首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Methylene green is a versatile dye that can be used in a wide range of technical applications, most of which require the dye to be pure. Because commercial lots of methylene green are known to be heterogeneous, we report a thin layer chromatographic method for checking purity. We also describe a simple and effective flash chromatographic purification procedure for subsequent purification. The identity and purity of the dye can be checked easily using UV-visible absorption spectrum measurements or by more sophisticated procedures if necessary.  相似文献   

2.
Abstract

A two-step chromatographic sequence is described for the purification of native lactose operon repressor protein from Escherichia coli cells. The first step involves Ni2+-based immobilized metal ion affinity chromatography of the soluble cytoplasmic extract. This method provides superior speed, resolution and yield than the established phosphocellulose cation-exchange chromatographic procedure. Anion-exchange chromatography is used for further purification to >95% purity. The identity and purity of the lactose repressor protein were demonstrated using sodium dodecylsulphate polyacrylamide electrophoresis, crystallization, tryptic finger-printing mass spectrometry, and inducer binding assays. The purified lac repressor exhibited inducer sensitivity for operator DNA binding and undergoes a conformational change upon inducer binding. By all these extensive biochemical criteria, the purified protein behaves exactly as that described for the Escherichia coli lactose operon repressor.  相似文献   

3.
C-phycocyanin (C-PC) is a phycobiliprotein that can be used as a natural blue dye in the food and cosmetic industries, as a biomarker or as an agent in medical treatments, depending on its purity grade. Here we described for the first time a single-step purification process of C-PC extracted from the wet biomass of Spirulina (Arthrospira) platensis LEB-52 using ion exchange chromatography with pH gradient elution. Different conditions varying the elution buffers and volumes, the loading pH and the addition of salt in the elution buffer were studied. The chromatographic condition that resulted in high recovery and purity consisted in equilibration and washing with 0.025 mol/L Tris-HCl buffer pH 6.5 and elution combining a step with 0.08 mol/L NaCl in 0.025 mol/L Tris-HCl buffer pH 6.5 and a pH gradient elution with 0.05 mol/L citrate buffer pH 6.2–3.0. This process resulted in C-PC with purities of 4.2 and 3.5 with recoveries of 32.6 and 49.5 %, respectively, in one purification step.  相似文献   

4.
A simple low pressure liquid chromatographic method is reported that can separate the basic fuchsine homologues, rosaniline, magenta II and new fuchsine from an impure commercial dye. The chromatographic purity of the separated dyes is > 90%. All homologues were obtained in multi-milligram amounts per chromatographic run; precise yields depend on the composition of the starting material and potentially may be greater. This is a useful preparative procedure for generating chromatographically pure samples of basic fuchsine homologues, especially those that cannot be obtained in pure form by direct synthesis.  相似文献   

5.
Abstract

The costly media, inconsistent ligand density, ligand leakage, and possible destabilization of recombinant hepatitis B surface antigen (rHBsAg) particles are main drawbacks of using immunoaffinity chromatography (IAF) in the large-scale downstream processing. In this study, we aimed to use an efficient large-scale purification system as an alternative purification method for immunoaffinity chromatography. For this purpose, we suggested integrating non-affinity chromatographic methods of hydrophobic interaction chromatography (HIC) and size-exclusion chromatography (SEC) for cost-effective purification of rHBsAg expressed in P. pastoris. The optimization of such process is not trivial and straightforward since diverse molecular characteristics of expressed rHBsAg in each type of host cell cause different interactions in non-affinity chromatography processes. The working buffer composition and chromatography parameters are the most influential factors in hydrophobic interaction chromatography. The best result for lab-scale HIC was achieved by using ammonium sulfate buffer in 10% of saturation concentration in pH 7.0 with Butyl-S Sepharose 6 Fast Flow medium and with subsequent Tween-100 and urea elution. In this process, the recovery, purity, and total yield were about 84%, 82%, and 69%, respectively. By scaling-up the HIC and integrating it with Sephacryl S-400?SEC, we obtained highly pure, i.e.,?>?90%, rHBsAg virus-like particles (VLP).  相似文献   

