首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shenfu injection (the major components of which are ginsenosides compound, extract of Panax ginseng shown to have antioxidant properties) is a well-known important Chinese traditional medicine used for the treatment of various diseases especial for cardiac diseases. The precise mechanism of the biological actions of this plant is not fully understood, in order to elucidate the protection of cardiomyocytes. The aim of the present study was to investigate the effect of Shenfu injection on hypoxia/reoxygenation (H/R)-induced apoptosis and the expression of bcl-2 and caspase-3 in cultured neonatal rat cardiomyocytes in vitro. Ventricular myocytes were isolated from neonatal rat hearts and were exposed to 4 h of hypoxia followed by 16 h of reoxygenation. The results indicated that treatment with different doses of Shenfu injection protected cardiacmyocyte cultures from hypoxia/reoxygenation-induced apoptosis. Caspase-3 activation was decreased in hypoxic/reoxygenationed cardiomyocytes co-treated with Shenfu injection when compared to hypoxia/reoxygenation alone treated cultures. Expression of the Bcl-2 proteins was increased in Shenfu injection-treated cardiomyocytes subjected to hypoxia/reoxygenation. In conclusion, ginsenosides compound has obviously protective effects on cardiacmyocytes against apoptosis induced by hypoxia/reoxygenation injury, whose mechanisms probably involve the inhibition of down-regulation of Bcl-2 protein levels and sequential activation of caspase-3.  相似文献   

2.
Resveratrol (RES) protects myocardial cells from hypoxia/reoxygenation (H/R)-caused injury.However,the mechanism of this effect has not been clarified.Thus,in t...  相似文献   

3.
BackgroundNeuronal excitotoxicity induces a plethora of downstream signaling pathways, resulting in the calcium overload-induced excitotoxic cell death, a well-known phenomenon in cerebrovascular and neurodegenerative disorders. The naturally occurring phytosterol, stigmasterol (ST) is known for its potential role in cholesterol homeostasis and neuronal development. However, the ability of ST to protect against the induced excitotoxicity in hippocampal neurons has not been investigated yet.PurposeThe present study aimed to investigate whether ST could protect against hypoxia/reoxygenation (H/R)-induced excitotoxicity in hippocampal neurons.MethodsAfter H/R, neurons were initially subjected to trypan blue exclusion assay for the assessment of cell viability. Live staining using fluorescence dyes namely JC-1 (5,5’,6,6’-tetrachloro-1,1’,3,3’-tetraethylbenzimidazolyl-carbocyanine iodide), DCFDA (2′,7′–dichlorofluorescein diacetate) and FM1-43 (N-(3-triethylammoniumpropyl)−4-(4-(dibutylamino)styryl) were used to measure MMP, ROS and synaptic vesicle pool size. Immunostaining was performed to analyze the expression levels of vesicular glutamate transporter 1 (VGLUT1), N-methyl-D-acetate receptor subunit 2B (GluN2B), LC3BII, p62, and PTEN induced protein kinase 1 (PINK1) in neuron after H/R. Western blotting was carried out to measure the protein expression of GluN2B. The molecular dynamics simulation was employed to elucidate the LXRβ agonistic conformation of ST.ResultPre-incubation of neuronal cultures with ST (20 μM) protected against excitotoxicity, and attenuated reactive oxygen species (ROS) generation, double-stranded DNA break, and mitochondrial membrane potential (MMP) loss. ST treatment also resulted in the downregulation of the expressions of VGLUT1 and GluN2B and the reduction of the size of recyclable synaptic vesicle (SV) pool. Like LXRβ agonist GW3695, ST suppressed the expression of GluN2B. Furthermore, ST induced mitophagy through upregulating the expressions of LC3BII, p62, and PINK1. The molecular simulation study showed that ST interacted with the ligand binding domain of liver X receptor β (LXRβ), a known binding receptor of ST, through multiple hydrogen bonding.ConclusionCollectively, these findings revealed that ST exhibited a promising neuroprotective effect by regulating both pre- and post-synaptic events following H/R, particularly, attenuation of GluN2B-mediated excitotoxicity and oxidative stress, and induction of mitophagy, and suggested that ST might be a therapeutic promise against ischemic stroke and its associated neurological disorders.  相似文献   

