Cell viability, cell apoptosis rate, intracellular ROS, and the expression levels of mRNA or protein of apoptosis-related genes under H2O2-induced oxidative stress were detected. We found that overexpression of SelX can prevent the oxidative damage caused by H2O2 and propose that the main mechanism underlying the protective effects of SelX is the inhibition of LO2 cell apoptosis. The results revealed that overexpressed SelX reduced the H2O2-induced intracellular ROS generation, inhibited the H2O2-induced upregulation of Bax and downregulation of Bcl-2, and increased the mRNA and protein ratio of Bcl-2/Bax. Furthermore, it inhibited H2O2-induced p38 MAPK phosphorylation. Taken together, our findings suggested that SelX played important roles in protecting LO2 cells against oxidative damage and that its protective effect is partly via the p38 pathway by acting as a ROS scavenger.  相似文献   

7.
8.
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91phox (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca2+ channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca2+-dependent NADPH oxidase.  相似文献   

9.
《Free radical research》2013,47(3):347-356
Abstract

Oxidative stress is induced by excess accumulation of reactive oxygen and nitrogen species (RONS). Astrocytes are metabolically active cells in the brain and understanding astrocytic responses to oxidative stress is essential to understand brain pathologies. In addition to direct oxidative stress, exogenous hydrogen peroxide (H2O2) can penetrate biological membranes and enhance formation of other RONS. The present study was carried out to examine the role of insulin in H2O2-induced oxidative stress in rat astrocytic cells. To measure changes in the viability of astrocytes at different concentrations of H2O2 for 3 h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT)-based assay was used and 500 μM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 3 h of 500 μM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), reactive oxygen species (ROS) and calcium ion (Ca2+) in C6 cells, with insulin able to effectively diminish H2O2-induced oxidative damage to C6 cells. Western blotting studies showed that insulin treatment of astrocytes increased the levels of phosphorylated Akt and magnified the decrease in total Bcl-2 protein. The protective effect of insulin treatment on H2O2-induced oxidative stress in astrocytes by reducing apoptosis may relate to the PI3K/Akt pathway.  相似文献   

10.
The purpose of our study was to investigate underlying basic mechanisms of hypothermia-induced cardioprotection during oxidative stress in a cardiomyocyte cell culture model. For hypothermic treatment we cooled H9c2 cardiomyocytes to 20 °C, maintained 20 min at 20 °C during which short-term oxidative damage was inflicted with 2 mM H2O2, followed by rewarming to 37 °C. Later on, we analyzed lactate dehydrogenase (LDH), caspase-3 cleavage, reactive oxygen species (ROS), mitochondrial activity, intracellular ATP production, cytoprotective signal molecules as well as DNA damage. Hypothermia decreased H2O2 damage in cardiomyocytes as demonstrated in a lower LDH release, less caspase-3 cleavage and less M30 CytoDeath staining. After rewarming H2O2 damaged cells demonstrated a significantly higher reduction rate of intracellular ROS compared to normothermic H2O2 damaged cardiomyocytes. This was in line with a significantly greater mitochondrial dehydrogenase activity and higher intracellular ATP content in cooled and rewarmed cells. Moreover, hypothermia preserved cell viability by up-regulation of the anti-apoptotic protein Bcl-2 and a reduction of p53 phosphorylation. DNA damage, proven by PARP-1 cleavage and H2AX phosphorylation, was significantly reduced by hypothermia. In conclusion, we could demonstrate that hypothermia protects cardiomyocytes during oxidative stress by preventing apoptosis via inhibiting mitochondrial dysfunction and DNA damage.  相似文献   

11.
Abstract

Exogenous hydrogen peroxide (H2O2) can easily penetrate into biological membranes and enhance the formation of other reactive oxygen species (ROS). In the present study, we have investigated the neuroprotective effects of insulin on H2O2-induced toxicity of retinoic acid (RA)-differentiated SH-SY5Y cells. To measure the changes in the cell viability of SH-SY5Y cells at different concentrations of H2O2 for 24?h, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT)-based assay was used and a 100?µM H2O2 was selected to establish a model of H2O2-induced oxidative stress. Further assays showed that 24?h of 100?µM H2O2-induced significant changes in the levels of lactate dehydrogenase (LDH), nitric oxide (NO), ROS, and calcium ion (Ca2+) in neuronal cells, but insulin can effectively diminish the H2O2-induced oxidative damages to these cells. Moreover, cells treated with insulin increased H2O2-induced suppression of glutathione levels and exerted an apparent suppressive effect on oxidative products. The results of insulin treatment with SH-SY5Y cells increased the Bcl-2 levels and decreased the Akt levels. The treatment of insulin had played a protective effect on H2O2-induced oxidative stress related to the Akt/Bcl-2 pathways.  相似文献   