6.
【目的】本研究旨在建立一种简单快捷的炭疽水肿因子(EF)重组表达及纯化方法。【方法】构建GST-EF融合表达载体,基于EF基因的密码子使用偏好,选择菌株Escherichia coli BL21-Codon Plus(DE3)-RIL为表达宿主,对EF进行诱导表达;细胞透性技术分离粗蛋白,进而利用亲和层析一步法纯化EF;Native-PAGE、竞争性抑制实验及c AMP浓度分析用于鉴定EF的生物活性。【结果】实现了EF可溶性高效表达,透性化处理可有效抽提可溶性重组蛋白;利用亲和层析一步法纯化得到了纯度达96%的EF;EF可与保护性抗原(PA)结合形成水肿毒素,该毒素能够急剧提高CHO-K1细胞中c AMP的浓度。【结论】本研究建立了一种高效快速制备具有生物活性的炭疽水肿因子的方法,为炭疽相关研究工作提供了新的选择。  相似文献   

7.
Clearance of aggregates during protein purification is increasingly paramount as protein aggregates represent one of the major impurities in biopharmaceutical products. Aggregates, especially dimer species, represent a significant challenge for purification processing since aggregate separation coupled with high purity protein recovery can be difficult to accomplish. Biochemical characterization of the aggregate species from the hydrophobic interaction and cation exchange chromatography elution peaks revealed two different charged populations, i.e. heterogeneous charged aggregates, which led to further challenges for chromatographic removal. This paper compares multimodal versus conventional cation exchange or hydrophobic chromatography methodologies to remove heterogeneous aggregates. A full, mixed level factorial design of experiment strategy together with high throughput experimentation was employed to rapidly evaluate chromatographic parameters such as pH, conductivity, and loading. A variety of operating conditions were identified for the multimodal chromatography step, which lead to effective removal of two different charged populations of aggregate species. This multimodal chromatography step was incorporated into a monoclonal antibody purification process and successfully implemented at commercial manufacturing scale. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:636–645, 2014  相似文献   

8.
Due to the high costs associated with purification of recombinant proteins the protocols need to be rationalized. For high-throughput efforts there is a demand for general methods that do not require target protein specific optimization1 . To achieve this, purification tags that genetically can be fused to the gene of interest are commonly used2 . The most widely used affinity handle is the hexa-histidine tag, which is suitable for purification under both native and denaturing conditions3 . The metabolic burden for producing the tag is low, but it does not provide as high specificity as competing affinity chromatography based strategies1,2.Here, a bispecific purification tag with two different binding sites on a 46 amino acid, small protein domain has been developed. The albumin-binding domain is derived from Streptococcal protein G and has a strong inherent affinity to human serum albumin (HSA). Eleven surface-exposed amino acids, not involved in albumin-binding4 , were genetically randomized to produce a combinatorial library. The protein library with the novel randomly arranged binding surface (Figure 1) was expressed on phage particles to facilitate selection of binders by phage display technology. Through several rounds of biopanning against a dimeric Z-domain derived from Staphylococcal protein A5, a small, bispecific molecule with affinity for both HSA and the novel target was identified6 .The novel protein domain, referred to as ABDz1, was evaluated as a purification tag for a selection of target proteins with different molecular weight, solubility and isoelectric point. Three target proteins were expressed in Escherishia coli with the novel tag fused to their N-termini and thereafter affinity purified. Initial purification on either a column with immobilized HSA or Z-domain resulted in relatively pure products. Two-step affinity purification with the bispecific tag resulted in substantial improvement of protein purity. Chromatographic media with the Z-domain immobilized, for example MabSelect SuRe, are readily available for purification of antibodies and HSA can easily be chemically coupled to media to provide the second matrix.This method is especially advantageous when there is a high demand on purity of the recovered target protein. The bifunctionality of the tag allows two different chromatographic steps to be used while the metabolic burden on the expression host is limited due to the small size of the tag. It provides a competitive alternative to so called combinatorial tagging where multiple tags are used in combination1,7.  相似文献   