4.
5.
Acute kidney injury (AKI) is a very common complication with high morbidity and mortality rates and no fundamental treatment. In this study, we investigated whether the hepatocyte growth factor (HGF)/cMet pathway is associated with the development of AKI and how the administration of a cMet agonistic antibody (Ab) affects an AKI model. In the analysis using human blood samples, cMet and HGF levels were found to be significantly increased in the AKI group, regardless of underlying renal function. The administration of a cMet agonistic Ab improved the functional and histological changes after bilateral ischaemia-reperfusion injury. TUNEL-positive cells and Bax/Bcl-2 ratio were also reduced by cMet agonistic Ab treatment. In addition, cMet agonistic Ab treatment significantly increased the levels of PI3K, Akt and mTOR. Furthermore, after 24 hours of hypoxia induction in human proximal tubular epithelial cells, treatment with the cMet agonistic Ab also showed dose-dependent antiapoptotic effects similar to those of the recombinant HGF treatment. Even when the HGF axis was blocked with a HGF-blocking Ab, the cMet agonistic Ab showed an independent dose-dependent antiapoptotic effect. In conclusion, cMet expression is associated with the occurrence of AKI. cMet agonistic Ab treatment attenuates the severity of AKI through the PI3K/Akt/mTOR pathway and improves apoptosis. cMet agonistic Ab may have important significance for the treatment of AKI.  相似文献   

6.
Cereblon (CRBN) was originally identified as a target protein for a mild type of mental retardation in humans. However, recent studies showed that CRBN acts as a negative regulator of AMP-activated protein kinase (AMPK) by binding directly to the AMPK catalytic subunit. Because AMPK is implicated in myocardial ischemia–reperfusion (I–R) injury, we reasoned that CRBN might play a role in the pathology of myocardial I–R through regulation of AMPK activity. To test this hypothesis, wild-type (WT) and crbn knockout (KO) mice were subjected to I–R (complete ligation of the coronary artery for 30 min followed by 24 h of reperfusion). We found significantly smaller infarct sizes and less fibrosis in the hearts of KO mice than in those of WT mice. Apoptosis was also significantly reduced in the KO mice compared with that in WT mice, as shown by the reduced numbers of TUNEL-positive cells. In parallel, AMPK activity remained at normal levels in KO mice undergoing I–R, whereas it was significantly reduced in WT mice under the same conditions. In rat neonatal cardiomyocytes, overexpression of CRBN significantly reduced AMPK activity, as demonstrated by reductions in both phosphorylation levels of AMPK and the expression of its downstream target genes. Collectively, these data demonstrate that CRBN plays an important role in myocardial I–R injury through modulation of AMPK activity.  相似文献   

7.
Abstract

Recent investigations have demonstrated that the signaling of hypoxia–re-oxygenation is a major contributing pathway leading to gastric mucosal injury induced by stress, non-steroidal anti-inflammatory drugs, and Helicobacter pylori. The aim of the present study was to perform a gene expression analysis on the gastric mucosal cellular response to hypoxia–reoxygenation using a high-density oligonucleotide array. Cells were subjected to hypoxia with 95% N2 and 5% CO2 at 37°C for 2 h. Reoxygenation was initiated by placing the cells in an environment of normoxia for 2 h. Total RNA was extracted, and differences in gene expression profiles between the normoxia and hypoxia–reoxygenation groups were investigated using a GeneChip of Rat Toxicology U34 array (Affymetrix). Hypoxia–reoxygenation up-regulated the stress-related genes (heat shock protein-70 [HSP-70], catalase). The enhanced expression of HSP-70 was confirmed by Western blot analysis. In conclusion, these results suggest that up-regulation of the HSP-70 gene after reoxygenation may play a role in maintaining cell survival and supporting cell function as a molecular chaperone.  相似文献   