12.
Experimental and clinical studies suggest that gliclazide may protect pancreatic β-cells from apoptosis induced by an oxidative stress. However, the precise mechanism(s) of this action are not fully understood and requires further clarification. Therefore, using human normal and cancer cells we examined whether the anti-apoptotic effects of this sulfonylurea is due to its free radical scavenger properties. Hydrogen peroxide (H2O2) as a model trigger of oxidative stress was used to induce cell death. Our experiments were performed on human normal cell line (human umbilical vein endothelial cell line, HUVEC-c) and human cancer cell lines (human mammary gland cell line, Hs578T; human pancreatic duct epithelioid carcinoma cell line, PANC-1). To assess the effect of gliclazide the cells were pre-treated with the drug. The 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay was employed to measure the impact of gliclazide on cell viability. Generation of reactive oxygen species, mitochondrial membrane potential (∆Ψm), and intracellular Ca2+ concentration [Ca2+] were monitored. Furthermore, the morphological changes associated with apoptosis were determined using double staining with Hoechst 33258-propidium iodide (PI). Gliclazide protects the tested cells from H2O2-induced cell death most likely throughout the inhibition of ROS production. Moreover, the drug restored loss of ΔΨm and diminished intracellular [Ca2+] evoked by H2O2. Double staining with Hoechst 33258-PI revealed that pre-treatment with gliclazide diminished the number of apoptotic cells. Our findings indicate that gliclazide may protect both normal and cancer human cells against apoptosis induced by H2O2. It appears that the anti-apoptotic effect of the drug is most likely associated with reduction of oxidative stress.  相似文献   

13.
Hepatocytes exposed to an oxidative stressor such as hydrogen peroxide (H2O2) are potentially sensitized to cell death; thus, reactive oxygen species (ROS) are considered to be critical mediators of liver damage. Zingiber officinale Roscoe (ZO), also known as ginger, is cultivated commercially in China, India, Korea, and other parts of the world. In addition, it is used as a spice and flavoring agent and is also purported to possess a number of medicinal properties. In the present study, we examined the protective effect of ZO against cell damage caused by H2O2-induced oxidative stress. ZO reduced H2O2-induced apoptotic signals and the levels of intracellular ROS. ZO pretreatment also increased the phosphorylation of c-Jun, and JNK kinase. The expression of heme oxygenase-1 (HO-1) and heat shock protein 72 (HSP72) were increased by ZO pretreatment more than H2O2 treatment. In addition, siRNA-mediated knockdown of HO-1 and HSP72 decreased protective effect of ZO pretreatment. Our data suggest that ZO decreases ROS levels and the expressions of HO-1 and HSP72 are involved in the hepatocyte protective function of ZO against H2O2.  相似文献   

14.
Oxidative stress remodels Ca2+ signaling in cardiomyocytes, which promotes altered heart function in various heart diseases. Ca2+/calmodulin-dependent protein kinase II (CaMKII) was shown to be activated by oxidation, but whether and how CaMKII links oxidative stress to pathophysiological long-term changes in Ca2+ signaling remain unknown. Here, we present evidence demonstrating the role of CaMKII in transient oxidative stress-induced long-term facilitation (LTF) of L-type Ca2+ current (ICa,L) in rat cardiomyocytes. A 5-min exposure of 1 mM H2O2 induced an increase in ICa,L, and this increase was sustained for ~ 1 h. The CaMKII inhibitor KN-93 fully reversed H2O2-induced LTF of ICa,L, indicating that sustained CaMKII activity underlies this oxidative stress-induced memory. Simultaneous inhibition of oxidation and autophosphorylation of CaMKII prevented the maintenance of LTF, suggesting that both mechanisms contribute to sustained CaMKII activity. We further found that sarcoplasmic reticulum Ca2+ release and mitochondrial ROS generation have critical roles in sustaining CaMKII activity via autophosphorylation- and oxidation-dependent mechanisms. Finally, we show that long-term remodeling of the cardiac action potential is induced by H2O2 via CaMKII. In conclusion, CaMKII and mitochondria confer oxidative stress-induced pathological cellular memory that leads to cardiac arrhythmia.  相似文献   