9.
单克隆抗体亲和层析法纯化重组溶葡萄球菌酶   总被引:1,自引:0,他引:1  
溶葡萄球菌酶能够特异性杀灭金黄色葡萄球菌且不易产生耐药性, 有望成为治疗葡萄球菌属细菌引发感染的特效药物。为获得高纯度的重组溶葡萄球菌酶以达到药用标准, 本研究构建了一种以重组溶葡萄球菌酶单克隆抗体为配体的亲和层析纯化方法。纯化后的重组溶葡萄球菌酶纯度大于95%, 得率大于90%, 即使重复使用30多次, 纯化效率不变。且经比色法鉴定纯化后的重组溶葡萄球菌酶仍具有良好的活性。该方法步骤简单, 纯化效果好, 为生产高纯度重组溶葡萄球菌酶奠定了基础。  相似文献   

10.
Anion exchange purification of plasmid DNA using expanded bed adsorption   总被引:3,自引:0,他引:3  
Recent developments in gene therapy with non-viral vectors and DNA vaccination have increased the demand for large amounts of pharmaceutical-grade plasmid DNA. The high viscosity of process streams is of major concern in the purification of plasmids, since it can cause high back pressures in column operations, thus limiting the throughput. In order to avoid these high back pressures, expanded bed anion exchange chromatography was evaluated as an alternative to fixed bed chromatography. A Streamline 25 column filled with 100 ml of Streamline QXL media, was equilibrated with 0.5 M NaCl in TE (10 mM Tris, 1 mM EDTA, pH=8.0) buffer at an upward flow of 300 cmh-1, E. coli lysates (obtained from up to 3 liters of fermentation broth) were injected in the column. After washing out the unbound material, the media was allowed to sediment and the plasmid was eluted with 1 M NaCl in TE buffer at a downward flow of 120 cmh-1. Purification factors of 36±1 fold, 26±0.4 plasmid purity, and close to 100% yields were obtained when less than one settled column volume of plasmid feed was injected. However, both recovery yield and purity abruptly decreased when larger amounts were processed–values of 35±2 and 5±0.7 were obtained for the recovery yield and purity, respectively, when 250 ml of feedstock were processed. In these cases, gel clogging and expansion collapse were observed. The processing of larger volumes, thus larger plasmid quantities, was only possible by performing an isopropanol precipitation step prior to the chromatographic step. This step led to an enhancement of the purification step.  相似文献   

11.
Silica is widely used for chromatography resins due to its high mechanical strength, column efficiency, easy manufacturing (i.e. controlled size and porosity), and low‐cost. Despite these positive attributes to silica, it is currently used as a backbone for chromatographic resins in biotechnological downstream processing. The aim of this study is to show how the octapeptide (RH)4 can be used as peptide tag for high‐purity protein purification on bare silica. The tag possesses a high affinity to deprotonated silanol groups because the tag''s arginine groups interact with the surface via an ion pairing mechanism. A chromatographic workflow to purify GFP fused with (RH)4 could be implemented. Purities were determined by SDS‐PAGE and RP‐HPLC. The equilibrium binding capacity of the fusion protein GFP‐(RH)4 on silica is 450 mg/g and the dynamic binding capacity around 3 mg/mL. One‐step purification from clarified lysate achieved a purity of 93% and a recovery of 94%. Overloading the column enhances the purity to >95%. Static experiments with different buffers showed variability of the method making the system independent from buffer choice. Our designed peptide tag allows bare silica to be utilized in preparative chromatography for downstream bioprocessing; thus, providing a cost saving factor regarding expensive surface functionalization. Underivatized silica in combination with our (RH)4 peptide tag allows the purification of proteins, in all scales, without relying on complex resins.  相似文献   