8.
Dihydrotestosterone (DHT) attenuates cytokine-induced cyclooxygenase-2 (COX-2) in coronary vascular smooth muscle. Since hypoxia inducible factor-1α (HIF-1α) activation can lead to COX-2 production, this study determined the influence of DHT on HIF-1α and COX-2 following hypoxia or hypoxia with glucose deprivation (HGD) in the cerebral vasculature. COX-2 and HIF-1α levels were assessed via Western blot, and HIF-1α activation was indirectly measured via a DNA binding assay. Experiments were performed using cerebral arteries isolated from castrated male rats treated in vivo with placebo or DHT (18 days) followed by hypoxic exposure ex vivo (1% O(2)), cerebral arteries isolated from castrated male rats treated ex vivo with vehicle or DHT (10 or 100 nM; 18 h) and then exposed to hypoxia ex vivo (1% O(2)), or primary human brain vascular smooth muscle cells treated with DHT (10 nM; 6 h) or vehicle then exposed to hypoxia or HGD. Under normoxic conditions, DHT increased COX-2 (cells 51%; arteries ex vivo 31%; arteries in vivo 161%) but had no effect on HIF-1α. Following hypoxia or HGD, HIF-1α and COX-2 levels were increased; this response was blunted by DHT (cells HGD: -47% COX-2, -34% HIF-1α; cells hypoxia: -29% COX-2, -54% HIF-1α; arteries ex vivo: -37% COX-2; arteries in vivo: -35% COX-2) and not reversed by androgen receptor blockade. Hypoxia-induced HIF-1α DNA-binding was also attenuated by DHT (arteries ex vivo and in vivo: -55%). These results demonstrate that upregulation of COX-2 and HIF-1α in response to hypoxia is suppressed by DHT via an androgen receptor-independent mechanism.  相似文献   

9.
Yang  Zhou  Su  Wating  Zhang  Yuan  Zhou  Lu  Xia  Zhong-yuan  Lei  Shaoqing 《Journal of molecular histology》2021,52(4):705-715
Journal of Molecular Histology - Lipopolysaccharide (LPS)-induced autophagy is involved in sepsis-associated myocardial injury with increased PKCβ2 activation. We previously found...  相似文献   

10.
Curcumin, a polyphenolic compound derived from turmeric, has protective effects on myocardial injury through attenuation of oxidative stress and inflammation. Toll-like receptor 2 (TLR2), a key mediator of the innate immune system, is involved in myocardial infarction and examined if controlled by curcumin. Rat cardiomyocytes (CMs) were stimulated with tumor necrosis factor (TNF)-α, peptidoglycan (PGN) or hypoxia/reoxygenation (H/R) with or without curcumin pretreatment. Sprague–Dawley rats were fed curcumin (300 mg/kg/day) 1 week before cardiac ischemia/reperfusion (I/R) injury. The expression level of TLR2 and cardiac function were assessed. Both mRNA and protein of TLR2 were up-regulated in infarcted myocardium, while TLR4 remained unchanged. In CMs, TLR2 and monocyte chemoattractant protein (MCP)-1 mRNAs were increased by TNF-α, PGN or H/R, whereas they were blunted by curcumin. Immunofluorescence staining of CMs also showed that TLR2 and MCP-1 were increased after H/R, whereas curcumin-pretreated CMs were not. In animal study, 2 weeks after I/R, TLR2 was increased in the infarct zone, whereas it stayed unchanged in the Cur+I/R group. Macrophage infiltration (CD68), high-mobility group box 1 and fibrosis were increased in the I/R group, whereas they were decreased in the Cur+I/R group. Connexin 43 was reduced in the I/R group, while it recovered significantly in the Cur+I/R group. Cardiac contractility in the Cur+I/R group was also improved compared with that in the I/R group (max dp/dt in Cur+I/R group: 9660±612 vs. I/R group: 8119±366, P<.05). These results suggest that selective inhibition of TLR2 by curcumin could be preventive and therapeutic for myocardial infarction.  相似文献   