15.
Oxidative stress plays an important role in the pathological processes of ischemic brain damage. Many antioxidants have been shown to protect against cerebral ischemia injury by inhibiting oxidative stress both in vitro and in vivo. 20-Hydroxyecdysone (20E), an ecdysteroid hormone, exhibits antioxidative effects. For the work described in this paper, we used an in vitro oxidative damage model and an in vivo ischemic model of middle cerebral artery occlusion (MCAO) to investigate the neuroprotective effects of 20E and the mechanisms related to these effects. Treatment of cells with H2O2 led to neuronal injury, intracellular ROS/RNS generation, mitochondrial membrane potential dissipation, cellular antioxidant potential descent, an increase in malondialdehyde (MDA) and an elevation of intracellular [Ca2+], all of which were markedly attenuated by 20E. Inhibition of the activation of the ASK1-MKK4/7-JNK stress signaling pathway and cleaved caspase-3 induced by oxidative stress were involved in the neuroprotection afforded by 20E. In addition, 20E reduced the expression of iNOS protein by inhibition of NF-κB activation. The neuroprotective effect of 20E was also confirmed in vivo. 20E significantly decreased infarct volume and the neurological deficit score, restored antioxidant potential and inhibited the increase in MDA and TUNEL-positive and cleaved caspase-3-positive cells in the cerebral cortex in MCAO rats. Together, these results support that 20E protects against cerebral ischemia injury by inhibiting ROS/RNS production and modulating oxidative stress-induced signal transduction pathways.  相似文献   

16.
《Free radical research》2013,47(12):1458-1471
Reactive oxygen species (ROS) are an important factor in the development of skin photodamage after ultraviolet A (UVA) radiation. A flavonoid antioxidant, baicalin, can selectively neutralize super-oxide anion (O2?) while having no significant effect on ?OH. Fibroblasts are a key component of skin dermis. In the present study, we investigated the protective effects of baicalin on human skin fibroblasts (HSFs) under UVA induced oxidative stress. Fluorescence microscopy and flow cytometry were used to assay the intracellular O2?, NO, ROS concentrations and the mitochondrial membrane potential. Cell viability was determined using the Cell Counting Kit-8 (CCK-8). The concentrations of cellular MDA, SOD, GSH, T-AOC, and 8-oxo-dG were also measured. Cellular apoptosis was measured by flow cytometry and caspase-3 detection. The results revealed that UVA radiation could cause oxidative stress and apoptosis in HSFs. Interestingly, the use of baicalin after UVA radiation signi?cantly reduced the level of intracellular O2?, NO, and ROS, stabilized the mitochondrial membrane potential, and attenuated production of MDA and 8-oxo-dG. These ef?ciently enhanced the antioxidative defense system and protected the HSFs from subsequent oxidative stress damage and apoptosis. In other words, baicalin decreased the excessive generation of intracellular ROS and NO, and elevated the cellular antioxidative defense, which eventually mitigate the UVA-induced apoptosis. Based on our results, baicalin may have applications in the treatment of skin photodamage caused by UVA irradiation.  相似文献   

17.
Cerebral injury is closely associated with enhanced oxidative stress. A newly discovered secretory adipocytokine, intelectin-1 (ITLN-1), has been shown to have beneficial effects in neuroprotection in epidemiological studies. However, the specific molecular mechanism of ITLN-1 in protecting against cerebral oxidative stress needs further investigation. In this study, we hypothesize that ITLN-1 plays a protective role against oxidative stress injury through the SIRT1/PGC1-α signaling pathway in neuromatocytes. We used hydrogen peroxide (H2O2) as a oxidative stress model to simulate oxidative stress injury. Then, small interfering RNAs (siRNAs) was used to knock down SIRT1 in N2a cells with or without ITLN overexpression, followed by H2O2-induced injury. We observed that H2O2 injury significantly decreased the levels of ITLN-1, SIRT1, and PGC-1α. However, ITLN overexpression reversed H2O2-induced decline in cell viability and rise in apoptosis and intracellular ROS levels in N2a cells, while ITLN siRNA worsened the neurocyte injury. Furthermore, SIRT1 knockdown reversed the positive effect of ITLN overexpression on oxidative stress injury in N2a cells. Taken together, these findings suggest that ITLN-1 exerts neuroprotective effects against oxidative stress injury primarily through the SIRT1/PGC-1α axis.  相似文献   