12.
The natural production of patchouli oil in developing countries cannot meet the increasing demand any more. This leads to socioecological consequences, such as the use of arable land, which is actually intended for food. Hence, the world market price increased up to $150/kg. An alternative is the biotechnological production of patchouli oil using a multiproduct sesquiterpene synthase, the patchoulol synthase (PTS). Here, we report the optimization of recombinant PTS purification from Escherichia coli lysate using continuous immobilized metal affinity chromatography. First, the purification conditions of the batch process were optimized in regard to optimal buffer composition and optimized chromatographic conditions. The best purification result was achieved with Co2+-immobilized metal affinity chromatography (Sartobind® IDA 75) with a triethanolamine buffer at pH 7, 0.5 M NaCl, 10% [vol/vol] glycerol, 5 mM MgCl2 and 250 mM imidazole for product elution. This optimized method was then transferred to a continuous chromatography system using three membrane adsorber units (surface of 75 cm2 each). Within 1.5 hr in total, 4.55 mg PTS with a final purity of 98% and recovery of 68% could be gained. The purified enzyme was used to produce 126 mg/L (-)-patchoulol from farnesyl pyrophosphate. Here, for the first time bioactive PTS was successfully purified using membrane adsorbers in a continuous downstream process.  相似文献   

13.
疏水层析结合冷乙醇沉淀纯化人血清白蛋白   总被引:5,自引:0,他引:5  
将层析技术与冷乙醇工艺相结合用于人血清白蛋白的纯化 ,对各过程所采用的层析介质及层析条件进行了探索 ,得到了一条从人血浆中制备血清白蛋白的新路线 :将一步冷乙醇沉淀后的血浆上清进行脱盐除乙醇 ,用阳离子交换介质CMSepharoseFF以透过式层析的模式吸附非白蛋白组分 ,最后选用ButylSepharoseFF一步疏水层析后所得样品经SDS-PAGE银染显示一条单带 ,分析其纯度大于 99% ,计算工艺收率为 81.2%。与传统冷乙醇工艺相比较 ,该工艺最终样品纯度更高 ,且层析可以在常温下操作 ,易实现自动化控制.  相似文献   

14.
目的:找寻适用于脂联素全序列蛋白的结晶条件,为解析其空间结构奠定基础,从而研究脂联素聚合体的内在构成模式,为开发高活性脂联素类衍生细胞因子提供参考。方法:首先构建脂联素全序列蛋白的真核表达载体,对其进行诱导表达,然后通过经亲和层析和凝胶过滤分离纯化后,得到高纯度的脂联素全序列蛋白,最后尝试使用坐滴法和悬滴法以及多种温度环境和结晶液条件,从而找寻适于脂联素全序列蛋白质的结晶条件。结果:通过纯化后的脂联素蛋白纯度可以达到91.3%,在溶液中的粒径分布于2 nm到4 nm。在线性变温条件下(24 h内,由277 K线性升温至313 K,再线性降温至277 K),通过悬滴法于48 h可获得脂联素全序列蛋白的针状晶体。结论:本研究选择真核载体,以亲和层析和凝胶过滤为分离纯化手段,得到了纯度高,粒径均一的脂联素全序列蛋白。随后通过尝试多种结晶方法、条件和环境,初步确定获得脂联素全序列蛋白晶体的条件,为后续获得高质量单晶提供了参考。  相似文献   

15.
A cation exchange matrix with zwitterionic and multimodal properties was synthesized by a simple reaction sequence coupling sulfanilic acid to a chitosan based support. The novel chromatographic matrix was physico‐chemically characterized by ss‐NMR and ζ potential, and its chromatographic performance was evaluated for lysozyme purification from diluted egg white. The maximum adsorption capacity, calculated according to Langmuir adsorption isotherm, was 50.07 ± 1.47 mg g?1 while the dissociation constant was 0.074 ± 0.012 mg mL?1. The process for lysozyme purification from egg white was optimized, with 81.9% yield and a purity degree of 86.5%, according to RP‐HPLC analysis. This work shows novel possible applications of chitosan based materials. The simple synthesis reactions combined with the simple mode of use of the chitosan matrix represents a novel method to purify proteins from raw starting materials. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:387–396, 2018  相似文献   