11.
Abstract

Renal tubular epithelial cell (RTEC) injury is the main cause and common pathological process of various renal diseases. Mitochondrial dysfunction (MtD) is a pathological process after renal injury. Mitophagy is vital for mitochondrial function. Hypoxia is a common cause of RTEC injury. Peroxisome proliferator-activated receptor γ (PPARγ) is involved in cell proliferation, apoptosis, and inflammation. Previous studies have shown that the low expression of PPARγ might be involved in hypoxia-induced RTEC injury. The present study aimed to investigate the correlation between PPARγ and mitophagy in damaged RTEC in the hypoxia/reoxygenation (HR) model. The results showed that HR inhibited the expression of PPARγ, but increased the expression of LC3II, Atg5, SQSTM1/P62, and PINK1 in a time-dependent manner. Moreover, mitochondrial DNA (mt DNA) copy number, mitochondria membrane potential (MMP) levels, ATP content, and cell viability were decreased in hypoxic RTECs, the expression of SQSTM1/P62 and PINK1, the release of cytochrome c (cyt C), and production of reactive oxygen species (ROS) were increased. Mitochondrial-containing autophagosomes (APs) were detected using transmission election microscope (TEM) and laser scanning confocal microscope (LSCM). Furthermore, PPARγ protein expression was negatively correlated with that of LC3II, PINK1, and the positive rate of RTEC-containing mitochondrial-containing APs (all p?<?.05), but positively correlated with cell viability, MMP level, and ATP content (all p?<?.05). These data suggested that PPARγ and mitophagy are involved in the RTEC injury process. Thus, a close association could be detected between PPARγ and mitophagy in HR-induced RTEC injury, albeit additional investigation is imperative.  相似文献   

12.
Impaired mitochondrial function and dysregulated energy metabolism have been shown to be involved in the pathological progression of kidney diseases such as acute kidney injury (AKI) and diabetic nephropathy. Hence, improving mitochondrial function is a promising strategy for treating renal dysfunction. NADH: ubiquinone oxidoreductase core subunit V1 (NDUFV1) is an important subunit of mitochondrial complex I. In the present study, we found that NDUFV1 was reduced in kidneys of renal ischemia/reperfusion (I/R) mice. Meanwhile, renal I/R induced kidney dysfunction as evidenced by increases in BUN and serum creatinine, severe injury of proximal renal tubules, oxidative stress, and cell apoptosis. All these detrimental outcomes were attenuated by increased expression of NDUFV1 in kidneys. Moreover, knockdown of Ndufv1 aggravated cell insults induced by H2O2 in TCMK-1 cells, which further confirmed the renoprotective roles of NDUFV1. Mechanistically, NDUFV1 improved the integrity and function of mitochondria, leading to reduced oxidative stress and cell apoptosis. Overall, our data indicate that NDUFV1 has an ability to maintain mitochondrial homeostasis in AKI, suggesting therapies by targeting mitochondria are useful approaches for dealing with mitochondrial dysfunction associated renal diseases such as AKI.  相似文献   

13.
14.
Molecular Biology Reports - Noscapine is an antitumor alkaloid derived from Papaver somniferum plants. Our previous study has demonstrated that exposure of noscapine on primary murine fetal...  相似文献   

15.
Long noncoding RNAs (lncRNAs) have been increasingly considered to play an important role in the pathological process of various cardiovascular diseases, which often bind to the proximal promoters of the protein-coding gene to regulate the protein expression. However, the functions and mechanisms of lncRNAs in cardiomyocytes have not been fully elucidated. High-throughput RNA sequencing was performed to identify the differently expressed lncRNAs and messenger RNAs (mRNAs) between acute myocardial infarction (AMI) rats and healthy controls. One novel lncRNA FGF9-associated factor (termed FAF) and mRNAs in AMI rats were verified by bioinformatics, real-time polymerase chain reaction or western blot. Moreover, RNA fluorescence in situ hybridization was performed to determine the location of lncRNA. Subsequently, a series of in vitro assays were used to observe the functions of lncRNA FAF in cardiomyocytes. The expression of lncRNA FAF and FGF9 were remarkably decreased in ischemia–hypoxia cardiomyocytes and heart tissues of AMI rats. Overexpression of FAF could significantly inhibit cardiomyocytes apoptosis induced by ischemia and hypoxia. Conversely, knockdown of lncRNA FAF could promote apoptosis in ischemia–hypoxia cardiomyocytes. Moreover, overexpression of lncRNA FAF could also increase the expression of FGF9. Knockdown of the FGF9 expression could promote apoptosis in cardiomyocytes with the insult of ischemia and hypoxia, which was consistent with the effect of lncRNA FAF overexpression on cardiomyocyte apoptosis. Mechanistically, FGF9 inhibited cardiomyocytes apoptosis through activating signaling tyrosine kinase FGFR2 via phosphoinositide 3-kinase/protein kinase B signaling pathway. Thus, lncRNA FAF plays a protective role in ischemia–hypoxia cardiomyocytes and may serve as a treatment target for AMI.  相似文献   