18.
O-linked β-N-acetylglucosamine (O-GlcNAc) is an inducible, dynamically cycling and reversible post-translational modification of Ser/Thr residues of nucleocytoplasmic and mitochondrial proteins. We recently discovered that O-GlcNAcylation confers cytoprotection in the heart via attenuating the formation of mitochondrial permeability transition pore (mPTP) and the subsequent loss of mitochondrial membrane potential. Because Ca2+ overload and reactive oxygen species (ROS) generation are prominent features of post-ischemic injury and favor mPTP formation, we ascertained whether O-GlcNAcylation mitigates mPTP formation via its effects on Ca2+ overload and ROS generation. Subjecting neonatal rat cardiac myocytes (NRCMs, n ≥ 6 per group) to hypoxia, or mice (n ≥ 4 per group) to myocardial ischemia reduced O-GlcNAcylation, which later increased during reoxygenation/reperfusion. NRCMs (n ≥ 4 per group) infected with an adenovirus carrying nothing (control), adenoviral O-GlcNAc transferase (adds O-GlcNAc to proteins, AdOGT), adenoviral O-GlcNAcase (removes O-GlcNAc to proteins, AdOGA), vehicle or PUGNAc (blocks OGA; increases O-GlcNAc levels) were subjected to hypoxia–reoxygenation or H2O2, and changes in Ca2+ levels (via Fluo-4AM and Rhod-2AM), ROS (via DCF) and mPTP formation (via calcein-MitoTracker Red colocalization) were assessed using time-lapse fluorescence microscopy. Both OGT and OGA overexpression did not significantly (P > 0.05) alter baseline Ca2+ or ROS levels. However, AdOGT significantly (P < 0.05) attenuated both hypoxia and oxidative stress-induced Ca2+ overload and ROS generation. Additionally, OGA inhibition mitigated both H2O2-induced Ca2+ overload and ROS generation. Although AdOGA exacerbated both hypoxia and H2O2-induced ROS generation, it had no effect on H2O2-induced Ca2+ overload. We conclude that inhibition of Ca2+ overload and ROS generation (inducers of mPTP) might be one mechanism through which O-GlcNAcylation reduces ischemia/hypoxia-mediated mPTP formation.  相似文献   

19.
Exogenous oxidative stress induces cell death, but the upstream molecular mechanisms involved of the process remain relatively unknown. We determined the instant dynamic reactions of intracellular reactive oxygen species (ROS, including hydrogen peroxide (H2O2), superoxide radical (O2), and nitric oxide (NO)) in cells exposed to exogenous oxidative stress by using a confocal laser scanning microscope. Stimulation with extracellular H2O2 significantly increased the production of intracellular H2O2, O2, and NO (P < 0.01) through certain mechanisms. Increased levels of intracellular ROS resulted in mitochondrial dysfunction, involving the impairment of mitochondrial activity and the depolarization of mitochondrial membrane potential. Mitochondrial dysfunction significantly inhibited the proliferation of human hepatoblastoma G2 (HepG2) cells and resulted in mitochondrial cytochrome c (cyt c) release. The results indicate that upstream ROS signals play a potential role in exogenous oxidative stress-induced cell death through mitochondrial dysfunction and cyt c release.  相似文献   

20.
Barley is a major crop worldwide. It has been reported that barley seeds have an effect on scavenging ROS. However, little has been known about the functional role of the barley on the inhibition of DNA damage and apoptosis by ROS. In this study, we purified 3,4-dihydroxybenzaldehyde from the barley with silica gel column chromatography and HPLC and then identified it by GC/MS. And we firstly investigated the inhibitory effects of 3,4-dihydroxybenzaldehyde purified from the barley on oxidative DNA damage and apoptosis induced by H2O2, the major mediator of oxidative stress and a potent mutagen. In antioxidant activity assay such as DPPH radical and hydroxyl radical scavenging assay, Fe2+ chelating assay, and intracellular ROS scavenging assay by DCF-DA, 3,4-dihydroxybenzaldehyde was found to scavenge DPPH radical, hydroxyl radical and intracellular ROS. Also it chelated Fe2+. In in vitro oxidative DNA damage assay and the expression level of phospho-H2A.X, it inhibited oxidative DNA damage and its treatment decreased the expression level of phospho-H2A.X. And in oxidative cell death and apoptosis assay via MTT assay and Hoechst 33342 staining, respectively, the treatment of 3,4-dihydroxybenzaldehyde attenuated H2O2-induced cell death and apoptosis. These results suggest that the barley may exert the inhibitory effect on H2O2-induced tumor development by blocking H2O2-induced oxidative DNA damage, cell death and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号