16.
Abstract

Affinity purification of annexin V from human placenta on column with appropriate monospecific antibodies is developed. The procedure permits purification of the protein to a highly purified state by a two stage procedure. The yield of the protein is about 5 mg per 100 g of wet tissue. Because of high homologies between various annexins, it was supposed that this procedure can be also applied for purification of other annexins from other tissues.  相似文献   

17.
Textile or triazine dyes play an important role as affinity ligands in protein purification. Each step of the protein purification protocol can be divided into three stages, partitioning between two phases, separation of these phases and recovery of the target protein from the enriched phase. Now developments in dye-affinity techniques are discussed emphasizing the innovations in all three stages of the protein purification process. Dye-affinity chromatography has become a routine step in protein purification. New dyes have been developed and used successfully in both traditional chromatographic mode and new modes like affinity precipitation, polymer aqueous two-phase partitioning or expanded bed chromatography. The specificity of dye techniques has been increased by both purposeful designing of new dyes and decreasing non-specific protein–dye interactions with polymer shielding. One can envisage further development and ramification of dye-affinity techniuqes in protein purification.  相似文献   

18.
Abstract

The new affinity gel reported in this study was prepared using EUPERGIT C250L as a chromatographic bed material, to which etylenediamine spacer arms were attached to prevent steric hindrance between the matrix and ligand, and to facilitate effective binding of the CA-specific ligand, of the aromatic sulfonamide type for the purification of α-carbonic anhydrases (Cas; EC 4.2.1.1). Indeed, the aminoethyl moieties of the affinity gel were derivatized by reaction with 4-isothiocyanatobenzenesulfonamide, with the formation of a thiourea-based gel, having inhibitory effects against CAs. Both bovine erythrocyte carbonic anhydrase BCA and human (h) erythrocyte CA isoforms I, II (hCA I and II) have been purified from hemolysates, by using this affinity gel. The greatest purification fold and column yields for BCA and for cytosolic (hCA I?+?II) enzymes were of 181-fold (21.07%) and 184-fold (9.49%), respectively. Maximum binding was achieved at 15?°C and I?=?0.3 ionic strength for α-carbonic anhydrases.  相似文献   

19.
Recombinant proteins are revolutionizing present day therapeutics. They are generally expressed as insoluble inclusion bodies in the E. coli and mis‐folding, loss of protein, and high cost of down streaming are the hurdles in their recovery. For the first time, we are reporting the refolding with simultaneous purification of rhASP in E. coli using a single step utilizing protein folding‐strong anion exchange chromatography (PF‐SAX). The purification method is also standardized for optimal concentration of solution additives, pH, and mobile phase composition. The results showed purification of rhASP with anion exchange chromatography was effective. Phosphate buffer and slightly alkaline pH produced significant recovery yields and purity profiles. The effect of solution additives such as arginine, glycerol, TMAO, sorbitol, dextran, glutamate, and fructose on rhASP renaturation is also investigated. Significant results were achieved using arginine‐TMAO combination in terms of purity, recovery yield and specific activity of 99%, 78%, and 210 IU/mg, respectively. The work concludes that PF‐SAX refolding method is superior to other conventional methods and it can be applied to large scale purification of rhASP produced in E. coli. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:1036–1044, 2018  相似文献   

20.
Recombinant human stem cell factor (rhSCF) was produced as an inclusion body by Escherichia coli DH5α grown in a 5 l fermentor. Inclusion bodies of rhSCF were purified and solubilized in urea solution, then renatured with simultaneous purification using a high performance hydrophobic interaction chromatographic (HPHIC) squat column. The refolded rhSCF had a purity of 94% and a bioactivity of 1.2 × 106 IU mg−1of rhSCF protein. The method described is fast and simple to implement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号