16.
Liposomes are potential drug carriers for pulmonary drug delivery: They can be prepared from phospholipids, which are endogenous to the respiratory tract as a component of pulmonary surfactant, and at an appropriate dose liposomes do not pose a toxicological risk to this organ. Among the various categories of drug that benefit from liposomal entrapment is the anti-inflammatory enzyme superoxide dismutase, thus prolonging its biological half-life. The delivery of liposomes by nebulization is hampered by stability problems, like physical and chemical changes that may lead to chemical degradation and leakage of the encapsulated drug. Here we present data of liposomes aerosolized with a novel electronic nebulizer based on a vibrating membrane technology (PARI eFlow?), which amends drawbacks like liposomes degradation and product release. The data acquisition included aerosol properties such as aerodynamic particle size, nebulization efficiency, and liposome leakage upon nebulization. In conclusion, this study shows the ability of the PARI eFlow? to nebulize high amounts of liposomal recombinant human superoxide dismutase with reduced vesicle disruption tested in an enclosing experimental protocol.  相似文献   

17.
The stromal cell-derived factor-1α/C-X-C chemokine receptor 4 (SDF-1/CXCR4) axis is involved in various aspects of tissue repair, regeneration and development. However, the role of SDF-1/CXCR4 in acute lung injury (ALI) remains largely unknown. The aim of the present investigation is to examine pathological changes in a rabbit model with ALI induced by oleic acid (OA) and to explore the protective effect of SDF-1α on ALI. Intravenous application (i.v.) of oleic acid (0.1 ml/kg/h for 2 h) provoked pulmonary hemorrhage, edema, and protein leakage, resulting in severe ALI. When the rabbit received an infusion of SDF-1α (20 μg/kg/24 h) for 30 min before OA treatment, SDF-1α seemed to significantly improve the pathologies associated with OA-induced ALI. While dissecting the molecular mechanisms underlying the beneficial effects of SDF-1α, we found that SDF-1/CXCR4 is expressed in uninjured lung tissues but is greatly reduced after OA treatment. Interestingly, intravenous delivery of SDF-1α could target an injured lung and rescue expression of CXCR4, which in turn activates anti-apoptotic proteins, Bcl-1 and Bcl-xl, but does not affect pro-apoptotic proteins, such as Bad and Bax. These data suggested that SDF-1α could protect rabbit lungs from AIL. The molecular mechanism might be associated with upregulating anti-apoptosis family expression through CXCR4. Thus, SDF-1/CXCR4 signaling pathway may be a promising target for treatment of patients with ALI.  相似文献   

18.

Background  

We have recently shown that δ-opioid receptors (DORs) play an important role in neuroprotection from hypoxic injury via the regulation of extracellular signaling-regulated kinase (ERK) and cytochrome c release. Since ERK and cytochrome c are differentially involved in caspase signaling of oxidative injury that significantly contributes to neuronal damage in ischemia/reperfusion, we considered if DOR activation protects the ischemic brain by attenuating oxidative injury.  相似文献   

19.
Statins, widely used as clinically effective inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase, exhibit anti-inflammatory properties that may be of therapeutic benefit for the management of some neurological disorders. In this study, a short-term course of lovastatin treatment is shown to markedly inhibit the development of experimental autoimmune neuritis (EAN) in the absence of hepatotoxic or myotoxic complications. Independent of cholesterol reduction, lovastatin treatment prevented EAN-induced peripheral nerve conduction deficits and morphologic nerve injury. Co-administration with mevalonate neutralized the prophylactic effects of lovastatin. When administered therapeutically, lovastatin significantly shortened the disease course. Autoreactive immunity, measured in vitro by myelin-stimulated proliferation of splenocytes, was significantly diminished by in vivo lovastatin treatment. Th1-dominant immune responses, measured by cytokine profiling, however, were not affected by lovastatin. Sciatic nerves of lovastatin-treated immunized rats showed markedly reduced levels of cellular infiltrates. Treating peripheral nerve endothelial monolayers with lovastatin significantly inhibited the in vitro migration of autoreactive splenocytes. Together, these data demonstrate that a short-term course of lovastatin attenuates the development and progression of EAN in Lewis rats by limiting the proliferation and migration of autoreactive leukocytes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号